
Formal verification for
constant-time cryptography

Ján Jančár
jan@neuromancer.sk

IA072
December 4, 2020

mailto:jan@neuromancer.sk
https://crocs.fi.muni.cz
https://neuromancer.sk
https://fi.muni.cz

$ Cryptography
$ Side-channel attacks
$ Timing attacks
$ Formal verification for constant-time cryptography

○ ctgrind
○ ct-verif
○ SideTrail
○ ct-fuzz

Cryptography

Cryptography

$ Symmetric
○ Uses the same key for decryption/encryption
○ Encryption, Hash functions, . . .
○ AES, SHA1, SHA256, . . .

$ Asymmetric
○ Uses different keys for the operations (private + public = keypair)
○ Encryption, Digital signatures, Key exchange, . . .
○ RSA, Diffie-Hellman, ECC, . . .

$ Post-quantum
○ Symmetric crypto is ok
○ Asymmetric broken by (future) quantum computers
○ Needs new algorithms
○ Lattices, Codes, Isogenies, . . .

$ Libraries & Protocols

Jan Jancar Formal verification for constant-time cryptography 3 / 32

Cryptography
Symmetric

0

0

P0 P1 Z0 Z1

absorbing squeezing

r

c

Pn−1

f f … f f f …

$ Bit and byte operations
$ xor, and, shift, . . .
$ Byte permutations
$ No number theory
$ Rounds: same operations repeated

for (let round=1; round<Nr; round++) {
state = subBytes(state);
state = shiftRows(state);
state = mixColumns(state);
state = addRoundKey(state, round, schedule);

}

Jan Jancar Formal verification for constant-time cryptography 4 / 32

Cryptography
Asymmetric

point_add((X1, Y1, Z1), (X2, Y2, Z2)):
u = Y2*Z1-Y1*Z2
v = X2*Z1-X1*Z2
A = u2*Z1*Z2-v3-2*v2*X1*Z2
X3 = v*A
Y3 = u*(v2*X1*Z2-A)-v3*Y1*Z2
Z3 = v3*Z1*Z2
return (X3, Y3, Z3)

$ Modular arithmetic
$ Number theory (Z∗n, Fp, . . .)
$ Only private key is secret
$ Huge integers (256 bits for ECC, 4096 for RSA)
$ Bignumber libraries

N = P
Q = 0
for i from 0 to m do

if ((d >> i) & 1) == 1 then
Q = point_add(Q, N)

N = point_double(N)
return Q

Jan Jancar Formal verification for constant-time cryptography 5 / 32

Cryptography
Post-quantum

$ Quantum computers break all classical asymmetric algorithms
$ Post-quantum cryptography attempts to fix it
$ More number theory (Fp, Fq, . . .)
$ More linear algebra
$ Very large keys (kB)
$ Lattices, Codes, Isogenies

Jan Jancar Formal verification for constant-time cryptography 6 / 32

Cryptography
Protocols & Libraries

$ Basic crypto primitives are used in protocols
$ Libraries collect primitives and protocols
$ SSL/TLS, Signal, IPSec
$ State machines
$ Read message, decrypt, verify, process, sign, encrypt, respond
$ Most in C, low-level functions in assembly

Jan Jancar Formal verification for constant-time cryptography 7 / 32

Side-channel attacks

Side-channel attacks

Side-channels
$ Power
$ Electromagnetic radiation
$ Cache
$ Errors
$ Time
$ Sound, . . .

Jan Jancar Formal verification for constant-time cryptography 8 / 32

Side-channel attacks
Power

$ Transistors take some power to switch
$ Switching in a clock cycle is data dependent
$ Thus, power consumption is data dependent
$ Hamming weight of operand often leaks

Jan Jancar Formal verification for constant-time cryptography 9 / 32

Side-channel attacks
Electromagnetic radiation

$ Power also influences EM radiation from the circuit
$ Get a good probe and record trace
$ Can be localized to a part of a chip

Jan Jancar Formal verification for constant-time cryptography 10 / 32

Side-channel attacks
Cache

$ Processors have several layers of memory cache
$ Cache organized into cache lines
$ Cache evicted in a Least Recently Used-like fashion
$ Prime+Probe cache attack:

○ Malicious process accesses memory to prime all cache lines
○ Target process executes for a bit
○ Malicious process regains execution and checks the cache lines by timing how long

a cache access takes
○ Cache hit: Target process did not touch cache line
○ Cache miss: Target process did touch cache line

Jan Jancar Formal verification for constant-time cryptography 11 / 32

Timing attacks

Timing attacks

function checkPasswordVarTime(password) {
let correct = "hunter2";
for (let i of correct) {
if (i >= password.length || password[i] !== correct[i]) {

return false;
}

}
return true;

}

Jan Jancar Formal verification for constant-time cryptography 12 / 32

Timing attacks

Minerva

R = P
Q = 2P
for i from bit_length(k) to 0 do

if ((k >> i) & 1) == 1 then
R = R + Q; Q = 2Q

else
Q = R + Q; R = 2R

return R

Jan Jancar Formal verification for constant-time cryptography 12 / 32

https://www.facebook.com/644177528948089/videos/579309582885666/
https://minerva.crocs.fi.muni.cz

Timing attacks
Leakage models

$ Remote attacker
4 Wall clock time

$ Local attacker (different process or VM)
Ï Branching
8 Memory-access
& Operands to some instructions
� Instruction count

Jan Jancar Formal verification for constant-time cryptography 13 / 32

Formal verification for constant-time cryptography

Formal verification

$ Want to somehow verify that implementations are constant-time
$ What does that mean? Different for each tool
$ ctgrind
$ ct-verif
$ SideTrail
$ ct-fuzz
$ + 23 more

Jan Jancar Formal verification for constant-time cryptography 14 / 32

ctgrind

¥ Github
$ Not really formal analysis
$ Valgrind’s memcheck can warn on uninitialized memory use
$ Use Valgrind to track branching and memory-accesses on secret values
$ VALGRIND_MAKE_MEM_UNDEFINED (memcheck client_request)
� Can be included in tests and CI
C Has false positives and false negatives

Jan Jancar Formal verification for constant-time cryptography 15 / 32

https://github.com/agl/ctgrind/

ct-verif

¥ Github ¥ Github ? paper
$ Formal foundation on what "constant-time" means
$ Sound and complete reduction-based approach to verifying constant-timeness
$ Prototype implementation based on SMACK, Bam-bam-boogieman and Boogie
$ Case studies using the prototype

Jan Jancar Formal verification for constant-time cryptography 16 / 32

https://github.com/imdea-software/verifying-constant-time
https://github.com/michael-emmi/ctverif
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf
https://github.com/smackers/smack
https://github.com/michael-emmi/bam-bam-boogieman
https://github.com/boogie-org/boogie

ct-verif
Constant-time implementations

p ::= skip | x[e1] := e2 | assert e | assume e | p1; p2 |
if e then p1 else p2 | while e do p

$ Defines constant-timeness on while programs, with arrays and assert/assume
$ x are program variables
$ e are expressions

Jan Jancar Formal verification for constant-time cryptography 17 / 32

ct-verif
Constant-time implementations

$ A state s maps variables x and indices i ∈ N to values s(x, i), and we write s(e) to
denote the value of expression e in state s. The distinguished error state ⊥
represents a state from which no transition is enabled.

$ A configuration c = 〈s, p〉 is a state s along with a program p to be executed, and
an execution is a sequence c1, c2, . . . , cn of configurations such that ci → ci+1 for
0 < i < n.

$ safe execution: cn 6= 〈⊥, _〉; complete execution: cn = 〈_, skip〉
execution of program p: c1 = 〈_, p〉, program is safe if all executions are safe

Jan Jancar Formal verification for constant-time cryptography 18 / 32

ct-verif
Constant-time implementations

$ A leakage model L maps program configurations c to observations L(c), and
extends to executions, mapping c1, . . . , cn to the observation
L(c1, . . . , cn) = L(c1)L(c2) · · · L(cn).

$ Two executions α and β are indistinguishable when L(α) = L(β)
$ Branching model:

〈s, if e then p1 else p2〉 7→ s(e)
〈s,while e do p〉 7→ s(e)

$ Memory-access model:

〈s, x0[e0] := e〉 7→ s(e0)s(e1) · · · s(en)

$ Operand model, for example:

〈s, x[e1] := e2/e3〉 7→ S(e2, e3)

Jan Jancar Formal verification for constant-time cryptography 19 / 32

ct-verif
Constant-time implementations

$ Given a set X of program variables, two configurations 〈s1, _〉 and 〈s2, _〉 are
X-equivalent when s1 (x, i) = s2(x, i) for all x ∈ X and i ∈ N.

$ Executions c1 . . . cn and c′1 . . . c
′
n are initially X-equivalent when c1 and c′1 are

X-equivalent, and finally X-equivalent when cn and c′n are X-equivalent.
$ Xi is the set of public inputs.
$ Xo is the set of publicly observable outputs.

Definition 1 (Constant-Time Security). A program is secure when all of its initally
Xi-equivalent and finally Xo-equivalent executions are indistinguishable.

Jan Jancar Formal verification for constant-time cryptography 20 / 32

ct-verif
Reducing Security to Safety

$ General idea: Create a new program Q by product of the program P with itself,
then assert equality of leakage of the two instances

$ Simpler output-insensitive product
○ Assume equality of public inputs Xi

$ Complex output-sensitive product
○ Handle publicly observable outputs Xo

Jan Jancar Formal verification for constant-time cryptography 21 / 32

ct-verif
Implementation

$ On the LLVM IR level
$ Needs sources for annotation (public input/output, . . .)
$ Based on the SMACK toolchain, using the Boogie verifier

Jan Jancar Formal verification for constant-time cryptography 23 / 32

https://github.com/smackers/smack
https://github.com/boogie-org/boogie

ct-verif
Discussion

� Sound and complete
○ Sound: Flags all insecure programs
○ Complete: Accepts all secure programs

C Needs source code annotation
C Complicated toolchain setup, outdated versions
C Usability?

Jan Jancar Formal verification for constant-time cryptography 24 / 32

SideTrail

¥ Github ? paper
$ Verification of time-balancedness

○ Weakening of constant-time notion
○ Leakage below some bound δ
○ Equivalent to constant-time for δ = 0

$ Uses time counter + instruction timing model
$ For remote attackers

Jan Jancar Formal verification for constant-time cryptography 25 / 32

https://github.com/awslabs/s2n/tree/main/tests/sidetrail
https://d1.awsstatic.com/Security/pdfs/SideTrail_Verifying_Time_Balancing_of_Cryptosystems.pdf

SideTrail
Time-Balancing

$ δ-secure: For every possible public-input value, the timing difference between
every pair of executions with different secrets is at most δ.

$ Good for remote attackers (network jitter)

Jan Jancar Formal verification for constant-time cryptography 26 / 32

SideTrail
Verifying time-balancedness

$ Similar to ct-verif
$ Instrument program with timing counter

○ Leakage function l(c) mapping configurations c with state s to timing
○ To keep track of the total cost of an execution we extend the set of variables with a

time counter l as VL = V ∪ {l} and write the time counter instrumented program
PL as l1; p1; l2; p2 . . . ; ln; pn, in which each instruction li updates the time counter
variable as l := l + l(s, pi).

$ Compose PL with its renaming P̂L over variables V̂L to construct PL; P̂L
$ Assert the equality of timing leakages in PL and P̂L at the end

Jan Jancar Formal verification for constant-time cryptography 27 / 32

SideTrail
Implementation

Jan Jancar Formal verification for constant-time cryptography 28 / 32

ct-fuzz

¥ Github ? paper
$ Uses self-composition to reduce testing two-safety properties into testing safety
properties

$ Then uses the afl-fuzz fuzzer to test

Jan Jancar Formal verification for constant-time cryptography 29 / 32

https://github.com/michael-emmi/ct-fuzz
https://arxiv.org/pdf/1904.07280.pdf

ct-fuzz
Secure Information Flow

$ Program splitting via forking
$ Derive inputs from fuzz input

○ Split into one public input
○ and into two secret inputs

$ Record observations
○ Instrument to record memory-access and branches
○ Hash traces to save memory

$ Compare and abort on inequality

Jan Jancar Formal verification for constant-time cryptography 30 / 32

ct-fuzz
Discussion

C Uses fuzzing, so not sound
� Uses fuzzing, so setup already done in CI

Jan Jancar Formal verification for constant-time cryptography 31 / 32

Summary & Conclusions

$ Cryptographic code is complex and small issues can lead to vulnerabilities
$ Side-channels create hard to eliminate vulnerabilities
$ There is an abundance of tools for verifying constant-timeness (collected 27,
presented 4)

$ Almost none of the tools are actually used
$ Practical usability on real-world implementations is a concern

Jan Jancar Formal verification for constant-time cryptography 32 / 32

Thanks!
� J08nY | Îneuromancer.sk | ! jan@neuromancer.sk

Icons from & � Font Awesome

https://twitter.com/J08nY
https://neuromancer.sk
mailto:jan@neuromancer.sk
https://thenounproject.com
https://fontawesome.com

References

Y Stefan Mangard, Elisabeth Oswald, Thomas Popp: Power Analysis Attacks -
Revealing the Secrets of Smartcards, ISBN 978-0-387-30857-9

¥ Adam Langley: ctgrind
? José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir,

Michael Emmi: Verifying Constant-Time Implementations, USENIX Security 2016
? Konstantinos Athanasiou, Byron Cook, Michael Emmi, Colm MacCarthaigh,

Daniel Schwartz-Narbonne, Serdar Tasiran: SideTrail: Verifying Time-Balancing
of Cryptosystems, VSTTE 2018

? Shaobo He, Michael Emmi, Gabriela Ciocarlie: ct-fuzz: Fuzzing for Timing Leaks,
ICST 2020

	Cryptography
	Side-channel attacks
	Timing attacks
	Formal verification
	ctgrind
	ct-verif
	SideTrail
	ct-fuzz

	Conclusions
	Appendix

