
IA169 System Verification and Assurance

Symbolic Execution and Concolic Testing

Jiří Barnat

Section

Symbolic Execution

IA169 System Verification and Assurance – 02 str. 2/34

Motivation

Problem
To detect errors that systematically exhibit only for
specific input values is difficult.
Relates to incompleteness of testing.

Still we would like to ...
test the program on inputs that make program execute
differently from what has already been tested.
test the program for all inputs.

IA169 System Verification and Assurance – 02 str. 3/34

Symbolic Execution

Idea
Execute a program so that values of input variables are
referred to as to symbols instead of concrete values.

Demo
Program Selected concrete Symbolic

values representation
read(A)

A = 3 A = α
A = A * 2

A = 6 A = α ∗ 2
A = A + 1

A = 7 A = (α ∗ 2) + 1
output(A)

IA169 System Verification and Assurance – 02 str. 4/34

Branching and Path Condition

Observation
Branching in the code put some restrictions on the data
depending on the condition of a branching point.

Example
1 if (A == 2) A = (α ∗ 2) + 1
2 then ... (α ∗ 2) + 1 = 2
3 else ... (α ∗ 2) + 1 6= 2

Path Condition
Formula over symbols referring to input values.
Encodes history of computation, i.e. cumulative
restrictions implied from all the branching points
walked-through up to the curent point of execution.
Initially set to true.

IA169 System Verification and Assurance – 02 str. 5/34

Unfeasible Paths

Observation
The path condition may become unsatisfiable.
If so, there are no input values that would make the
program execute that way.

Example 1
1 if (A == B) A = α,B = β

2 then α = β

3 if (A == B)
4 then ... α = β ∧ α = β

5 else ... α = β ∧ α 6= β is UNSAT
6 else ... α 6= β

Example 2 % – operation modulo
1 A=A%2 A = α%2
2 if (A == 3) then ... α%2 = 3 is UNSAT
3 else ... α%2 6= 3

IA169 System Verification and Assurance – 02 str. 6/34

Tree of Symbolic Execution

Observation
All possible executions of program may be represented by
a tree structure – Symbolic Execution Tree.
The tree is obtained by unfolding/unwinding the control
flow graph of the program.

Symbolic Execution Tree
Node of the tree encodes program location, symbolic
representation of variables, and a concrete path condition.
location symbolic valuation path condition
#12 A = α + 2,B = α + β − 2 α = 2 ∗ β − 1

An edge in the tree corresponds to a symbolic execution
of a program instruction on a given location.
Branching point is reflected as branching in the tree and
causes updates of path conditions in individual branches.

IA169 System Verification and Assurance – 02 str. 7/34

Example of Symbolic Execution Tree

Program
1 input A,B
2 if (B<0) then
3 return 0
4 else
5 while (B > 0)
6 { B=B-1
7 A=A+B
8 }
9 return A

Draw Yourself.

IA169 System Verification and Assurance – 02 str. 8/34

Path Explosion

Properties of Symbolic Tree Execution
No nodes are merged, even if they are the same (the
structure is a tree).
A single program location may be contained in (infinitely)
many nodes of the tree.
Tree may contain infinite paths.

Path Explosion Problem
The number of branches in the symbolic execution tree
may be large for non-trivial programs.
The number of paths may grow exponentially with the
number of branching points visited.

IA169 System Verification and Assurance – 02 str. 9/34

Employing Symbolic Execution Tree for Verification

Analysis of the Tree
Breadth-first strategy, the tree may be infinite.

Deduced Program Properties
Identification of feasible and unfeasible paths.
Proof of reachability of a given program location.
Error detection (division by zero, out-of-array access,
assertion violation, etc.).

Synthesis of Test Input Data
If the formula encoded as a path condition is satisfiable
for a symbolic run, the model of the formula gives
concrete input values that make the program to follow the
symbolic run.
Excellent for synthesis of tests that increase code
coverage.

IA169 System Verification and Assurance – 02 str. 10/34

Automated Test Generation

Principle
1 Generate random input values (encode some random
path).

2 Perform a walk through the Symbolic Execution Tree with
the random input values and record the path condition.

3 Generate a new path condition from the recorded one by
negating one of the restrictions related to a single
branching point.

4 Find input values satisfying the new path condition.
5 Repeat from number 2 until desired coverage is reached.

Practical Notes
Heuristics for selection of branching point to be negated.
Augmentation of the code to enable path condition
recording.

IA169 System Verification and Assurance – 02 str. 11/34

Limits of Symbolic Execution

Undecidability
Using complex arithmetic operations on unbounded
domains implies general undecidability of the formula
satisfaction problem.
Symbolic Execution Tree is infinite (due to unwinding of
cycles with unbound number of iterations).

Computational Complexity
Path explosion problem.
Efficiency of algorithms for formula satisfiability on finite
domains.

Known Limits
Symbolic operations on non-numerical variables.
Not clear how to deal with dynamic data structures.
Symbolic evaluation of calls to external functions.

IA169 System Verification and Assurance – 02 str. 12/34

Section

Tools for SAT Solving

IA169 System Verification and Assurance – 02 str. 13/34

SAT Problem

Satisfiability Problem – SAT
Is to decide if there exists a valuation of Boolean variables
of propositional logic formula that makes the formula hold
true (be valid).

SAT Problem Properties
Famous NP-complete problem.
Polynomial algorithm is unlikely to exist.
Still there are existing SAT solvers that are very efficient
and due to a plethora of heuristics can solve surprisingly
large instances of the problem.

IA169 System Verification and Assurance – 02 str. 14/34

Tool Z3

ZZZ aka Z3
Developed by Microsoft Research.
SAT and SMT Solver.
WWW interface — http://www.rise4fun.com/Z3
Standardised binary API for use within other verification
tools.

Decide using Z3
Is formula (a ∨ ¬b) ∧ (¬a ∨ b) satisfiable?

IA169 System Verification and Assurance – 02 str. 15/34

http://www.rise4fun.com/Z3

Usage of Z3 – SAT

Reformulate into language of Z3 (a ∨ ¬b) ∧ (¬a ∨ b)
(declare-const a Bool)

(declare-const b Bool)

(assert (and (or a (not b)) (or (not a) b)))

(check-sat)

(get-model)

Answer of Z3
sat

(model

(define-fun b () Bool

false)

(define-fun a () Bool

false)

)

IA169 System Verification and Assurance – 02 str. 16/34

Satisfiability Modulo Theory – SMT

Satisfiability Modulo Theory – SMT
Is to decide satisfiability of first order logic with predicates
and function symbols that encode one or more selected
theories.
Typically used theories

Arithmetic of integer and floating point numbers.
Theories of data structures (lists, arrays, bit-vectors, . . .).

Other view (Wikipedia)

SMT can be thought of as a form of the constraint
satisfaction problem and thus a certain formalised
approach to constraint programming.

IA169 System Verification and Assurance – 02 str. 17/34

Examples of SMT in Z3

Solve using Z3 http://rise4fun.com/Z3/tutorial/guide

Are there two integer non-zero numbers x and y such that
y=x*(x-y)?

(declare-const y Int)
(declare-const x Int)
(assert (= y (* x (- x y))))
(assert (not (= y 0)))
(check-sat)
(get-model)

Are there two integer non-zero numbers x and y such that
y=x*(x-(y*y))?

(declare-const y Int)
(declare-const x Int)
(assert (= y (* x (- x (* y y)))))
(assert (not (= x 0)))
(check-sat)

IA169 System Verification and Assurance – 02 str. 18/34

http://rise4fun.com/Z3/tutorial/guide

Satisfiability and Validity

Observation
A formula is valid if and only if its negation is not
satisfiable.

Consequence
SAT and SMT solvers can be used as theorem provers to
show validity of some theorems.

Model Synthesis
SAT solvers not only decide satisfiability of formulae but
in positive case also give concrete valuation of variables
for which the formula is valid.
Unlike general theorem provers they provide a
counterexample in case the theorem to be proved is
invalid (negation is satisfiable).

IA169 System Verification and Assurance – 02 str. 19/34

Section

Concolic Testing

IA169 System Verification and Assurance – 02 str. 20/34

Motivation

Problem
Efficient undecidability of path feasibility.
In practice, unknown result often means unsatisfiability
(no witness found).
However, skipping paths that we only think are unfeasible,
may result in undetected errors.
On the other hand, executing unfeasible path may report
unreal errors.

Partial Solution
Let us use concrete and symbolic values at the same time
in order to support decisions that are practically
undecidable by a SAT or SMT solver.
Heuristics.
An interesting case (correct): UNKNOWN =⇒ SAT
Concrete and Symbolic Testing = Concolic Testing

IA169 System Verification and Assurance – 02 str. 21/34

Hypothetical demo of concolic testing
Program

1 input A,B

2 if (A==(B*B)%30) then

3 ERROR

4 else

5 return A

Concolic Testing
1 A=22, B=7 (random values), test executed, no errors found.
2 (22==(7*7)%30) is False, path condition: α 6= (β ∗ β)%30
3 Synthesis of input data from negation of path condition:
α = (β ∗ β)%30 – UNKNOWN

4 Employ concrete values: α = (7 ∗ 7)%30 – SAT, α = 19
5 A=19, B=7
6 Test detected error location on program line 3.

IA169 System Verification and Assurance – 02 str. 22/34

Section

SAGE Tool

IA169 System Verification and Assurance – 02 str. 23/34

Story of SAGE

Systematic Testing for Security:
Whitebox Fuzzing

Patrice Godefroid
Michael Y. Levin and David Molnar

http://research.microsoft.com/projects/atg/

Microsoft Research

IA169 System Verification and Assurance – 02 str. 24/34

Story of SAGE

Whitebox Fuzzing (SAGE tool)

 Start with a well-formed input (not random)

 Combine with a generational search (not DFS)
 Negate 1-by-1 each constraint in a path constraint
 Generate many children for each parent run
 Challenge all the layers of the application sooner

 Leverage expensive symbolic execution

 Search spaces are huge, the search is partial…
yet effective at finding bugs !

Gen 1
parent

IA169 System Verification and Assurance – 02 str. 25/34

Story of SAGE

Example: Dynamic Test Generation

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

input = “good”

IA169 System Verification and Assurance – 02 str. 26/34

Story of SAGE

Dynamic Test Generation
void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

input = “good”

I0 != „b‟

I1 != „a‟

I2 != „d‟

I3 != „!‟

Negate a condition in path constraint
Solve new constraint  new input

Path constraint:

IA169 System Verification and Assurance – 02 str. 27/34

Story of SAGE

Depth-First Search

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

I0 != „b‟

I1 != „a‟

I2 != „d‟

I3 != „!‟

good

input = “good”

IA169 System Verification and Assurance – 02 str. 28/34

Story of SAGE

Depth-First Search

goo!good

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

I0 != „b‟

I1 != „a‟

I2 != „d‟

I3 == „!‟

IA169 System Verification and Assurance – 02 str. 29/34

Story of SAGE

Generational Search

goo!

godd

gaod

bood

Four “Generation 1”
test cases !

good

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt > 3) crash();

}

I0 == „b‟

I1 == „a‟

I2 == „d‟

I3 == „!‟

IA169 System Verification and Assurance – 02 str. 30/34

Story of SAGE

The Search Space
void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 3) crash();

}

IA169 System Verification and Assurance – 02 str. 31/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 0 – seed file

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 00 00 00 00 00 00 00 00 ; RIFF............

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 1

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF....***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 2

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 3

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 00 00 00 00 ;strh........

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 4

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 5

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 00 00 00 00 ;strf........

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 6

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;strf....(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 7

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;strf....(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 C9 9D E4 4E ;É•äN

00000060h: 00 00 00 00 ;

Generation 8

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;strf....(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 9

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

Zero to Crash in 10 Generations

 Starting with 100 zero bytes …

 SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 B2 75 76 3A 28 00 00 00 ;strf²uv:(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 10 – crash bucket 1212954973!

IA169 System Verification and Assurance – 02 str. 32/34

Story of SAGE

 Since 1st internal release in April’07: tens of new security bugs found

 Apps: image processors, media players, file decoders,… Confidential !

 Bugs: Write A/Vs, Read A/Vs, Crashes,… Confidential !

 Many bugs found triaged as “security critical, severity 1, priority 1”

Initial Experiences with SAGE

IA169 System Verification and Assurance – 02 str. 33/34

Self-study

Self-study

Follow Klee tutorials 1 and 2
(http://klee.github.io/tutorials)

Solve The Wolf, Goat and Cabbage problem with Klee

IA169 System Verification and Assurance – 02 str. 34/34

http://klee.github.io/tutorials

