IA169 System Verification and Assurance

Verification of Systems with Probabilities

Vojtěch Řehák
Jiří Barnat

Motivation Example

Fail-repair system

What are the properties of the model?

- G (working $\Longrightarrow F$ done)
- G (working $\Longrightarrow F$ error)
- $F G$ (working \vee error \vee repair)

Motivation Example

Fail-repair system

What are the properties of the model?

- G (working $\Longrightarrow F$ done)
- G (working $\Longrightarrow F$ error)
- $F G$ (working \vee error \vee repair)

Motivation Example

Fail-repair system

What are the properties of the model?

- G (working $\Longrightarrow F$ done)
- G (working $\Longrightarrow F$ error)
- $F G$ (working \vee error \vee repair)

Motivation Example

Fail-repair system

What are the properties of the model?

- G (working $\Longrightarrow F$ done)
- G (working $\Longrightarrow F$ error)
- $F G$ (working \vee error \vee repair)

Motivation Example

Fail-repair system

What is the probability of reaching "done" from "working"

- with no visit of "error"?
- with at most one visit of "error"?
- with arbitrary many visits of "error"?

Motivation Example

Fail-repair system

What is the probability of reaching "done" from "working"

- with no visit of "error"?
- with at most one visit of "error"?
- with arbitrary many visits of "error"?

Motivation Example

Fail-repair system

What is the probability of reaching "done" from "working"

- with no visit of "error"?
- with at most one visit of "error"?
$0.95+(0.05 * 0.95)$
- with arbitrary many visits of "error"?

Motivation Example

Fail-repair system

What is the probability of reaching "done" from "working"

- with no visit of "error"?
- with at most one visit of "error"?
$0.95+(0.05 * 0.95)$
- with arbitrary many visits of "error"?

Section

Discrete-time Markov Chains (DTMC)

Discrete-time Markov Chains (DTMC)

- Standard modeling formalism for probabilistic systems.
- A finite diagram of states and state-changing transitions.
- Each transition is annotated with a probability $p(p \in[0,1])$.
- The probabilities over transitions from a single state sum to 1 . (They form discrete probability distribution.)

Observation

- Markov property ("memoryless structure") - only the current state determines the successors (the past states are irrelevant).
- Each state has at least one outgoing edge ("no deadlock").

DTMC Examples

Task: create DTMC modeling the following scenario

- A queue for at most 4 items.
- States of the graph encode how many items are enqueued.
- Every transitions encodes that either an item has arrived in the queue or one item has been consumed from the queue (exclusive or).
- Arrival of an item happens with the probability of $1 / 3$, while the dequeue operation happens with the probability of $2 / 3$.

Solution

DTMC Examples

Task: create DTMC modeling the following scenario

- A queue for at most 4 items.
- States of the graph encode how many items are enqueued.
- Every transitions encodes that either an item has arrived in the queue or one item has been consumed from the queue (exclusive or).
- Arrival of an item happens with the probability of $1 / 3$, while the dequeue operation happens with the probability of $2 / 3$.

Solution

DTMC examples

Task: create DTMC modeling the following scenario - continued

- If the actions of item arrival and item removal are independent, they both have their own probability of appearance with every time tick.
- A new item comes with probability $p=1 / 2$, an item is removed with probability $q=2 / 3$?
- With every time tick, one of the actions may occur, both actions may occur simultaneously, or none of them may occur at all.

Solution

DTMC examples

Task: create DTMC modeling the following scenario - continued

- If the actions of item arrival and item removal are independent, they both have their own probability of appearance with every time tick.
- A new item comes with probability $p=1 / 2$, an item is removed with probability $q=2 / 3$?
- With every time tick, one of the actions may occur, both actions may occur simultaneously, or none of them may occur at all.

Solution

DTMC - Formal Definition

Discrete-time Markov Chain is given by

- a set of states S,
- an initial state s_{0} of S,
- a probability matrix $P: S \times S \rightarrow[0,1]$, and
- an interpretation of atomic propositions $I: S \rightarrow A P$.

DTMC - Formal Definition

Discrete-time Markov Chain is given by

- a set of states S,
- an initial state s_{0} of S,
- a probability matrix $P: S \times S \rightarrow[0,1]$, and
- an interpretation of atomic propositions $I: S \rightarrow A P$.

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Section

Property Specification

Property specification languages

Recall some non-probabilistic specification languages:

LTL formulae

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|X \varphi| \varphi \cup \varphi
$$

CTL formulae

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|E X \varphi| E[\varphi \cup \varphi] \mid E G \varphi
$$

Syntax of CTL*

state formula

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi \mid E \psi
$$

path formula
$\psi::=\varphi|\neg \psi| \psi \vee \psi|X \psi| \psi \cup \psi$

Property specification languages

We need to quantify probability that a certain behaviour will occur.

Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL
state formula

$$
\begin{aligned}
& \varphi::=p|\neg \varphi| \varphi \vee \varphi \mid P_{\bowtie b} \psi \\
& \psi::=X \varphi|\varphi U \varphi| \varphi U^{\leq k} \varphi
\end{aligned}
$$

path formula
where

- $b \in[0,1]$ is a probability bound,
- $\bowtie \in\{\leq,<, \geq,>\}$, and
- $k \in \mathbf{N}$ is a bound on the number of steps.

Property specification languages

We need to quantify probability that a certain behaviour will occur.

Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL
state formula

$$
\begin{aligned}
& \varphi::=p|\neg \varphi| \varphi \vee \varphi \mid P_{\bowtie b} \psi \\
& \psi::=X \varphi|\varphi U \varphi| \varphi U^{\leq k} \varphi
\end{aligned}
$$

path formula
where

- $b \in[0,1]$ is a probability bound,
- $\bowtie \in\{\leq,<, \geq,>\}$, and
- $k \in \mathbf{N}$ is a bound on the number of steps.

A PCTL formula is always a state formula.
$\alpha U^{\leq k} \beta$ is a bounded until saying that α holds until β within k steps. For $k=3$ it is equivalent to $\beta \vee(\alpha \wedge X \beta) \vee(\alpha \wedge X(\beta \vee \alpha \wedge X \beta))$.

Some tools also supports $P_{=?} \psi$ asking for the probability that the specified behaviour will occur.

PCTL examples

We can also use derived operators like $G, F, \wedge, \Rightarrow$, etc.

Probabilistic reachability $P_{\geq 1}(F$ done $)$

- probability of reaching the state done is equal to 1

Probabilistic bounded reachability $P_{>0.99}$ ($F^{\leq 6}$ done)

- probability of reaching the state done in at most 6 steps is >0.99

Probabilistic until $P_{<0.96}((\neg$ error $) U($ done $))$

- probability of reaching done with no visit of error is less than 0.96

Qualitative vs. quantitative properties

Qualitative PCTL properties

- $P_{\bowtie b} \psi$ where b is either 0 or 1

Quantitative PCTL properties

- $P_{\bowtie b} \psi$ where $b \in(0,1)$

Selected Qualitative PCTL Properties

In DTMC where zero probability edges are erased, it holds that

- $P_{>0}(X \varphi)$ is equivalent to $E X \varphi$
- there is a next state satisfying φ
- $P_{\geq 1}(X \varphi)$ is equivalent to $A X \varphi$
- the next states satisfy φ
- $P_{>0}(F \varphi)$ is equivalent to $E F \varphi$
- there exists a finite path to a state satisfying φ
but
- $P_{\geq 1}(F \varphi)$ is not equivalent to $A F \varphi$ (see, e.g., $A F$ done on our running example)

Selected Qualitative PCTL Properties

In DTMC where zero probability edges are erased, it holds that

- $P_{>0}(X \varphi)$ is equivalent to $E X \varphi$
- there is a next state satisfying φ
- $P_{\geq 1}(X \varphi)$ is equivalent to $A X \varphi$
- the next states satisfy φ
- $P_{>0}(F \varphi)$ is equivalent to $E F \varphi$
- there exists a finite path to a state satisfying φ
but
- $P_{\geq 1}(F \varphi)$ is not equivalent to $A F \varphi$ (see, e.g., $A F$ done on our running example)

There is no CTL formula equivalent to $P_{\geq 1}(F \varphi)$, and no PCTL formula equivalent to $A F \varphi$.

Section

Analysis of Discrete-time Markov Chains

DT Markov Chain Analysis - General Approaches

Transient analysis

- probability distribution after k-steps
- probability of reaching a state within k-steps

Long run analysis

- states visited infinitely often with probability one
- stationary (invariant) distribution

Model Checking

- model checking DTMCs
- model checking MDPs

Section

Transient Analysis

Quantitative - forward reachability

Probability distribution after k steps when starting in 1

Quantitative - forward reachability

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Probability distribution after k steps when starting in 1

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Quantitative - forward reachability

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Probability distribution after k steps when starting in 1

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{2}=\left[\begin{array}{lllll}
0 & 0 & 0.05 & 0 & 0.95
\end{array}\right]}
\end{aligned}
$$

Quantitative - forward reachability

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Probability distribution after k steps when starting in 1

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{2}=\left[\begin{array}{lllll}
0 & 0 & 0.05 & 0 & 0.95
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0.05 & 0.95
\end{array}\right]
$$

Quantitative - forward reachability

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Probability distribution after k steps when starting in 1

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{2}=\left[\begin{array}{lllll}
0 & 0 & 0.05 & 0 & 0.95
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0.05 & 0.95
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{4}=\left[\begin{array}{lllll}
0 & 0.05 & 0 & 0 & 0.95
\end{array}\right]
$$

Quantitative - forward reachability

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Probability distribution after k steps when starting in 1

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{2}=\left[\begin{array}{lllll}
0 & 0 & 0.05 & 0 & 0.95
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0.05 & 0.95
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{4}=\left[\begin{array}{lllll}
0 & 0.05 & 0 & 0 & 0.95
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{5}=\left[\begin{array}{lllll}
0 & 0 & 0.0025 & 0 & 0.9975
\end{array}\right]
$$

Quantitative - backward reachability

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Prob. of being in states 2 or 5 after k steps, i.e. $P_{=?} F^{=k}(2 \vee 5)$

Quantitative - backward reachability

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Prob. of being in states 2 or 5 after k steps, ie. $P_{=?} F^{=k}(2 \vee 5)$

$$
\begin{aligned}
& P \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
1 & 0.95 & 0 & 1 & 1
\end{array}\right]^{T} \\
& P^{2} \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
0.95 & 0.95 & 1 & 0.95 & 1
\end{array}\right]^{T} \\
& P^{3} \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
0.95 & 1 & 0.95 & 0.95 & 1
\end{array}\right]^{T} \\
& P^{4} \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
1 & 0.9975 & 0.95 & 1 & 1
\end{array}\right]^{T} \\
& P^{5} \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
0.9975 & 0.9975 & 1 & 0.9975 & 1
\end{array}\right]^{T}
\end{aligned}
$$

Unbounded reachability

Unbounded reachability

- Let $p(s, A)$ be the probability of reaching a state in A from s.

Observation: It holds that:

- $p(s, A)=1$ for $s \in A$
- $p(s, A)=\sum_{s^{\prime} \in \operatorname{succ}(s)} P\left(s, s^{\prime}\right) * p\left(s^{\prime}, A\right)$ for $s \notin A$
where $\operatorname{succ}(s)$ is a set of successors of s and $P\left(s, s^{\prime}\right)$ is the probability on the edge from s to s^{\prime}.

Theorem

- The minimal non-negative solution of the above equations equals to the probability of unbounded reachability.

Task

- For the given DTMC compute the probability of reaching state 3 within 6 steps.
- Compute $P_{=?} F^{\leq 6} 3$.

Wrong Solution

- BEWARE!
- We cannot sum the probabilities of repeated visits!

$$
P_{=?} F^{\leq 6} 3 \neq \sum_{i=0}^{6} P_{=?} F^{=i} 3
$$

Possible Solution 1

- We may only sum the probabilities if we make sure, that no revisit of a state is possible.
- We have to modify the DTMC.

Possible Solution 2

- Alternativelly, we can make the target state absorbing.
- $P_{=?} F^{\leq 6} 3=P_{=?} F^{=6} 3$

Section

Long Run Analysis

Long run analysis

Recall that we reach the state 5 (done) with probability 1 .

Long run analysis

Recall that we reach the state 5 (done) with probability 1.

What are the states visited infinitely often with probability 1 ?

States visited infinitely often

Decompose the graph representation onto strongly connected components.

${ }^{1}$ This holds only in DTMC models with finitely many states.

States visited infinitely often

Decompose the graph representation onto strongly connected components.

Theorem ${ }^{1}$

- A state is not visited or visited infinitely often with probability 1 if and only if it is in a bottom strongly connected component.
- All other states are visited finitely many times with probability 1.
${ }^{1}$ This holds only in DTMC models with finitely many states.

How often is a state visited among the states visited infinitely many times?

Theorem

$$
\lim _{n \rightarrow \infty} E\left(\frac{\# \text { visits of state } i \text { during the first } n \text { steps }}{n}\right)=\pi_{i}
$$

where π is a so called stationary (or steady-state or invariant or equilibrium) distribution satisfying $\pi \times P=\pi$.

Section

DTMC Extensions

Markov Decision Processes

Markov Decision Processes (MDP)

- Extends DTMC with non-determinism.
- For a given state, there is a choice of probability distribution we may use to proceed to the next state (non-deterministic choice of action, every action represents one probability distribution over the successors).

Model Checking MDPs

- Satisfaction of a property ranges between Pmin and Pmax depending on the resolution of the non-determinism.
- By resolving the non-determinism in MDP we get DTMC.
- PRISM - Probabilistic model checker

Other DTMC, MDP Extensions

- Rewards
- Partial observability

