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Motivation Example

Fail-repair system

What are the properties of the model?
e G(working = F done)
e G(working = F error)
e FG(working V error V repair)
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Motivation Example

Fail-repair system

service

What are the properties of the model?
e G(working = F done) NO
e G(working = F error)
e FG(working V error V repair)
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Motivation Example

Fail-repair system

service

What are the properties of the model?

e G(working = F done) NO
e G(working = F error) NO
e FG(working V error V repair) NO
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Motivation Example

Fail-repair system

What is the probability of reaching “done” from “working”
@ with no visit of “error”?
@ with at most one visit of “error”?

@ with arbitrary many visits of “error”?
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Motivation Example

Fail-repair system

What is the probability of reaching “done” from “working”
@ with no visit of “error”? 0.95
@ with at most one visit of “error”?

@ with arbitrary many visits of “error”?
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Motivation Example

Fail-repair system

service

What is the probability of reaching “done” from “working”
@ with no visit of “error”? 0.95
@ with at most one visit of “error"? 0.95 + (0.05*0.95)

@ with arbitrary many visits of “error”?
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Motivation Example

Fail-repair system

service

What is the probability of reaching “done” from “working”

@ with no visit of “error”? 0.95
@ with at most one visit of “error"? 0.95 + (0.05*0.95)
@ with arbitrary many visits of “error”? 1
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Discrete-time Markov Chains (DTMC)
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Probabilistic Models

Discrete-time Markov Chains (DTMC)
@ Standard modeling formalism for probabilistic systems.
@ A finite diagram of states and state-changing transitions.
@ Each transition is annotated with a probability p (p € [0, 1]).

@ The probabilities over transitions from a single state sum to 1.
(They form discrete probability distribution.)

Observation

@ Markov property (“memoryless structure”) — only the current state
determines the successors (the past states are irrelevant).

@ Each state has at least one outgoing edge (“no deadlock™).
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DTMC Examples

Task: create DTMC modeling the following scenario
@ A queue for at most 4 items.
@ States of the graph encode how many items are enqueued.

@ Every transitions encodes that either an item has arrived in the
queue or one item has been consumed from the queue (exclusive or).

@ Arrival of an item happens with the probability of 1/3, while the
dequeue operation happens with the probability of 2/3.

Solution
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DTMC Examples

Task: create DTMC modeling the following scenario
@ A queue for at most 4 items.
@ States of the graph encode how many items are enqueued.

@ Every transitions encodes that either an item has arrived in the
queue or one item has been consumed from the queue (exclusive or).

@ Arrival of an item happens with the probability of 1/3, while the
dequeue operation happens with the probability of 2/3.

Solution

2/3 1/3
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DTMC examples

Task: create DTMC modeling the following scenario - continued

@ If the actions of item arrival and item removal are independent, they
both have their own probability of appearance with every time tick.

@ A new item comes with probability p = 1/2, an item is removed
with probability g = 2/37

@ With every time tick, one of the actions may occur, both actions
may occur simultaneously, or none of them may occur at all.

Solution
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DTMC examples

Task: create DTMC modeling the following scenario - continued

@ If the actions of item arrival and item removal are independent, they
both have their own probability of appearance with every time tick.

@ A new item comes with probability p = 1/2, an item is removed
with probability g = 2/37

@ With every time tick, one of the actions may occur, both actions
may occur simultaneously, or none of them may occur at all.

Solution

(1-p)(1-q) (1-p)(1-q) (1-p)(1-q)
1-p + pq + pq + pq 1-g¢g
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DTMC - Formal Definition

Discrete-time Markov Chain is given by

a set of states S,

@ an initial state sy of S,
@ a probability matrix P : S x S — [0, 1], and
°

an interpretation of atomic propositions / : S — AP.
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DTMC - Formal Definition

Discrete-time Markov Chain is given by
@ a set of states S,
@ an initial state sy of S,
@ a probability matrix P : S x S — [0, 1], and

@ an interpretation of atomic propositions / : S — AP.

1 01 0 0 O

<1—@ 1 0 0 005 0 0.9
sCERO =IO F N
1 2 5 01 0 0 O
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Property Specification
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Property specification languages

Recall some non-probabilistic specification languages:

LTL formulae

pu=plopleVe | Xe|leUe

CTL formulae

pu=plopleVe | EXp|ElpUp] | EGy

Syntax of CTL*

state formula pou=plopleVel EY
path formula Y= |l YVyY | XY | YUy
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Property specification languages

We need to quantify probability that a certain behaviour will occur.
Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL
state formula pu=p|op| Vel Pt
path formula Vvi=Xep|oUp|eUSkep
where
e b e 0,1] is a probability bound,
o <€ {<, <, >, >}, and
@ k € N is a bound on the number of steps.
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Property specification languages

We need to quantify probability that a certain behaviour will occur.
Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL

state formula pu=p|op| Vel Pt
path formula Vvi=Xep|oUp|eUSkep
where
e b e 0,1] is a probability bound,
o e {<, <, >, >}, and
@ k € N is a bound on the number of steps.

A PCTL formula is always a state formula.

a USK B is a bounded until saying that « holds until 8 within k steps.
For k =3 it is equivalent to BV (e AXB) V(e AX(BVaAnXp)).

Some tools also supports P—;1) asking for the probability that the

specified behaviour will occur.
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PCTL examples

We can also use derived operators like G, F, A, =, etc.

Probabilistic reachability P>1( F done)

@ probability of reaching the state done is equal to 1
Probabilistic bounded reachability P-q.99( F=° done)

@ probability of reaching the state done in at most 6 steps is > 0.99
Probabilistic until P gs( (—error) U (done))

@ probability of reaching done with no visit of error is less than 0.96
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Qualitative vs. quantitative properties

Qualitative PCTL properties
@ P.pt where b is either O or 1

Quantitative PCTL properties
@ Pt where b € (0,1)
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Selected Qualitative PCTL Properties

In DTMC where zero probability edges are erased, it holds that
@ P-o( X ) is equivalent to EX ¢
o there is a next state satisfying ¢
e P>1( X ) is equivalent to AX ¢
e the next states satisfy ¢
@ P-o( F ) is equivalent to EF ¢
e there exists a finite path to a state satisfying ¢
but

e P>1( F ) is not equivalent to AF ¢
(see, e.g., AF done on our running example)
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Selected Qualitative PCTL Properties

In DTMC where zero probability edges are erased, it holds that
@ P-o( X ) is equivalent to EX ¢
o there is a next state satisfying ¢
e P>1( X ) is equivalent to AX ¢
e the next states satisfy ¢
@ P-o( F ) is equivalent to EF ¢
e there exists a finite path to a state satisfying ¢
but

e P>1( F ) is not equivalent to AF ¢
(see, e.g., AF done on our running example)

There is no CTL formula equivalent to P>1( F ),
and no PCTL formula equivalent to AF .
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Analysis of Discrete-time Markov Chains
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DT Markov Chain Analysis - General Approaches

Transient analysis
@ probability distribution after k-steps
@ probability of reaching a state within k-steps

Long run analysis
@ states visited infinitely often with probability one

e stationary (invariant) distribution

Model Checking
@ model checking DTMCs
@ model checking MDPs
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Transient Analysis
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Quantitative - forward reachability

01 0 0 O

° e 0 0 005 0 0.095
005 P=100 0 1 0

01 0 0 O

1 \/695 00 0 o0 1

Probability distribution after k steps when starting in 1
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Quantitative - forward reachability

01 0 0 O

° e 0 0 005 0 0.095
005 P=100 0 1 0

01 0 0 O

1 \/695 00 0 o0 1

Probability distribution after k steps when starting in 1

[10000]xP:[01000
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Quantitative - forward reachability

01 0 0 O

° e 0 0 005 0 0.095
005 P=100 0 1 0

01 0 0 O

1 \/{)95 00 0 o0 1

Probability distribution after k steps when starting in 1

[10000]xP:[01000}

[1 000 0]><P2=[0 0 0.05 0 0.95}
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Quantitative - forward reachability

01 0 0 O

° e 0 0 005 0 0.095
005 P=100 0 1 0

01 0 0 O

1 \/{)95 00 0 o0 1

Probability distribution after k steps when starting in 1

[1 00 0 o]xP:[o 100 0}
[1 000 0]><P2=[0 0 0.05 0 0.95}

[1 000 0]><P3=[0 0 0 0.05 0.95}
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Quantitative - forward reachability

01

0 9 0 0
005 P=10 0
01

1\/{)95 00

Probability distribution after k steps when starting in 1
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xP:[o 100 0}
><P2:[o 0 0.05 0 0.95}
><P3=[o 0 0 0.05 0.95}

><P4:[o 0.05 0 0 0.95}
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Quantitative - forward reachability

Probability distribution after k steps when starting in 1
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Quantitative - backward reachability

1 01 0 0 O
<1—@ 1 0 0 005 0 0.95

sCERO O F N

1 2 5 01 0 0 O

Prob. of being in states 2 or 5 after k steps, i.e. P_,F~*(2V 5)
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Quantitative - backward reachability
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Prob. of being in states 2 or 5 after k steps, i.e. P_,F~*(2V 5)
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Unbounded reachability

Unbounded reachability
@ Let p(s, A) be the probability of reaching a state in A from s.

Observation: It holds that:

o p(s,A)=1forsc A

o p(s,A) = Zs’ésucc(s) P(s,s")  p(s', A) for s ¢ A
where succ(s) is a set of successors of s and P(s,s’) is the
probability on the edge from s to s’

Theorem

@ The minimal non-negative solution of the above equations
equals to the probability of unbounded reachability.
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"Up to" reachability

Task
@ For the given DTMC compute the probability of reaching

state 3 within 6 steps.

o Compute P_, F<6 3
0. 05

1 \/{)95

Wrong Solution
e BEWARE!

@ We cannot sum the probabilities of repeated visits!

6
P, F<®3 # M P, F'3
i=0
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"Up to" reachability — continued

Possible Solution 1
@ We may only sum the probabilities if we make sure, that no
revisit of a state is possible.
@ We have to modify the DTMC.
o P, FS63=%% P, F3

005
1 \/{)95

Possible Solution 2
o Alternativelly, we can make the target state absorbing.

o Py FS83=P_, F°3

005
1 \/695
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Long Run Analysis
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Long run analysis

005
1 k/b95

Recall that we reach the state 5(done) with probability 1.
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Long run analysis

005
1 \/{)95

Recall that we reach the state 5(done) with probability 1.

What are the states visited infinitely often with probability 17

IA169 System Verification and Assurance — 10 24 /28



States visited infinitely often

Scc
0.5
JT—
Decompose the graph o 2 2l BCC
representation onto o 025 1
strongly connected o
components. 8 q 8 o
BSCC BSCC (@ Dave Parker

This holds only in DTMC models with finitely many states.
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States visited infinitely often

. BscC

Decompose the graph
representation onto
strongly connected
components.

Theorem !

@ A state is not visited or visited infinitely often with
probability 1 if and only if it is in a bottom strongly
connected component.

@ All other states are visited finitely many times with
probability 1.

This holds only in DTMC models with finitely many states.
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Frequency of visits

0.5
How often is a state visited
among the states visited 5
infinitely many times?
0.5
Theorem
i # visits of state i during the first n steps
lim,_ o E . =

where 7 is a so called stationary (or steady-state or invariant or
equilibrium) distribution satisfying 7 x P = 7.
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DTMC Extensions

IA169 System Verification and Assurance — 10 27/28



Markov Decision Processes

Markov Decision Processes (MDP)

e Extends DTMC with non-determinism.

@ For a given state, there is a choice of probability distribution
we may use to proceed to the next state (non-deterministic
choice of action, every action represents one probability
distribution over the successors).

Model Checking MDPs
@ Satisfaction of a property ranges between Pmin and Pmax
depending on the resolution of the non-determinism.

@ By resolving the non-determinism in MDP we get DTMC.
@ PRISM — Probabilistic model checker

Other DTMC, MDP Extensions
@ Rewards
@ Partial observability
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