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Abstract 
 

Motivation: Current techniques of protein engineering focus mostly on re-designing small targeted 

regions or defined structural scaffolds rather than constructing combinatorial libraries of versatile com-

positions and lengths. This is a missed opportunity because combinatorial libraries are emerging as a 

vital source of novel functional proteins and are of interest in diverse research areas. 

Results: Here, we present a computational tool for Combinatorial Library Design (CoLiDe) offering 

precise control over protein sequence composition, length and diversity. The algorithm uses evolution-
ary approach to provide solutions to combinatorial libraries of degenerate DNA templates. We demon-
strate its performance and precision using 4 different input alphabet distribution on different sequence 
lengths. In addition, a model design and experimental pipeline for protein library expression and purifi-
cation is presented, providing a proof-of-concept that our protocol can be used to prepare purified pro-
tein library samples of up to 1011-1012 unique sequences. 

CoLiDe presents a composition-centric approach to protein design towards different functional phe-

nomena. 

Availability: CoLiDe is implemented in Python and freely available at https://github.com/vo-

racva1/CoLiDe. 
Contact: klara.hlouchova@natur.cuni.cz, voracva1@fel.cvut.cz 

Supplementary information: Supplementary data are available at Bioinformatics online. 
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1 Introduction  

Considering the vastness of the potential protein sequence space, naturally 

occurring proteins are constructed from a small number of coding se-

quences that arrange into a limited number of structural folds. While 

there are 20100 possible combinations for the design of a 100-amino-acid 

protein within the canonical amino acid alphabet, only ~1015 sequences 

encode all proteins on Earth (Luisi, 2006). Furthermore, these sequences 

are estimated to fold into only ~2,000 distinct topologies (Govindarajan et 

al., 1999). These observations raise numerous questions in the fields of 

biotechnology, synthetic biology and evolutionary biology: How easily 

can a useful sequence be encountered in the unexplored sequence space? 

Are there protein folds and functions outside those formed by the natural 

sequence pool?  

Several recent studies have started providing answers to these questions. 

Both secondary and tertiary structures seem to be abundant in completely 

random sequences (Chiarabelli et al., 2006; Davidson and Sauer, 1994; 

LaBean et al., 2011; Tretyachenko et al., 2017). Novel folds and functions 

have been encountered in random and semi-random sequence libraries, 

and some researchers argue that protein function may be discovered by 

entirely stochastic means (Chao et al., 2013; Donnelly et al., 2018; Fisher 

et al., 2011; Keefe and Szostak, 2001; Ravarani et al., 2018). In addition, 

the bioactivity of and cellular response to random sequences has been ac-

tively discussed in association with de novo gene birth (Bornberg-Bauer 

and Heames, 2019; Neme et al., 2017). While it seems that protein struc-

ture and function can be encountered in random sequence space, different 

biological functions have been associated with specific amino acid com-

position and hence physicochemical properties. For example, positively 

charged and aromatic amino acids are known to promote protein-RNA in-

teraction, evolutionary early amino acids promote solubility and trends in 

amino acid composition have been related to phenomena such as protein 

disorder and liquid-liquid phase separation (Blanco et al., 2018; Doi et al., 

2005; Newton et al., 2019; Wang et al., 2018; Vymětal et al., 2019). Local 

residue composition is apparently what makes natural sequences stand out 

from randomness (Weidmann et al., 2019). Overall, these studies high-

light the importance of developing tools to probe the protein sequence 

space in a rational way.  

Several approaches to constructing synthetic protein sequence libraries 

have been developed. The simplest is direct chemical synthesis of a pep-

tide from amino acid precursors but has major restrictions in sequence 

length and conformational biases (reviewed in (Jaradat, 2018)). Another 

approach is based on construction of a degenerate DNA template with 

subsequent expression. The template can be designed either using triplet 

codon as the minimal unit, where pre-synthesized triplets are linked to-

gether, or at the single nucleotide level. Although the former method can 

provide a library with unbiased amino acid distribution at each template 

position, the cost of the trinucleotide phosphoramidite precursors limits its 

widespread adoption in laboratory practice (Virnekas et al., 1994). On the 

other hand, template synthesis at the nucleotide level is economically fea-

sible and is offered by multiple commercial oligonucleotide synthesis 

companies. Using this approach, random libraries have been constructed 

from simple repeat of frequently used degenerate codons, such as NNN 

and NNK. The major drawback of NNN/NNK method for protein engi-

neering is its high level of degeneracy (NNK codes 20 amino acids via 32 

different codons). An elegant solution to reduce the degeneracy introduced 

by Kille et al. combines three degenerate codons in a vertical way to cover 

all 20 amino acids using 22 codons (so called “22c-trick”) without an in-

troduction of STOP codons (Kille et al., 2013). Nevertheless, this solution 

is effective only when screening a few positions because of an increased 

cost of oligonucleotide synthesis (mere three mutagenized positions would 

demand 33 = 27 separate oligonucleotides) and the experimental effort 

during template assembly. Both of these methods are focused on produc-

ing the highest mutational coverage without any attention to amino acid 

distribution of the mutant library. 

While several computational algorithms for library design exist, they have 

been optimized to introduce as few degenerate codons as possible (Jacobs 

et al., 2015; Shimko et al., 2020; Tang et al., 2012). An optimal solution 

to amino acid distribution approximation by combinations of degenerate 

codons was recently introduced in SwiftLib and DeCoDe algorithms 

(Jacobs et al., 2015; Shimko et al., 2020). Both produce compact combi-

natorial libraries by as few degenerate codons as possible while DeCoDe 

implements complex patterns of covariation into the library design 

(Shimko et al., 2020). Degenerate codon positions consist of nucleotide 

mixtures at equimolar ratios where more than one nucleotide is found at a 

single position. An alternative approach is represented by use of spiked 

codons where nucleotides can be represented by variable ratios. Mapping 

of amino acid distribution into a single spiked codon was implemented by 

Wolf et al. and Craig et al. via numerical optimization and genetic algo-

rithms. Unfortunately neither of these algorithms is publicly available 

(Wolf and Kim, 1999; Craig et al., 2009). Although these tools are partic-

ularly useful for site-specific randomization strategies, there remains a 

missed opportunity for the overall design of protein libraries. Specifically, 

the formation of combinatorial segments of versatile length with a desired 

amino acid composition would benefit synthetic biology practitioners.   

Here, we present a combinatorial library design tool (CoLiDe) for the 

DNA template design of versatile protein libraries.  CoLiDe aids in con-

struction of libraries with specific amino acid distributions and lengths, 

Figure 1. Outline of the CoLiDe algorithm. Based on the input amino acid distribution and length of the randomized library, at first an unoptimized vector of degenerate codons of 

given length is generated. Then the vector is optimized by single exchanges of codons until a vector of degenerate codons with minimal distance from the input distribution is ob-
tained 
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i.e. optimization of the overall amino acid composition. Such libraries are 

notably in demand for investigating phenomena that are principally related 

to amino acid composition - protein liquid-liquid phase separation (Wang 

et al., 2018), intrinsic protein disorder (Vymětal et al., 2019), spatial pro-

tein localization in vivo (Cedano et al., 1997), protein degradation half-

life in the cellular milieu and chain elongation rate during ribosomal syn-

thesis (Guruprasad et al., 1990; Riba et al., 2018). In addition, our algo-

rithm allows for incorporation of spiked trinucleotides (i.e., with variable 

nucleotide composition for single position) and removal of specific co-

dons, such as for codon reassignment and incorporation of unnatural 

amino acids (Liu and Schultz, 2010).  

As a proof-of-concept, we demonstrate the use of CoLiDe by construction 

of a combinatorial protein library of 33 amino acids in length and com-

posed of a 10 amino acid alphabet (A, S, D, G, L, E, T, I, P, and V). Total 

amino acid composition of the library and therefore each protein sequence 

was specified using the CoLiDe input option. Moreover, CoLiDe can be 

used to upgrade currently available DNA block shuffling methods to pre-

pare combinatorial libraries that are hundreds of amino acids in length. 

2 Results and discussion 

In this work, we present a computational tool for automated design of 

combinatorial libraries. CoLiDe uses evolutionary approach to find a sat-

isfactory solution. The algorithm provides a set of degenerate codons 

which approximate the total amino acid distribution of protein without re-

gard to individual degenerate positions in the coding template. The prin-

ciple of the algorithm is summarized in Fig. 1.  

 

 

Mandatory inputs include library length, amino acid distribution, and de-

generate codon type (standard or spiked, Supporting Fig. S1). Other pa-

rameters, such as organism-specific codon preference, extent of degener-

acy, or codon removal/reassignment, also can be specified (Supporting 

Fig. S1). Once the input parameters are defined, codons are pre-selected 

based on the amino acid input from a total pool of 3,375 degenerate co-

dons. The codon pre-selection removes undesired amino acid and STOP 

codons. This step guarantees that the combinatorial library is composed 

only of input amino acids and will not contain prematurely terminated 

templates. On the other hand, depending on input distribution, most 

highly degenerate codons are removed which reduces degeneracy of in-

dividual library positions. 

 

Only the pre-selected degenerate codons serve in the subsequent library 

construction pipeline. The pipeline starts with random sets of degenerate 

codons of desired library length and follows with random codon ex-

changes (standard codons) or a shift in nucleotide ratios (spiked codons). 

Exchanges and shifts are kept within the optimized codon set if the amino 

acid product comes closer to input distribution (evaluated by mean 

squared error) and rejected if not. Optimization is finished when repeated 

changes do not further improve the solution (specifically, after n = 1000 × 

[library length] rejected mutations) This threshold was selected after test 

runs of the optimization path which recorded the rejection rate of muta-

tions and provided satisfactory deviation on all tested distributions (Sup-

porting Fig. S2 A-D). The output of the algorithm is a vector of degenerate 

codons of given library length. In other words, CoLiDe provides a list of 

degenerate codons combined randomly into a single oligonucleotide tem-

plate.  

 

CoLiDe offers a graphical user interface (Supporting Fig. S1) that aids 

input of all variables, displays statistics of the optimized solution, and al-

lows the user to generate a report as a PDF document. CoLiDe is imple-

mented in Python 3, and the source code is available as open source under 

MIT license at https://github.com/voracva1/CoLiDe.  

 

CoLiDe performance analysis 

 

We tested CoLiDe’s precision and reproducibility on the following four 

amino acid distributions: (i) a reduced alphabet used in protein evolution 

studies to approximate an early version of the genetic code (Solis, 2019), 

(ii) a functional distribution derived from an analysis of RNA-binding pro-

teins (Blanco et al., 2018), (iii) a natural amino acid distribution from the 

UniProt database (UniProtKB/Swiss-Prot UniProt release 2019_11), and 

(iv) a rational selection of a reduced set of amino acids for protein engi-

neering (Murphy et al., 2000) (Fig. 2A-D, Supporting table S1). For each 

amino acid distribution, optimization was performed 10 independent times 

for library lengths of 5, 10, 15, 20, 40, 60, 80, and 100 amino acids (Fig. 

2E-H). CoLiDe was able to reliably spread all the tested distributions on a 

DNA template of given length.  

 
Mean squared errors in the shortest amino acid libraries ranged from 0.11 

to 0.17 between individual alphabets and converged with increasing tem-

plate length to values around 0.005. Variance in precision between solu-

tions — measured as a coefficient of variation was highest in short librar-

ies, ranging between 10-2-10-3, and decreased to values around 10-5 in 

longer templates (Supporting table S2).    

 

Our results confirmed that the algorithm consistently finds precise solu-

tions to selected input amino acid distributions. The precision of the solu-

tion increases and the variance between solutions within each group de-

creases along with the increase in library template length. With reduced 

template length, error became dependent on the specific amino acid alpha-

bet. Solutions using spiked codons showed better precision with similar 

variance within each group (Supporting table S2). CoLiDe runtimes were 

tested on four library templates (Fig. 2A-D) with the template sizes 

Figure 2. CoLiDe performance analysis. Amino acid distributions used to benchmark CoLiDe performance (A-D) and comparison of solutions generated from each (E-H). Each distri-

bution was approximated via degenerate (red) and spiked (blue) codons. Solutions were produced in 10 replicates for various library lengths ranging from 5 to 100 amino acids 
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ranging from 5 to 400 degenerate codons. Reported runtimes range from 

~3 to 600s on Intel i5-8250U laptop (Supporting Fig. S3). 

 

Diverse degenerate libraries can be produced with other available tools, 

even though they are designed for construction of different library types. 

CoLiDe, in contrast to alternative design tools (SwiftLib, DeCoDe), fo-

cuses on combinatorial library design without position-specific restraints. 

Designed libraries are suitable for probing the constrained sequence space 

rather than for screening small, rationally designed library of protein var-

iants (Jacobs et al., 2015; Shimko et al., 2020). As an example, we com-

pare the solutions for combinatorial libraries provided by degenerate co-

don optimization algorithm SwiftLib (Jacobs et al., 2015). SwiftLib out-

puts an optimized set of degenerate codons which cover the provided 

amino acid variability with as few degenerate codons as possible. Such 

approach faces difficulty to assure the precision of the distribution when 

targeting longer regions, whereas that is not the case for CoLiDe (Sup-

porting Fig. S5). On the other hand, SwiftLib outperforms CoLiDe when 

very short randomized regions (of 2-3 codons) are calculated (Supporting 

Fig. S4). Deviations of ratios of single amino acids are reported in Sup-

porting Tables S4 and S5.  CoLiDe provides a better choice for combina-

torial design of longer protein templates provided that overall amino acid 

distribution of sequence is preferred over the specific amino acid varia-

tions on predefined positions. Furthermore CoLiDe can be used in protein 

engineering applications for coarse grained yet computationally efficient 

vertical design (multiple degenerate oligonucleotides per one tube) of de-

generate codons to approximate amino acid distributions in single protein 

positions, similarly to established deterministic approaches described by 

Jacobs and coworkers (Jacobs et al., 2015). 

Proof-of-concept experimental library design 

 

To identify general pitfalls and experimental bottlenecks of library prepa-

ration, we experimentally evaluated one specific CoLiDe solution from 

DNA to protein level. A 45 amino acid protein library was prepared with 

a randomized region of 33 amino acids, following the early alphabet dis-

tribution (Fig. 2A). The mean squared error of the randomized region with 

CoLiDe solution was 0.0022 with an error variance of 0.00011 (Fig. 3). 

The random 33 codon region was tagged with an 8×H+QH (i.e. octa-His 

+ Gln-His) coding sequence (separated by a two amino acid linker, KS) 

on the C-terminus for subsequent purification (Supporting information, 

Sequence). The protein coding sequence was embedded into a linear ex-

pression cassette, and the library was transcribed as described in Materials 

and methods (Supporting Fig. S6). 

The length of the protein library was selected so that a single commercially 

synthesized oligonucleotide could be used for the downstream procedure. 

However, a larger construct could be prepared by DNA shuffling methods 

as previously described (Cho et al., 2000). Thus, CoLiDe algorithm can 

also be utilized for the construction of random protein libraries with amino 

acids residues up to several hundreds.  

 

 

Construction and characterization of the oligonucleotide library 

 

Nucleotide sequences for degenerate libraries were analyzed on the DNA 

and mRNA template levels by high-throughput sequencing (HTS). The in 

silico translated amino acid composition (from both the DNA and mRNA 

templates) showed good agreement with the designed construct (Fig. 3&4, 

Supporting table S6). While deviations of whole distributions are listed 

here as mean squared error calculated on (0,1) scale, we plot single amino 

acid occurrence as percentage of input distribution on (0,100) scale. De-

viations between the CoLiDe solution and the in silico translated DNA 

template were observed in enrichment of valine, leucine, and isoleucine 

(2.9, 2.2 and 1.6 %) and depletion of proline, threonine, and alanine (3, 

2.2 and 2.4 %) (Fig. 3&4, Supporting table S6).  

 

Upon analysis of nucleotide frequencies at each position, we found that 

deviation can be explained by the nucleotide composition bias during the 

oligonucleotide synthesis and have been confirmed as the current bottle-

neck by the provider (Supporting Fig. S7). Statistical analysis of the se-

quencing data provides a confirmation of library diversity and shows that 

vast majority (99.9 %) of all sequences are unique (Supporting table S7). 

Overall, mean squared error of amino acid distribution of DNA and RNA 

templates remained to be around ~0.02 (Supporting table S6). Hence, we 

found that while CoLiDe algorithm can provide low mean squared error 

for the library design, one should be aware of the nucleotide bias that will 

be introduced during the oligonucleotide synthesis of highly degenerate 

DNA oligonucleotides. Such nucleotide composition bias of DNA library 

depends on each oligonucleotide provider (unpublished observation).  

 

Construction and characterization of the protein library 

 

The combinatorial protein library was expressed using an in vitro transla-

tion system and His-tag purified for downstream analysis (Fig. 5A). Ex-

pressed proteins were assessed by mass spectrometry (Fig. 5B) and amino 

acid analysis (Fig. 5C, Supporting table S6). 

  

MALDI-TOF mass spectrometry revealed good agreement with expected 

values. The expected mass distribution was produced by analysis of 

600,000 random sequences corresponding to the degenerate DNA tem-

plate and by in silico translation of 600,000 sequences obtained by HTS 

of DNA and mRNA templates. The experimental spectrum is represented 

by normal weight distribution with a mean value of 5,029 Da and a stand-

ard deviation of 120.6 (Fig. 5B). This is slightly shifted from the mean 

value of the molecular weight distribution expected from the design (4,902 

Da), partly as a result of sequence bias during the solid-state oligonucleo-

tide synthesis. However, in silico translation of sequences obtained by 

HTS (producing a mean molecular weight of 4,957 Da) confirms that this 

Figure 3. Comparison of the amino acid distribution of the CoLiDe solution of 33 

amino acid long library to its target distribution and the DNA and mRNA templates 
obtained from the high-throughput sequencing (HTS) data (upon in silico transla-
tion) 

 

Figure 4. Preparation and analysis of DNA and RNA libraries. (left) Sequence logos 

generated in silico from the designed template (top), sequenced DNA template (middle), 
and sequenced reverse-transcribed mRNA (bottom). (right) Agarose gel electrophoresis 
of dsDNA library template (middle) and urea PAGE analysis of single stranded random 

library mRNA and (bottom). Polar and small amino acids (G, S, T, P, A) are green, hy-
drophobic and large amino acids are black (L, V, I) and negatively charged residues (D, 
E) are blue 
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explains only part of the shift. This result indicates that the translation and 

purification steps have introduced additional compositional shift into the 

protein library. Most notably, the purified protein library is under-repre-

sented in alanine, aspartic acid, and threonine (by 2-4 % from the desired 

amount) and enriched in glutamic acid and glycine (by ~5% from the in-

put) as assessed by amino acid analysis (Fig. 5C), likely due to their im-

pact on protein solubility and contamination by carry over protein compo-

nents from the  cell-free expression system in the purified library sample 

(Fig. 5A). While these deviations do not represent a major difference in 

the overall amino acid ratio profile (amino acid analysis shows an overall 

of 0.05 mean squared error (Supporting table S6)), it is important to be 

aware of the sequence biases that may be introduced into designed librar-

ies during oligonucleotide synthesis and downstream procedures as a re-

sult of the translation and purification process or the physicochemical 

properties of the expressed proteins themselves. 

 

Currently, there is no satisfactory methodology to analyze the variability 

of the large protein sequence pool directly. One translation reaction (in a 

20 µl volume) is typically primed with 1011-1012 different template mole-

cules. Even with the genotype-phenotype linked display methods (i.e. 

mRNA-display, ribosome display, etc.) number of characterized se-

quences is limited to the performance of HTS. Because neither DNA li-

brary preparation, RNA transcription nor the in vitro translation involve 

sequence amplification, a similar variability of protein sequences is ex-

pected after translation. The computational protocol therefore presents a 

tool for truly effective exploration of the protein sequence space. 

3 Conclusions 

Here, we present CoLiDe, a novel tool for precise design of combinatorial 

protein libraries of flexible length and desired amino acid composition. 

We provide evidence that it performs with minimal error and variance 

across several different amino acid distributions and lengths. It signifi-

cantly outperforms SwiftLib (that have been developed for other applica-

tions) especially when designing combinatorial libraries longer than ~10 

amino acids.   

  

In addition, we present a model protocol for combinatorial library (com-

posed of a 10 amino acid alphabet) preparation by cell-free expression. By 

monitoring the DNA and mRNA sequence pool during library preparation 

using HTS, we confirmed the desired variability (99.9% of the sequences 

representing unique species). While negligible error is detected between 

the input sequence and the CoLiDe solution, up to 3% deviations of indi-

vidual amino acid ratios were detected upon in silico translation of the 

mRNA sequence pool. The error was primarily attributable to nucleotide 

compositional bias from the synthesis of the starting material. 

 

Using the template mRNA, we expressed and purified a highly variable 

protein library (represented by a normal weight distribution). To our 

knowledge, this is the first report of purification of a combinatorial protein 

library in an amount sufficient for biophysical characterization. The ex-

perimental procedure introduced additional detectable shifts among sev-

eral amino acid compositions (up to 5% deviation), likely occurred during 

translation and purification steps of the library. Such an error is to be ex-

pected and may vary depending on the nature of individual amino acid 

alphabets. We estimate that 1011-1012 unique protein sequences can be 

produced in a 20-µl cell-free translation reaction using our protocol.   

 

The design and experimental strategy presented here can be used in com-

bination with vertical library design strategies (i.e., mixing multiple de-

generate templates) and DNA shuffling synthesis. This represents a pow-

erful tool for the synthesis of combinatorial protein libraries composed of 

hundreds of amino acids. 

 

4 Materials and methods 

4.1 CoLiDe algorithm 

Basic definitions 

 

The following procedure addresses problem-solving with spiked codons 

(degenerate codons with variable nucleotide composition). If the domain 

is restricted to degenerate codons, the procedure differs slightly, as noted 

below. We considered spiked codon to be a 12-tuple concatenated from 4-

tuples representing each degenerated position of the triplet: 

 

 (𝑇1, 𝐶1, 𝐴1, 𝐺1, 𝑇2, 𝐶2, 𝐴2, 𝐺2, 𝑇3, 𝐶3, 𝐴3, 𝐺3) 

 

satisfying 

∀𝑖 ∈ {1,2,3}: 𝑇𝑖 + 𝐶𝑖 + 𝐴𝑖 + 𝐺𝑖 = 1 

∀𝑖 ∈ {1,2,3}∀𝑆 ∈ {𝑇, 𝐶, 𝐴, 𝐺}: 𝑆𝑖 ≥ 0 

 

We also introduced a 12-tuple base-codon term: 

 

 (𝑇1, 𝐶1, 𝐴1, 𝐺1, 𝑇2, 𝐶2, 𝐴2, 𝐺2, 𝑇3, 𝐶3, 𝐴3, 𝐺3) 

 

satisfying 

 

∀𝑖 ∈ {1,2,3}: 𝑇𝑖 + 𝐶𝑖 + 𝐴𝑖 + 𝐺𝑖 ≥ 1 

∀𝑖 ∈ {1,2,3}∀𝑆 ∈ {𝑇, 𝐶, 𝐴, 𝐺}: 𝑆𝑖 ∈ {0,1} 

 

Base-codons serve as templates for codons. For example, the codon NNS 

can be represented by the 12-tuple (1,1,1,1,1,1,1,1,0,1,0,1), meaning that 

the first two positions can include all four bases and the last position is 

restricted to C or G only. By defining base-codon 𝒃, a spiked codon can 

be obtained by replacing 1’s in 𝒃 with non-zero numbers. Note that in 

Figure 5. Preparation and analysis of the protein library. (A) SDS-PAGE and Western 
blot analysis of library expression and purification. The library was expressed in a recombi-

nant cell-free system PUREfrex 2.0. -/+ stands for cell free fraction without and with ex-
pressed library, FT is affinity purification flow through, and E is eluted fraction. (B) MALDI-
TOF MS analysis of the purified library (black) compared with the theoretical mass distribu-

tion (blue) and mass distribution calculated from sequenced DNA templates (red). (C) Re-
sults of amino acid analysis deviations of variable (colored) and constant sequence re-

gions/contaminations (grey) of the expressed and purified protein library in percentage units. 
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cases of restriction to degenerate codons, there is one-to-one mapping be-

tween degenerate codons and base-codons.  

 

The optimization problem can be formulated as follows: Given amino acid 

sequence length 𝒍; desired amino acid distribution 𝑫, which is a vector of 

21 non-negative numbers summing up to 1, one number for each amino 

acid; a set of forbidden codons 𝑭; and a distance function dist, find a mul-

tiset 𝑴 cardinality 𝒍 of codons, minimizing 𝑑𝑖𝑠𝑡(𝑫, 𝑴), subject to ∀𝒎 ∈
𝑴∀𝒇 ∈ 𝑭∃𝑝: 𝒇𝑝 ≠ 0 ⇒ 𝒎𝑝 = 0, where 𝒇𝑝 is an element of 𝒇 on position 

𝑝. This condition guarantees that there are no forbidden codons in 𝑴.  

 

Every codon encodes a distribution of amino acids. Hence, 𝑴 representing 

a multiset of degenerate codons, can be considered as a mixture distribu-

tion of amino acids encoded by its codons. The closer the mixture distri-

bution encoded by 𝑴 is to 𝑫, the smaller 𝑑𝑖𝑠𝑡(𝑫, 𝑴) should be. We de-

fined 𝑫 as a vector in ℝ21, so that we could use a norm to measure the 

distance between two distributions. Common norms include the 𝑳𝟏 norm, 

which is a sum of absolute values of elements, and the 𝑳𝟐 norm, which is 

a square root of the sum of squares of elements. As square root is a strictly 

increasing function, minimizing the square root of a sum of squares and 

minimizing a sum of squares yield the same optimal argument. The third 

common norm is the 𝑳∞ norm, which is the greatest absolute value of el-

ements. We used the 𝑳𝟐 norm in our implementation, as it penalizes large 

differences considerably but is permissive for slight deviations. 

 

Algorithm 

 

We present the base implementation of the CoLiDe algorithm as a pseu-

docode: 

 

1. BC ← generate valid base-codons 

2. M ← ∅ 

3. For i = 1 to l: 

(a) bc ← random element from BC 

(b) c ← make random codon from bc 

(c) M ← M ∪ {c} 

4. rejected ← 0 

5. While rejected < 1000 · l: 

(a) bc ← random element from BC 

(b) c ← make random codon from bc 

(c) dold ← dist(D, M) 

(d) M2 ← M ∪ {c}\ (random element from M) 

(e) dnew ← dist(D, M2) 

(f) If dnew < dold 

i. M ← M2 

ii. rejected ← 0 

    Else 

i. rejected ← rejected + 1 

6. Output M 

 

In the first step, valid base-codons are generated. There are 3 independent 

sequences in base-codon (𝑇𝑖 , 𝐶𝑖, 𝐴𝑖 , 𝐺𝑖 , 𝑖 ∈ {1,2,3}), and every sequence is 

an arbitrary binary string of length 4, excluding string 0000. There are 24 

−1 such strings, so the number of base codons is (24 − 1)3 = 3,375. Along 

the fact that there are at most 64 forbidden codons, the time needed to 

execute this step is negligible with any reasonable implementation.  

 

In the third step, filling multiset 𝑴 with random codons yields an initial 

result. 

 

In the fifth step, the optimization is performed. Once per loop, a random 

codon is generated, and an attempt is made to replace a random codon in 

𝑴 with this codon. If the objective improves, the change is accepted; oth-

erwise, it is rejected. The algorithm works reasonably well and reasonably 

quickly (visualization of results is many times slower than the algorithm 

itself). The base algorithm can be easily modified, because dist can be 

chosen arbitrarily. In our implementation, dist is chosen as the 𝑳𝟐 norm of 

the vector of differences between 𝑫 and the distribution of amino acids 

encoded by codons of 𝑴. This problem also could be formulated as a 

quadratic programming task, but it would be difficult or even impossible 

to add new requirements to the result. The ability of the algorithm to be 

easily extended to new problems offers flexibility.  

 
Library construction 

 

Preparation of DNA and RNA templates  

A degenerate ssDNA of 197 bases was synthesized by Integrated DNA 

Technologies (Suppl Sequences, library). The oligonucleotide was con-

verted to dsDNA by Klenow extension with a 5′ complementary reverse 

primer (Supporting sequences, reverse). Annealing of the primer was per-

formed by cooling down a mixture of 2 μM oligonucleotide and primer in 

the presence of 200 μM dNTPs in buffer NEB1 from 90 °C to 25 °C at a 

rate of 1 °C/min. Total 10 U Klenow polymerase was added to the an-

nealed mixture, and extension step was carried out for 1 h at 37 °C fol-

lowed by polymerase deactivation at 50 °C for 15 min. The dsDNA library 

product was purified with the Monarch® PCR & DNA Cleanup Kit (New 

England Biolabs) and used for the downstream in vitro transcription, car-

ried out with the Ampliscribe T7-Flash kit (Lucigen) according to the 

manufacturer’s recommendations. The resulting mRNA was purified by 

ammonium acetate precipitation and dissolved in RNase free water to a 

final concentration of 3 µg/ul.   

 

cDNA preparation for high-throughput sequencing (HTS)  

Complementary DNA (cDNA) was prepared from 1 µg transcribed 

mRNA. cDNA was synthesized according to the SuperScript IV (Thermo 

Fisher Scientific) instruction manual using reverse primer (Suppl Se-

quences, reverse) and 20 μl reverse transcribed product was further ampli-

fied with Q5 DNA polymerase (New England Biolabs) in a 100-µl reac-

tion volume for 11 amplification cycles with a primer annealing tempera-

ture of 68 °C.   

 

Protein expression and purification for amino acid analysis and mass 

spectrometry 

The protein library was prepared in a PUREfrex 2.0 (GeneFrontier Cor-

poration) cell-free protein expression system. The reaction was prepared 

according to the manufacturer’s recommendations, supplemented with 

0.05% Triton X-100 (v/v), and initiated by addition of 3 µg library mRNA. 

Protein expression was conducted for 4 h at 30 °C. The reaction was di-

luted 10 times with guanidine denaturation buffer (6 M guanidine hydro-

chloride, 100 mM sodium phosphate, 500 mM NaCl, 0.05% Triton X-100, 

pH 8) and incubated with 4 µl TALON affinity chromatography resin 

(Clontech) for 12 h at 25 °C. The resin was washed twice with urea dena-

turation buffer (8 M urea, 100 mM sodium phosphate, 500 mM NaCl, 

0.05% Triton X-100, pH 8) and twice with distilled water supplemented 

with 0.05% Triton X-100. The library was eluted by boiling the affinity 

matrix in 50 µl of 2% (w/v) aqueous SDS. Eluted fractions were purified 

from SDS by addition of 5× volumes of ice-cold acetone. The precipitates 

were centrifuged, washed with 100% acetone, and air-dried.  

 

Preparation of libraries for HTS and data analysis 

The dsDNA library template was analyzed by HTS with an Illumina 

MiSeq. Prior to sequencing the library preparation, quantification was car-

ried out on a Quantus™ Fluorometer (Promega). A total of 100 ng of DNA 

sample was used as an input for library preparation with the NEBNext 

Ultra II DNA Library Prep kit (New England Biolabs) with AMPure XP 

purification beads (Beckman Coulter). The length of the prepared library 

was determined with an Agilent 2100 Bioanalyzer (Agilent Technologies) 

and quantified with a Quantus Fluorometer (Promega). Samples were se-

quenced on a MiSeq Illumina platform using the Miseq Reagent Kit v2 for 

500 cycles (2 × 250) in paired-end mode. Raw data was processed with 

Galaxy platform. Sequence analysis of assembled and filtered paired reads 

was performed with MatLab scripts developed by the Heinis lab (Afgan 

et al., 2018; Rebollo et al., 2014). 

Amino acid analysis and mass spectrometry 

 
The purified and precipitated library samples were hydrolyzed in 6 M hy-

drochloric acid at 110 °C for 20 hours, the hydrolysate was evaporated, 

and reconstituted with 0.1 M hydrochloric acid containing the internal 

standard. Amino acid analysis was performed on an Agilent 1260 HPLC 
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(Agilent Technologies) equipped with a fluorescence detector using auto-

mated o-phtalaldehyde / 2-mercaptopropionic acid (OPA / MPA) derivat-

ization. For mass spectrometry, the purified protein library sample was 

resuspended in water. The spectrum was collected after addition of 2,5-

dihydroxybezoic acid matrix substance (Merck) using an UltrafleX-

treme™ MALDI-TOF/TOF mass spectrometer (Bruker Daltonics, Ger-

many) in linear mode.  
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