Formal verification for
constant-time cryptography

Jan Jancar
jan@neuromancer.sk

MUNI
F 1

CR&CS

Centre for Research on
Cryptography and Security

IA072
December 4, 2020

mailto:jan@neuromancer.sk
https://crocs.fi.muni.cz
https://neuromancer.sk
https://fi.muni.cz

Cryptography
Side-channel attacks

Timing attacks

Formal verification for constant-time cryptography
ctgrind
ct-verif
SideTrail
ct-fuzz

Cryptography

Symmetric
Uses the same key for decryption/encryption
Encryption, Hash functions, ...
AES, SHA1, SHA256, ...

Asymmetric
Uses different keys for the operations (private + public = keypair)
Encryption, Digital signatures, Key exchange, ...
RSA, Diffie-Hellman, ECC, ...

Post-quantum
Symmetric crypto is ok
Asymmetric broken by (future) quantum computers
Needs new algorithms
Lattices, Codes, Isogenies, ...

Libraries & Protocols

Jan Jancar Formal verification for constant-time cryptography

3/32

Cryptography

Symmetric

Bit and byte operations ﬁbSOVbingisqueezing
xor, and, shift, ...

Byte permutations

No number theory c
Rounds: same operations repeated

for (let round=1; round<Nr; round++) {
state = subBytes(state);
state = shiftRows(state);
state = mixColumns(state);
state = addRoundKey(state, round, schedule);

b

Jan Jancar Formal verification for constant-time cryptography 4/32

Cryptography

Asymmetric

Modular arithmetic
Number theory (Z;, Fp, ...)
Only private key is secret

Huge integers (256 bits for ECC, 4096 for RSA)

Bignumber libraries

N =P
Q=20
for i from © to m do
if ((d >> i) & 1) == 1 then
Q = point_add(Q, N)
N = point_double(N)
return Q

point_add((X1, Y1, Z1), (X2, Y2, Z2)):
u = Y2%71-Y1%Z22
v = X2%Z1-X1%Z2
A = U2¥Z1%Z2-v3-2%y2%X1*Z2
X3 = v¥A
Y3 = u¥(v2¥X1%¥Z2-A)-v3*Y1%¥Z2
73 = v3*¥Z1%72
return (X3, Y3, Z3)

Jan Jancar Formal verification for constant-time cryptography 5/32

Cryptography

Post-quantum

Quantum computers break all classical asymmetric algorithms
Post-quantum cryptography attempts to fix it

More number theory (I, Fy, ...)

More linear algebra

Very large keys (kB)

Lattices, Codes, Isogenies

Jan Jancar Formal verification for constant-time cryptography 6/32

Cryptography

Protocols & Libraries

Basic crypto primitives are used in protocols

Libraries collect primitives and protocols

SSL/TLS, Signal, IPSec

State machines

Read message, decrypt, verify, process, sign, encrypt, respond
Most in C, low-level functions in assembly

Jan Jancar Formal verification for constant-time cryptography 7/32

Side-channel attacks

Side-channels
Power
Electromagnetic radiation
Cache
Errors
Time

Jan Jancar Formal verification for constant-time cryptography 8/32

Side-channel attacks

Power

Transistors take some power to switch
Switching in a clock cycle is data dependent
Thus, power consumption is data dependent
Hamming weight of operand often leaks

B.00bers To0ber6

Jan Jancar Formal verification for constant-time cryptography 9/32

Side-channel attacks

Electromagnetic radiation

Power also influences EM radiation from the circuit
Get a good probe and record trace
Can be localized to a part of a chip

Jan Jancar Formal verification for constant-time cryptography 10/32

Side-channel attacks

Cache

Jan Jancar

Processors have several layers of memory cache
Cache organized into cache lines

Cache evicted in a Least Recently Used-like fashion
Prime+Probe cache attack:

Malicious process accesses memory to prime all cache lines

Target process executes for a bit

Malicious process regains execution and checks the cache lines by timing how long
a cache access takes

Cache hit: Target process did not touch cache line

Cache miss: Target process did touch cache line

Formal verification for constant-time cryptography 11/32

Timing attacks

Timing attacks

function checkPasswordVarTime(password) {
let correct = "hunter2";
for (let i of correct) {
if (i >= password.length || password[i] !== correct[i]) {
return false;
3
3

return true;

Jan Jancar Formal verification for constant-time cryptography 12/32

Timing attacks

R = P

Q =
for i from bit_length(k) to © do

if ((k >> i) & 1) == 1 then

R=R+Q; Q=2Q “ i
else Q Minerva

Q=R+ 0Q; R=2R
return R

Jan Jancar Formal verification for constant-time cryptography 12/32

https://www.facebook.com/644177528948089/videos/579309582885666/
https://minerva.crocs.fi.muni.cz

Timing attacks

Leakage models

Remote attacker
Wall clock time
Local attacker (different process or VM)

Branching

Memory-access

Operands to some instructions
Instruction count

Jan Jancar Formal verification for constant-time cryptography

13/32

[Z2% '\‘ ‘ S —=

/o g d’,.‘;la /," - “:‘;&\%‘{\A"" ‘ll"p ko
S @hNe, o N £

NI ’

ALIL=LH |

) 2 : |
i , A
)& i“‘ S ¢ /, !\
N | e A7

Formal verification

Want to somehow verify that implementations are constant-time
What does that mean? Different for each tool

ctgrind

ct-verif

SideTrail

ct-fuzz

+ 23 more

Jan Jancar Formal verification for constant-time cryptography 14 /32

ctgrind

©) Github
Not really formal analysis
Valgrind’s memcheck can warn on uninitialized memory use
Use Valgrind to track branching and memory-accesses on secret values
VALGRIND MAKE MEM_UNDEFINED (memcheck client_request)
Can be included in tests and Cl
Has false positives and false negatives

Jan Jancar Formal verification for constant-time cryptography 15/32

https://github.com/agl/ctgrind/

ct-verif

© Github ©) Github B paper
Formal foundation on what “constant-time" means
Sound and complete reduction-based approach to verifying constant-timeness
Prototype implementation based on SMACK, Bam-bam-boogieman and Boogie
Case studies using the prototype

Jan Jancar Formal verification for constant-time cryptography 16 /32

https://github.com/imdea-software/verifying-constant-time
https://github.com/michael-emmi/ctverif
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf
https://github.com/smackers/smack
https://github.com/michael-emmi/bam-bam-boogieman
https://github.com/boogie-org/boogie

ct-verif

Constant-time implementations

p = skip | x[e1] =e; | assert e | assume e | pi;p; |
if e then p; else p, | while e do p

Defines constant-timeness on while programs, with arrays and assert/assume
X are program variables
e are expressions

Jan Jancar Formal verification for constant-time cryptography 17 /32

ct-verif

Constant-time implementations

A state s maps variables x and indices i € N to values s(x, /), and we write s(e) to
denote the value of expression e in state s. The distinguished error state |
represents a state from which no transition is enabled.

A configuration c = (s, p) is a state s along with a program p to be executed, and
an execution is a sequence c1, ¢, . . ., ¢, of configurations such that ¢; — ¢j.q for
O<i<n.

safe execution: ¢, ¥ (L, _); complete execution: ¢, = (_, skip)

execution of program p: ¢; = (_, p), program is safe if all executions are safe

i=1ifs(e)else2 s' = s[(x,s(e1)) — s(e2)] s’ =sif s(e) else L
(s, skip; p) — (s,p) (s, if e then p; else pp) — (s,p;) (s, xLe1] := e2) — (s, skip) (s, assert e¢) — (s',skip)
p'=(p; while e do p)ifs(e) else skip s(e) = true (s,p1) = (s'.p})
(s, while e do p) — (s, p') (s, assume e) — (s,skip) (s, p15s p2) = (s', Pys p2)

Jan Jancar Formal verification for constant-time cryptography 18/32

ct-verif

Constant-time implementations

Jan Jancar

A leakage model L maps program configurations ¢ to observations L(c), and
extends to executions, mapping ¢y, . . ., ¢, to the observation
L(c, ..., cn) = L(ca)L(ca) - - - L(cn)-
Two executions « and /3 are indistinguishable when L(a) = L(3)
Branching model.:
(s,if e then p; else p,) — s(e)

(s, while e do p) — s(e)
Memory-access model.:
(s, xoleo] =€) — s(eg)s(e1) - - - s(en)
Operand model, for example:
(s, x[e1] = ez /es) — S(ez, €3)

Formal verification for constant-time cryptography 19/32

ct-verif

Constant-time implementations

Given a set X of program variables, two configurations (s1,_) and (s, _) are
X-equivalent when sy (x, /) = s,(x, /) forallx € Xand i € N.

Executions ¢; ... ¢, and ¢} ... c;, are initially X-equivalent when c¢; and ¢} are
X-equivalent, and finally X-equivalent when c, and ¢}, are X-equivalent.

X; is the set of public inputs.
X, is the set of publicly observable outputs.

Definition 1 (Constant-Time Security). A program is secure when all of its initally
Xi-equivalent and finally X,-equivalent executions are indistinguishable.

Jan Jancar Formal verification for constant-time cryptography 20/ 32

ct-verif
Reducing Security to Safety

General idea: Create a new program Q by product of the program P with itself,
then assert equality of leakage of the two instances
Simpler output-insensitive product
Assume equality of public inputs X;
Complex output-sensitive product
Handle publicly observable outputs X,

Jan Jancar Formal verification for constant-time cryptography 21/32

product(p) assume x=% for x € Xj;
together(p)

together(p) guard(p);
instrument[Ap.(p; p), together]|(p)

guard(p) assert L(p)=L(p)

instrument|a, B](_)

skip skip

xle;] := e o(xler] = er)
assert e assert e
assume e assume ¢

pi; p2 B(p1)s B(p2)

if e then p; else py if e then [(p;) else B(p2)
while e do p while e do B(p)

ct-verif

Implementation

On the LLVM IR level
Needs sources for annotation (public input/output, ...)
Based on the SMACK toolchain, using the Boogie verifier

Jan Jancar Formal verification for constant-time cryptography 23/32

https://github.com/smackers/smack
https://github.com/boogie-org/boogie

ct-verif

Discussion

Jan Jancar

Sound and complete

Sound: Flags all insecure programs
Complete: Accepts all secure programs

Needs source code annotation
Complicated toolchain setup, outdated versions
Usability?

Formal verification for constant-time cryptography

24/32

SideTrail

€ Github B paper
Verification of time-balancedness

Weakening of constant-time notion
Leakage below some bound §
Equivalent to constant-time for § =0

Uses time counter + instruction timing model
For remote attackers

Jan Jancar Formal verification for constant-time cryptography

25/32

https://github.com/awslabs/s2n/tree/main/tests/sidetrail
https://d1.awsstatic.com/Security/pdfs/SideTrail_Verifying_Time_Balancing_of_Cryptosystems.pdf

SideTrail

Time-Balancing

d-secure: For every possible public-input value, the timing difference between
every pair of executions with different secrets is at most 9.

Good for remote attackers (network jitter)

Jan Jancar Formal verification for constant-time cryptography 26/32

SideTrail

Verifying time-balancedness

Jan Jancar

Similar to ct-verif
Instrument program with timing counter

Leakage function [(c) mapping configurations ¢ with state s to timing

To keep track of the total cost of an execution we extend the set of variables with a
time counter L as V;, = VU {1} and write the time counter instrumented program
Py as ly;p1;la;p2 - - .5 Ln; pn, in Which each instruction [; updates the time counter
variableas L =1 + (s, pj).

Compose P; with its renaming ﬁL over variables VL to construct PL;ﬁL
Assert the equality of timing leakages in P, and B, at the end

Formal verification for constant-time cryptography 27 /32

SideTrail

Implementation

Jan Jancar

Program with Security

Annotations

l

Clang

LLVM
BitCode,

LLVM

LLVM
BitCode
with
Timing
Annotation:

SMACK

Annotated

Boogie Boogie

Program

BAM

yi

Boogie
Program

3

Code-Balancing Code-Balancing Violation and

Proof

Leakage Counterexample

Formal verification for constant-time cryptography

28/32

ct-fuzz

© Github B paper
Uses self-composition to reduce testing two-safety properties into testing safety
properties

Then uses the afl-fuzz fuzzer to test

Jan Jancar Formal verification for constant-time cryptography 29/32

https://github.com/michael-emmi/ct-fuzz
https://arxiv.org/pdf/1904.07280.pdf

ct-fuzz

Secure Information Flow

Jan Jancar

Program splitting via forking
Derive inputs from fuzz input
Split into one public input
and into two secret inputs
Record observations
Instrument to record memory-access and branches
Hash traces to save memory

Compare and abort on inequality

Formal verification for constant-time cryptography

Self-Composition of P

r Coverage-Guided
Greybox Fuzzer

30/32

ct-fuzz

Discussion

Uses fuzzing, so not sound
Uses fuzzing, so setup already done in Cl

Jan Jancar Formal verification for constant-time cryptography 31/32

Summary & Conclusions

Jan Jancar

Cryptographic code is complex and small issues can lead to vulnerabilities
Side-channels create hard to eliminate vulnerabilities

There is an abundance of tools for verifying constant-timeness (collected 27,
presented 4)

Almost none of the tools are actually used
Practical usability on real-world implementations is a concern

Formal verification for constant-time cryptography 32/32

Thanks!

¥)08nY | ¢/>neuromancer.sk | &% jan@neuromancer.sk
Icons from @ X M Noun Project & [Font Awesome

https://twitter.com/J08nY
https://neuromancer.sk
mailto:jan@neuromancer.sk
https://thenounproject.com
https://fontawesome.com

References

Stefan Mangard, Elisabeth Oswald, Thomas Popp: Power Analysis Attacks -
Revealing the Secrets of Smartcards, ISBN 978-0-387-30857-9

Adam Langley: ctgrind

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Francois Dupressoir,
Michael Emmi: Verifying Constant-Time Implementations, USENIX Security 2016

Konstantinos Athanasiou, Byron Cook, Michael Emmi, Colm MacCarthaigh,
Daniel Schwartz-Narbonne, Serdar Tasiran: SideTrail: Verifying Time-Balancing
of Cryptosystems, VSTTE 2018

Shaobo He, Michael Emmi, Gabriela Ciocarlie: ct-fuzz: Fuzzing for Timing Leaks,
ICST 2020

	Cryptography
	Side-channel attacks
	Timing attacks
	Formal verification
	ctgrind
	ct-verif
	SideTrail
	ct-fuzz

	Conclusions
	Appendix

