|A169 System Verification and Assurance

Symbolic Execution and Concolic Testing

Jiri Barnat

Symbolic Execution

IA169 System Verification and Assurance — 02 str. 2/34

Problem

e To detect errors that systematically exhibit only for
specific input values is difficult.

o Relates to incompleteness of testing.

Still we would like to ...

e test the program on inputs that make program execute
differently from what has already been tested.

o test the program for all inputs.

IA169 System Verification and Assurance — 02 str. 3/34

Symbolic Execution

Idea

e Execute a program so that values of input variables are
referred to as to symbols instead of concrete values.

Demo
Program Selected concrete | Symbolic
values representation
read(A)
A=3 A=a
A=A %2
A=6 A=ax*2
A=A+1
A=7 A=(ax2)+1
output (A)

IA169 System Verification and Assurance — 02 str. 4/34

Branching and Path Condition

Observation

e Branching in the code put some restrictions on the data
depending on the condition of a branching point.

Example
1 if (A==2) A=(ax2)+1
2 then .. (ax2)+1=2
3 else .. (ax2)+1#£2

Path Condition
e Formula over symbols referring to input values.

e Encodes history of computation, i.e. cumulative
restrictions implied from all the branching points
walked-through up to the curent point of execution.

e Initially set to true.

IA169 System Verification and Assurance — 02 str. 5/34

Unfeasible Paths

Observation
e The path condition may become unsatisfiable.

e If so, there are no input values that would make the
program execute that way.

Example 1
1 if (A == B) A=a,B=p
2 then a=p
3 if (A == B)
4 then ... a=0Na=0
5 else a=BNa#[is UNSAT
6 else .. a#f
Example 2 % — operation modulo
1 A=A%2 A= a%?2
2 if (A == 3) themn— a%2 =3 is UNSAT
3 else ... a%2 # 3

IA169 System Verification and Assurance — 02 str. 6/34

Tree of Symbolic Execution

Observation
e All possible executions of program may be represented by
a tree structure — Symbolic Execution Tree.

e The tree is obtained by unfolding/unwinding the control
flow graph of the program.

Symbolic Execution Tree
e Node of the tree encodes program location, symbolic
representation of variables, and a concrete path condition.

location | symbolic valuation path condition
#12 A=a+2B=a+p-2|a=2x8-1

@ An edge in the tree corresponds to a symbolic execution
of a program instruction on a given location.

e Branching point is reflected as branching in the tree and

causes updates of path conditions in individual branches.

IA169 System Verification and Assurance — 02 str. 7/34

Example of Symbolic Execution Tree

Program
1 input A,B
2 if (B<0) then

3 return O

4 else

5 while (B > 0)
6 { B=B-1

7 A=A+B

8 1}

O return A

IA169 System Verification and Assurance — 02 str. 8/34

Path Explosion

Properties of Symbolic Tree Execution

e No nodes are merged, even if they are the same (the
structure is a tree).

o A single program location may be contained in (infinitely)
many nodes of the tree.

e Tree may contain infinite paths.

Path Explosion Problem

@ The number of branches in the symbolic execution tree
may be large for non-trivial programs.

@ The number of paths may grow exponentially with the
number of branching points visited.

IA169 System Verification and Assurance — 02 str. 9/34

Employing Symbolic Execution Tree for Verification

Analysis of the Tree
o Breadth-first strategy, the tree may be infinite.

Deduced Program Properties
e ldentification of feasible and unfeasible paths.
@ Proof of reachability of a given program location.

e Error detection (division by zero, out-of-array access,
assertion violation, etc.).

Synthesis of Test Input Data
e If the formula encoded as a path condition is satisfiable
for a symbolic run, the model of the formula gives
concrete input values that make the program to follow the
symbolic run.
o Excellent for synthesis of tests that increase code
coverage.

IA169 System Verification and Assurance — 02 str. 10/34

Automated Test Generation

Principle
1 Generate random input values (encode some random
path).
2 Perform a walk through the Symbolic Execution Tree with
the random input values and record the path condition.

3 Generate a new path condition from the recorded one by
negating one of the restrictions related to a single
branching point.

4 Find input values satisfying the new path condition.
5 Repeat from number 2 until desired coverage is reached.

Practical Notes
e Heuristics for selection of branching point to be negated.

e Augmentation of the code to enable path condition
recording.

IA169 System Verification and Assurance — 02 str. 11/34

Limits of Symbolic Execution

Undecidability

@ Using complex arithmetic operations on unbounded
domains implies general undecidability of the formula
satisfaction problem.

e Symbolic Execution Tree is infinite (due to unwinding of
cycles with unbound number of iterations).

Computational Complexity
e Path explosion problem.

e Efficiency of algorithms for formula satisfiability on finite
domains.

Known Limits
e Symbolic operations on non-numerical variables.
o Not clear how to deal with dynamic data structures.
e Symbolic evaluation of calls to external functions.

IA169 System Verification and Assurance — 02 str. 12/34

Tools for SAT Solving

IA169 System Verification and Assurance — 02 str. 13/34

SAT Problem

Satisfiability Problem — SAT

o Is to decide if there exists a valuation of Boolean variables
of propositional logic formula that makes the formula hold
true (be valid).

SAT Problem Properties
e Famous NP-complete problem.
e Polynomial algorithm is unlikely to exist.

o Still there are existing SAT solvers that are very efficient
and due to a plethora of heuristics can solve surprisingly
large instances of the problem.

IA169 System Verification and Assurance — 02 str. 14/34

Tool Z3

277 aka Z3
e Developed by Microsoft Research.

e SAT and SMT Solver.
o WWW interface — http://www.rised4fun.com/Z3

e Standardised binary API for use within other verification
tools.

Decide using Z3
e Is formula (aV —b) A (—a V b) satisfiable?

IA169 System Verification and Assurance — 02 str. 15/34

http://www.rise4fun.com/Z3

Usage of Z3 — SAT

Reformulate into language of Z3 (aV —b)A(—aVb)

@ (declare-const a Bool)
(declare-const b Bool)
(assert (and (or a (not b)) (or (not a) b)))
(check-sat)
(get-model)

Answer of Z3

@ sat
(model
(define-fun b () Bool
false)
(define-fun a () Bool
false)

IA169 System Verification and Assurance — 02 str. 16/34

Satisfiability Modulo Theory — SMT

Satisfiability Modulo Theory — SMT
e Is to decide satisfiability of first order logic with predicates
and function symbols that encode one or more selected
theories.
e Typically used theories

o Arithmetic of integer and floating point numbers.
o Theories of data structures (lists, arrays, bit-vectors, ...).

Other view (Wikipedia)

@ SMT can be thought of as a form of the constraint
satisfaction problem and thus a certain formalised
approach to constraint programming.

IA169 System Verification and Assurance — 02 str. 17/34

Examples of SMT in Z3

Solve USiI’Ig Z3 http://rise4fun.com/Z3/tutorial/guide

@ Are there two integer non-zero numbers x and y such that
y=x*(x-y)7?

(declare-const y Int)
(declare-const x Int)
(assert (=y (*x x (- x y))))
(assert (not (= y 0)))
(check-sat)

(get-model)

@ Are there two integer non-zero numbers x and y such that
y=x* (x— (y*y))?

(declare-const y Int)
(declare-const x Int)

(assert (=y (* x (- x (x y ¥)))))
(assert (not (= x 0)))

(check-sat)

IA169 System Verification and Assurance — 02 str. 18/34

http://rise4fun.com/Z3/tutorial/guide

Satisfiability and Validity

Observation

e A formula is valid if and only if its negation is not
satisfiable.

Consequence

e SAT and SMT solvers can be used as theorem provers to
show validity of some theorems.

Model Synthesis

e SAT solvers not only decide satisfiability of formulae but
in positive case also give concrete valuation of variables
for which the formula is valid.

e Unlike general theorem provers they provide a
counterexample in case the theorem to be proved is
invalid (negation is satisfiable).

IA169 System Verification and Assurance — 02 str. 19/34

Concolic Testing

IA169 System Verification and Assurance — 02 str. 20/34

Problem
o Efficient undecidability of path feasibility.
@ In practice, unknown result often means unsatisfiability
(no witness found).
e However, skipping paths that we only think are unfeasible,
may result in undetected errors.

@ On the other hand, executing unfeasible path may report
unreal errors.

Partial Solution
@ Let us use concrete and symbolic values at the same time
in order to support decisions that are practically
undecidable by a SAT or SMT solver.
e Heuristics.
e An interesting case (correct): UNKNOWN = SAT

e Concrete and Symbolic Testing = Concolic Testing

IA169 System Verification and Assurance — 02 str. 21/34

Hypothetical demo of concolic testing

Program
1 input A,B
2 if (A==(B*B)%30) then
3 ERROR
4 else

5 return A

Concolic Testing
1 A=22, B=7 (random values), test executed, no errors found.
2 (22==(7*T)%30) is False, path condition: o # (3 * 3)%30

3 Synthesis of input data from negation of path condition:
a = (8 x*[£)%30 - UNKNOWN

4 Employ concrete values: a = (7 % 7)%30 — SAT, a = 19
5 A=19, B=7
6 Test detected error location on program line 3.

IA169 System Verification and Assurance — 02 str. 22/34

SAGE Tool

IA169 System Verification and Assurance — 02 str. 23/34

Story of SAGE

Systematic Testing for Security:

Whitebox Fuzzing

Patrice Godefroid
Michael Y. Levin and David Molnar

http://research.microsoft.com/projects/atg/
Microsoft Research

- /

IA169 System Verification and Assurance — 02 str. 24/34

Story of SAGE

~ ™
Whitebox Fuzzing (SAGE tool)

e Start with a well-formed input (not random)

e Combine with a generational search (not DFS)
* Negate 1-by-1 each constraint in a path constraint
e Generate many children for each parent run
* Challenge all the layers of the application sooner

* Leverage expensive symbolic execution
Genl

parent
e Search spaces are huge, the search is partial...
yet effective at finding bugs !

N J

IA169 System Verification and Assurance — 02 str. 25/34

Story of SAGE

-

{

.

int cnt = 0;
if (input[0]
if (Ginput[1]
if (input[2]
if (input[3]

void top(char input[4])

‘b’) cnt++;
‘a’) cnt++;
“d’) cnt++;
“17) cnt++;

if (cnt > 3) crash(Q);

Example: Dynamic Test Generation

input = “good”

~

IA169 System Verification and Assurance — 02

str. 26/34

Story of SAGE

-

{
int cnt = 0;
if (input[0]
if (Ginput[1]
if (input[2]
if (input[3]
}

.

void top(char input[4])

‘b’) cnt++;
‘a’) cnt++;
“d’) cnt++;
“17) cnt++;

if (cnt > 3) crash(Q);

Dynamic Test Generation

input = “good”

Path constraint:

1= ‘b’
1= ‘g’
1= ‘g’

1= Y17/

Negate a condition in path constraint
Solve new constraint = new input

~

IA169 System Verification and Assurance — 02

str. 27/34

Story of SAGE

-

good

.

Depth-First Search

void top(char input[4])

{

int cnt = 0;

if @input[0] == ‘b’)
if (input[l] == ‘a’)
if (input[2] == ‘d’)
if (input[3] == ‘!7)

if (cnt > 3) crashQ;

input = “good”

cnt++;
cnt++;
cnt++;
cnt++;

~

‘a’
\d’

Ny

IA169 System Verification and Assurance — 02

str. 28/34

Story of SAGE

- R
Depth-First Search
void top(char input[4])
{
int cnt = 0;
if (input[0] == ‘b’) cnt++; I, '= ‘b’
if (input[1l] == ‘a’) cnt++; I, '= ‘a’
\ if CGinput[2] == ‘d’) cnt++; 1, 1= @
if (input[3] == “!’) cnt++; 1, == !
good goo! if (cnt > 3) crashQ;
}
_ J

IA169 System Verification and Assurance — 02

str. 29/34

Story of SAGE

- ™

Generational Search
bood
void top(char input[4])
{
gaOd int cnt = 0;
if (input[0] == ‘b’) cnt++; I, == ‘b’
godd if (input[1] == ‘@’) cnt++; 1 == ‘o
\ if CGinput[2] == ‘d’) cnt++; 1, == ‘@’
| if (input[3] == “!’) cnt++; I, == !’/
gOOd gOO. if (cnt > 3) crashQ;
Four “Generation 1” }
test cases !
N)

IA169 System Verification and Assurance — 02 str. 30/34

Story of SAGE

The Search Space

void top(char input[4])
{
int cnt = 0;
if (input[0] == ‘b’) cnt++;

if (input[1l] == ‘a@’) cnt++;
if (input[2] == ‘d’) cnt++;
if Cinput[3] == ‘!’) cnt++;
if (ent >= 3) crashQ);
} /X\
0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

good goo! godd god! gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd bad!

N J

IA169 System Verification and Assurance — 02 str. 31/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vuuuuueennnnns
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vvuvennnnnnnnn
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ...uveeunennnnn.
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vuuuuunnnnnnn.
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vuuuuuennnnnns
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vvuvenwnnnnnnnn
00000060h: 00 00 00 00 ;

Generation 0 — seed file

o /

IA169 System Verification and Assurance — 02 str. 32/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 52 49 46 46 00 00 00 00 00 00 00 00 00 00 00 00 ; [RIFEL............
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vvuvennnnnnnnn
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ...uveeunennnnn.
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vuuuuunnnnnnn.
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vuuuuuennnnnns
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vvuvenwnnnnnnnn
00000060h: 00 00 00 00 ;

Generation 1

o /

IA169 System Verification and Assurance — 02 str. 32/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 52 49 46 46 00 00 00 00 ** ** *x 20 00 00 00 00 ; RIFF...[F5
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vvuvennnnnnnnn
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ...uveeunennnnn.
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vuuuuunnnnnnn.
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vuuuuuennnnnns
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vvuvenwnnnnnnnn
00000060h: 00 00 00 00 ;

Generation 2

o /

IA169 System Verification and Assurance — 02 str. 32/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** *x 20 00 00 00 00 ; RIFFH...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vvuvennnnnnnnn
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ...uveeunennnnn.
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vuuuuunnnnnnn.
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vuuuuuennnnnns
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vvuvenwnnnnnnnn
00000060h: 00 00 00 00 ;

Generation 3

o /

IA169 System Verification and Assurance — 02 str. 32/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** _ ..
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 00 00 00 00 ;
00000040h: 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000060h: 00 00 00 00 ;

Generation 4

o /

IA169 System Verification and Assurance — 02 str. 32/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ;
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;
00000040h: 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000060h: 00 00 00 00 ;

Generation 5

o /

IA169 System Verification and Assurance — 02 str. 32/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** _ ..
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ..vvuvennnnnnnnn
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ...uveeunennnnn.

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ...vivvnnnnnnnnn
00000060h: 00 00 00 00 ;

Generation 6

o /

IA169 System Verification and Assurance — 02 str. 32/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ;
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000060h: 00 00 00 00 ;

Generation 7

o /

IA169 System Verification and Assurance — 02 str. 32/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ;
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 C9 9D E4 4E ;
00000060h: 00 00 00 00 ;

Generation 8

o /

IA169 System Verification and Assurance — 02 str. 32/34

ry of S

-

e Starting with 100 zero bytes ...

Zero to Crash in 10 Generations

e SAGE generates a crashing test for Medial parser:

00000000h: 52
00000010h: 00
00000020h: 00
00000030h: 00
00000040h: 00
00000050h: 00
00000060h: 00

20
00
00
00
00

28

00[0T] 00

Generation 9

o

IA169 System Verification and Assurance — 02

str. 32/34

ry of S

e ™
Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
e SAGE generates a crashing test for Medial parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; wevuvuveernnnnenn.
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; .eeureeueennnenn.
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....
00000040h: 00 00 00 00 73 74 72 66 B2 [I5 76 3A]128 00 00 00 ;strfZuvi(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ; wevuvuveervmnenn..
00000060h: 00 00 00 00 ;

Generation 10 — crash bucket 1212954973!

o /

IA169 System Verification and Assurance — 02 str. 32/34

Story of SAGE

" ™
Initial Experiences with SAGE

e Since 1%tinternal release in April’07: tens of new security bugs found
* Apps: image processors, media players, file decoders,... Confidential !
e Bugs: Write A/Vs, Read A/Vs, Crashes,... Confidential !

* Many bugs found triaged as “security critical, severity 1, priority 1”

N J

IA169 System Verification and Assurance — 02 str. 33/34

Self-study

Self-study

@ Follow Klee tutorials 1 and 2
(http://klee.github.io/tutorials)

@ Solve The Wolf, Goat and Cabbage problem with Klee

IA169 System Verification and Assurance — 02 str. 34/34

http://klee.github.io/tutorials

