
Context-, Flow- and Field-Sensitive Data-Flow
Analysis using Synchronized Pushdown Systems

Johannes Späth, Karim Ali, Eric Bodden

30. 10. 2020

1 / 18

Abstract

I precise static analyses are context-, flow-, and field-sensitive
I k-limited access path, access graph do not scale well on

recursive data structures
I context- and field- sensitivity both expressible as CFL

reachability problems
I introducing synchronized push-down system (SPDS)

I field-sensitive
I flow-sensitive
I context-sensitive

2 / 18

Outline

I data-flow analysis and its properties
I pushdown systems
I call-PDS
I field-PDS
I SPDS

3 / 18

Data-flow analysis

I static analysis
I for each program point: set of computed values
I flow functions give semantics of instructions
I join function combines values from multiple predecessors

4 / 18

Data-flow analysis: a simple approach

p q · · ·

i

kj · · ·

Figure: Control flow graph fragment

5 / 18

Data-flow analysis: a simple approach

p q · · ·

i

kj · · ·

Figure: Control flow graph fragment

outi = flowi (join(outp, outq, · · ·))

5 / 18

Properties of data-flow analysis

Flow-sensitivity
control flow paths

Context-sensitivity
call contexts

Field-sensitivity
fields of the same object

6 / 18

Push-down systems

A push-down system is a triple P = (P, Γ,∆) where:
I P : finite set called control locations
I Γ: finite set called stack alphabet
I ∆: finite set of rules

Configuration is a pair 〈〈p,w〉〉 where p ∈ P , w ∈ Γ∗

7 / 18

Rules

∆ is a set of rules in form: 〈〈p, γ〉〉 → 〈〈p′,w〉〉
I p, p′ ∈ P

I γ ∈ Γ

I w ∈ Γ∗

8 / 18

Rules

∆ is a set of rules in form: 〈〈p, γ〉〉 → 〈〈p′,w〉〉

Types of rules
I |w | = 0 pop rules
I |w | = 1 normal rules
I |w | = 2 push rules

Rules with |w | > 2 can be subdivided into multiple push rules.

8 / 18

call-PDS

I flow-sensitive
I context-sensitive
I field-insensitive

Intuition
I push rule ≈ call
I pop rule ≈ return
I normal rule ≈ assignment

9 / 18

Construction of call-PDS

I P = (V, S,∆S)

I V: variables
I S: statements
I ∆S

I normal rules – intra-procedural data-flows
I push,pop rules – inter-procedural data-flows

10 / 18

Analysing call-PDS

I set of configurations reachable from given configuration
I where does the value flow?

I P-automaton AS accepts configuration of PDS
I start with trivial automaton
I post*-saturate the trivial automaton

I IA159 Formal verification methods

11 / 18

field-PDS

I flow-sensitive
I context-insensitive
I field-sensitive

Intuition
I normal rule ≈ no modification, arguments, return
I push rule ≈ store into field
I pop rule ≈ load from field

12 / 18

Construction of field-PDS

I P = (V× S,F,∆F)

I V: variables
I S: statements
I F: fields
I configuration 〈〈x@s, f0 · f1 · · · ·〉〉

13 / 18

Construction of field-PDS
Example rules

Push
I statement 36 | v.f = u
I rule 〈〈u@35, ∗〉〉 → 〈〈v@36, f · ∗〉〉

Pop
I statement 37 | x = w.f
I rule 〈〈w@36, f 〉〉 → 〈〈x@37, ε〉〉

14 / 18

SPDS
Intuition

I we can compute context-sensitive dataflow
I we can compute field-sensitive dataflow
I combination: precise dataflow holds only if it holds in both cases

15 / 18

SPDS
A little formally

I call-PDS configuration: 〈〈x , s0 · s1 · · ·〉〉
I field-PDS configuration: 〈〈v@s, f0 · f1 · · ·〉〉
I SPDS configuration: 〈〈v · f0 · f1 · · ·@ss1·s2···0 〉〉

16 / 18

SPDS
Reachability

I P-automatons AS (call-PDS) and AF (field-PDS)
I let AF

S = (AS,AF)

I AF
S accepts iff both accept

17 / 18

Undecidability

I context-sensitive data-dependence analysis is generally
undecidable :(

I SPDS over-approximates the fully precise solution

18 / 18

Undecidability

I context-sensitive data-dependence analysis is generally
undecidable :(

I SPDS over-approximates the fully precise solution
I what if the configuration is reachable via different CFG paths?
I let’s look at an example!

18 / 18

