Context-, Flow- and Field-Sensitive Data-Flow
Analysis using Synchronized Pushdown Systems

Johannes Spath, Karim Ali, Eric Bodden

30. 10. 2020

1/18

Abstract

» precise static analyses are context-, flow-, and field-sensitive

> k-limited access path, access graph do not scale well on
recursive data structures

» context- and field- sensitivity both expressible as CFL
reachability problems
» introducing synchronized push-down system (SPDS)

» field-sensitive
» flow-sensitive
P> context-sensitive

2/18

Outline

> data-flow analysis and its properties
» pushdown systems

» call-PDS

» field-PDS

> SPDS

3/18

Data-flow analysis

> static analysis

» for each program point: set of computed values

» flow functions give semantics of instructions

» join function combines values from multiple predecessors

4/18

Data-flow analysis: a simple approach

o\
0
950

Figure: Control flow graph fragment

5/18

Data-flow analysis: a simple approach

Figure: Control flow graph fragment

out; = flow;(join(outy, outq, - - +))

5/18

Properties of data-flow analysis

Flow-sensitivity
control flow paths

Context-sensitivity
call contexts

Field-sensitivity
fields of the same object

6/18

Push-down systems

A push-down system is a triple P = (P, I, A) where:

» P: finite set called control locations
> [: finite set called stack alphabet
> A: finite set of rules

Configuration is a pair {(p, w) where p e P, w € T'*

7/18

Rules

A is a set of rules in form: {(p,v) — (p’, w)
> p,peP
> yel
> wel”

8/18

Rules

Ais a set of rules in form: {(p,v) — (p’, w)

Types of rules
» |w| =0 pop rules
» |w| =1 normal rules
» |w| =2 push rules

Rules with |w| > 2 can be subdivided into multiple push rules.

8/18

call-PDS

» flow-sensitive
P> context-sensitive

» field-insensitive

Intuition
» push rule =~ call
> pop rule ~ return

» normal rule ~ assighment

9/18

Construction of call-PDS

> P =(V,S,As)
» V: variables

> S: statements

> As
» normal rules — intra-procedural data-flows
» push,pop rules — inter-procedural data-flows

10/18

Analysing call-PDS

> set of configurations reachable from given configuration
» where does the value flow?

» P-automaton Ag accepts configuration of PDS

» start with trivial automaton
» post*-saturate the trivial automaton
» [A159 Formal verification methods

11/18

field-PDS

» flow-sensitive
» context-insensitive

» field-sensitive

[ntuition
» normal rule &~ no modification, arguments, return
» push rule ~ store into field

» pop rule ~ load from field

12/18

Construction of field-PDS

> P=(VxS,F,Ap)

» V: variables

> S: statements

> [F: fields

» configuration (x@s,fy-f;----)

13/18

Construction of field-PDS

Example rules

Push
» statement 36 | v.f = u
» rule (u@35, %) — (v@36, f - x)

Pop
> statement 37 | x = w.f
» rule (w@36,f) — (x@37,¢)

14 /18

SPDS

Intuition

P> we can compute context-sensitive dataflow
» we can compute field-sensitive dataflow

» combination: precise dataflow holds only if it holds in both cases

15/18

SPDS

A little formally

» call-PDS configuration: {x,sg-s1---)
» field-PDS configuration: (v@s, fy-f---)
> SPDS configuration: (v - fo- f---@sg ")

16 /18

SPDS

Reachability

» P-automatons Ag (call-PDS) and Ay (field-PDS)
> let AS = (As, Ar)
> AS accepts iff both accept

17/18

Undecidability

> context-sensitive data-dependence analysis is generally
undecidable :(

» SPDS over-approximates the fully precise solution

18/18

Undecidability

> context-sensitive data-dependence analysis is generally
undecidable :(

» SPDS over-approximates the fully precise solution

v

what if the configuration is reachable via different CFG paths?
> let's look at an example!

18/18

