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Abstract
Protein structure prediction has matured over years, particularly those which use structure tem-

plates for building a model. It can build a model with correct overall conformation in cases where

appropriate templates are available. Models with the correct topology can be practically useful for

limited purposes that need residue-level accuracy, but further improvement of the models can

allow the models to be used in tasks that need detailed structures, such as molecular replacement

in X-ray crystallography or structure-based drug screening. Thus, model refinement is an important

final step in protein structure prediction to bridge predictions to real-life applications. Model

refinement is one of the categories in recent rounds of critical assessment of techniques in protein

structure prediction (CASP) and has recently been drawing more attention due to its realized

importance. Here we report our group’s performance in the refinement category in CASP12. Our

method is based on inexpensive short molecular dynamics (MD) simulations in implicit solvent.

Our performance in CASP12 was among the top, which was consistent with the previous round,

CASP11. Our method with short MD runs achieved comparable performance with other methods

that used longer simulations. Detailed analyses found that improvements typically occurred in

entire regions of a structure rather than only in flexible loop regions. The remaining challenge in

the structure refinement includes large conformational refinement which involves substantial

motions of secondary structure elements or domains.
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1 | INTRODUCTION

Methodology of protein structure prediction has been intensively stud-

ied over decades from various angles, such as bioinformatics, physics,

chemistry, statistics, and robotics. Although there are still some areas

that need further development, for example, template-free (often also

called ab initio or de novo) modeling,1,2 structure prediction has

become practical in several situations, which include cases where struc-

tures can be modeled using templates (template-based modeling).3–5

The progress of the protein structure modeling field has been objec-

tively monitored in the critical assessment of techniques for protein

structure prediction (CASP) from 1994,6 a community-wide assessment

of prediction methods that is held every 2 years. In CASP, participating

prediction groups/methods are evaluated based on structure models

they build for protein target sequences, which are presented by the

organizers before determination of their tertiary structures. From

CASP7 in 2006, assessors’ evaluation reports show that performance

of template-based modeling has not changed much partly reflecting

maturity of the methods.4,7–10 Now, biologists routinely use structure

prediction to interpret or design experiments.11,12

In the case of template-based modeling, obtaining a structure

model of the correct fold, that is, a structure that has a root-mean

square deviation (RMSD) of 3–6 Å, can be expected if the template

structures found in a structure library has a reasonably high confidence

score.5,13 Improving the structure model further through model refine-

ment, an additional procedure to gain a couple of more angstroms in

RMSD to the native structure, is critical for bringing a computational

model with the correct fold to a level that it is practically useful in vari-

ous applications. For example, a model at a 5 Å RMSD would be only

used for indicating residue positions in the protein such as interpreting
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and designing residue mutagenesis experiments. However, if the model

was refined to within 1.5 Å RMSD, it can be used for molecular

replacement in experimental structure determination, virtual drug

screening, and investigating enzymatic reactions.14 Thus, model refine-

ment has been one of the foci of recent method developments in the

CASP community.4,15

However, model refinement is still not easy. It is well known that

running naïve molecular dynamics (MD) simulations on a structure

model do not improve model consistently. Rather, it deteriorates the

model for almost half of the cases.16 In CASP, until CASP9 held in

2010, there were no methods that could refine models consistently

with statistical significance.17 This situation changed in CASP10, when

the FEIG and Seok groups showed improvements on the starting mod-

els in majority of their cases.18 Particularly, the FEIG group significantly

outperformed all the other groups in their Global Distance Test-High

Accuracy (GDT-HA) score19 improvement. The FEIG’s approach was

based on MD: from the MD trajectories starting of a model to be

refined, structures were chosen that did not deviate much from the ini-

tial structure to avoid degraded structures and further filtered by using

additional scoring function.20 In CASP11, many top performing groups,

including FEIG,15,21 used MD-based approaches with some variations,

for example, using support vector machine (a machine learning method)

to select models after MD,22 remodeling using multiple templates

before MD-based refinement,23 taking consensus with homologous

structures,24 or using multiple rounds of relaxation.25

Here, we report our group’s method and performance in the model

refinement category in CASP12. Our approach is based on MD trajec-

tories, following the FEIG group’s success, with several critical differen-

ces: We used an implicit solvent model rather than explicit water

molecules in simulation, and moreover, the length of the trajectories is

significantly shorter than those used in the FEIG approach. In spite of

the computationally inexpensive strategy, our approach was ranked high

among participants in CASP1115 as well as in CASP12. Differences of

our approach in CASP11 and CAS12 are that we optimized parameters

of the method carefully for CASP12 and also changed the implicit sol-

vent model used in the MD simulations. In CASP12, our approach

refined 29 out of 42 targets successfully in terms of the GDT-HA score

and 24 in terms of the CASP12 assessors’ score that is a linear combina-

tion of five scores (http://predictioncenter.org/casp12/zscores_final_

refine.cgi?formula5 assessors) . We showed that the refinement

occurred not only at loop regions but also overall in structures cores,

and the approach mainly expanded structures (showing that the

improvement of structure evaluation scores are not merely due to com-

pression of structures). Drawbacks of the approach are also discussed.

2 | MATERIALS AND METHODS

2.1 | Overview of the refinement protocol

Our refinement protocol used in CASP12 is shown in Figure 1. Figure

1A shows the overall flowchart. We performed short and long MD sim-

ulations after the energy minimization was applied to a structure model

to refine. The short MD consists of sixty 1.2 nanosecond (ns) MD simu-

lations with restraints of increasing strength (0.1, 0.2, 0.4

kcal mol21 Å22) applied to Ca atom positions, which was increased

every 400 pico seconds (ps). The long MD consists of twenty 20 ns

MD simulations with weak restraints (0.05 kcal mol21 Å22)21 on Ca

atoms positions. After the MD simulations, a subset of structures in

FIGURE 1 The model refinement protocol of the Kiharalab group in CASP12. A, the flow chart of our refinement protocol. Before
performing MD simulations, the energy of the staring model was minimized, and then subjected to the next heating and equilibration step.
The equilibrated structure was used as the starting model for the two types of production MD runs (short MD and long MD simulations). In
the filtering step, subset of models extracted from the MD trajectories were selected by the filtering criteria. The coordinates of selected

models were averaged and then relaxed. B, Definition of the parameters used in the filtering step. The x axis is the Z score of GDT-HA of a
model from the initial structure and the y axis is the Z score of the DFIRE scoring function. The distribution shown is from extracted models
from short MD trajectories of TR520. Red points represent selected models by the filtering with r52.0, u 5 310, and g 5 35
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the trajectories were selected by considering the deviation from the

starting model and the statistical potential score (Figure 1B). The

selected models were averaged on the Cartesian coordinates of atoms,

which were then minimized and relaxed with a10 ps MD simulation.

2.2 | Setting of MD simulation

MD runs were performed by CHARMM MD program version 38b2

with CHARM22/CMAP force field. We used a 2 femto seconds (fs)

time step for all of simulations. The non-bond interactions were listed

using a 14 Å cutoff. Electrostatic interactions were calculated with a

shifting function applied to the potential energy at 12 Å. van der Waals

interactions were calculated with a switching function applied to the

potential energy between 10 and 12 Å. The solvent effect was com-

puted by the FACTS implicit solvent model26 with its default parame-

ters. In CASP11, we used SCPISM27 for implicit solvent but changed it

to FACTS following a comparison study of implicit solvents by Hua

et al.28 Before running MD simulations, hydrogen atoms were added to

the starting model by the CHARMM HBUIld command. To fix the

length of bonds involving hydrogen atoms, the CHARMM SHAKE com-

mand was used. Energy minimization was performed in total of 12,100

steps of the Adopted Basis Newton-Raphson (ABNR) method. In the

first 100 steps of the minimization, the position of all non-hydrogen

atoms was fixed, and then we applied harmonic constants that were

subsequently decreased from 20.0, 10.0, 5.0, 2.0, 1.0, to 0.5

kcal mol21 Å22 for every 2 000 steps (4 ps). The minimized protein

model was subjected to the next heating and equilibration step. The

temperature of the system was gradually increased from 50 K to 298 K

in 200 000 steps (400 ps) with harmonic restraints of 0.05

kcal mol21 Å22 on Ca atom positions. Then, the equilibrated structure

was used as the starting model for production MD runs. All trajectories

were calculated with the leapfrog verlet algorithm at 298 K. Model

structures are saved every 500 steps (1ps) in each trajectory. In the

short and the long MDs, a total of 72 000 (1200*60) and 400 000

(20 000*20) models were extracted from trajectories, respectively.

2.3 | Model filtering

Following the FEIG method,20,21 extracted models from MD trajecto-

ries were cross-evaluated by a statistical knowledge-based potential

(we used DFIRE29). We have also calculated the GDT-HA between the

starting model and the extracted models after MD (denoted as

iGDT_HA). These two parameters for the filtering are illustrated in Fig-

ure 1B. The DFIRE score and iGDT_HA of each selected model were

normalized by computing Z score, using a distribution of structures

from each MD trajectory as follows:

FIGURE 2 Results of model selection from MD trajectories with different parameter settings, r, u, and g. For the explanation of the
parameters, see Figure 1B. The distribution of the average dGDT-HA of selected models from the short MD (left) and the long MD (right)
trajectories are shown in a color scale from dark red to purple for negatively large dGDT-HA, 23 to over 20.5. dGDT-HA is the difference
of the GDT-HA to the native structure of the initial model to that of the average of the selected models using a corresponding parameter
set. A white region means that no models exist for the corresponding parameter combinations
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Z iGDT HAm5
iGDT HAm2iGDT HA

riGDT HA
(1)

Z DFIREm5
DFIREm2DFIRE

rDFIRE
(2)

where iGDT HA and DFIRE are average values, and riGDT HA and

rDFIRE are standard deviations of iGDT_HA and DFIRE. For DFIRE,

structures with negative Z scores are those which are more geometri-

cally favorable than the average (Z score50). For iGDT-HA, structures

with a positive value are those which are more similar to the initial

structure than the average.

To select models, we applied a filter (Figure 1B) that extracts a pie-

shaped area between angle u6g degree and the radial distance r from

the center of distribution of Z iGDTHAm and Z DFIREm. The criteria for

selecting model m were

Z iGDT HAm
21Z DFIREm

2 > r (3)

and

arccos
Z iGDT HAmcosu1Z DFIREmcosu

Z iGDT HAm
21Z DFIREm

2

� �
< g (4)

which corresponds to the lower-right region in red in Figure 1B. Thus,

the intention is that, among models from MD trajectories, we would

like to select those which have relatively low (better) statistical poten-

tial and less deviation from the initial model.

For the extracted models from the Short MD trajectories, we used

r52.0, u 5310 and g 5 35 in the filtering step. For the Long MD, we

used r51.5, u 5 325 and g 5 30. These parameters were chosen

based on a benchmark study performed on the CASP11 dataset (dis-

cussed in Results). After the filtering, 1 000�4 500 and 1 000�25 000

models were selected from the short MD and the long MD trajectories.

Selected models were averaged, which were subject to the structure

relaxation and energy minimization (Model 1 and Model 2 in Figure 1A).

This protocol is different from the FEIG method21 used in CASP11

in the following ways: First, the MD runs in our protocol were much

shorter. We used 1.2 ns * 60 trajectories (the short MD runs) and 20 ns *

20 trajectories (the long MD runs), thus in total of 472 ns MD runs, while

the FEIG method used 1200 ns long runs (40 ns * 30). Second, we used

an implicit solvent model while the FEIG method used explicit solvent.

These two differences make our protocol more computationally inexpen-

sive and affordable. There are also other technical differences, described

in the following. Third, as mentioned above, we applied Ca restraints in

the MD runs that increased over time from 0.1 to 0.4 kcal mol21 Å22

where FEIG used a constant value of 0.05 kcal mol21 Å22. Fourth, the

interval of structure snap shots taken was 1 ps in our protocol, while

FEIG used 40 ps. Fifth, for the filtering (Figure 1B), we used iGDT-HA

and DFIRE, while the FEIG method used iRMSD and RW1.30

2.4 | Structure relaxation and energy minimization

Averaged models underwent energy minimization with 500 steps of

the steepest descent algorithm and 4 500 steps of ABNR. The mini-

mized models were relaxed with a 40 ps MD simulation. In the minimi-

zation and relaxation, we used strong harmonic restraints of 100

kcal mol21 Å22 on C-a atom positions. The model 3–5 were selected

from all extracted models with the lowest DFIRE, the lowest GOAP31

score and the highest iGDT-HA (Figure 1A).

2.5 | Computational costs

For a 200-residues target protein, the single 0.4 ns equilibration and

1.2 ns MD simulation took about 13.2 and 40 CPU hours, respectively.

The total computational cost of the short MD simulations (60 trajecto-

ries) was about 3,200 CPU hours per target (2.7 hours on 1 200 cores

of Intel Xeon-E5 CPU). A single 20 ns MD simulation took about 640

CPU hours. Consequently, the total computational costs of the long

MD (20*20 ns MDs) was about 12,800 CPU hours for a refinement

target (64 hours on 200 cores of Intel Xeon-E5 CPU).

3 | RESULTS AND DISCUSSIONS

First we describe benchmark results on the CASP11 refinement data-

set, then show the results of our group in CASP12.

3.1 | Parameter optimization for model selection using

the CASP11 dataset

As a preparation for participating in CASP12, we optimized parameters,

r, u, and g that were used in the filtering protocol (Figure 1B) on the 36

TABLE 1 Average performance of our protocol in comparison with
top10 groups in CASP11

Groupa Group ID GDT-TS GDT-HA RMS_CA

FEIG 288 74.63 56.45 3.58

Seok 296 72.45 53.71 3.62

Seok-refine 423 72.61 53.56 3.59

Schroderlab 396 73.27 55.07 3.67

PRINCETON_TIGRESS 106 72.75 53.98 3.65

Kiharalab 333 72.88 54.22 3.57

LEE 169 72.14 53.31 3.65

BAKER 64 71.20 52.25 3.86

nns 038 71.57 52.51 3.66

Seok-server 011 72.66 53.93 3.64

Average of all 53 Groups 　n/a 69.13 50.08 3.99

Starting model n/a 71.96 53.03 3.69

Short MD n/a 73.26 54.27 3.62

Long MDa n/a 70.48 50.82 3.84

The names of top 10 groups were obtained ranked according to the
CASP11 web site, assessors’ formula.
(http://predictioncenter.org/casp11/zscores_final_refine.cgi?
formula5 assessors).
aThe results are for 31 out of the 36 targets for which the long MD
runs finished before the CASP12 has started to release refinement
targets.
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refinement targets from CASP11. The dataset included the target

TR217 to TR857 excluding TR795, whose native structure was not

available at the time of the work. The starting models and the native

structure of these targets were downloaded from the CASP11 website

(http://predictioncenter.org/casp11/). The size of the target proteins

ranged from 62 to 288 residues (average: 155). The Ca RMSD of the

starting models to their native structures ranged from 1.45 to 12.45 Å

(average: 3.69 Å), GDT-TS ranged from 46.17 to 90.24 (average:

71.96), and GDT-HA were from 29.10 to 73.51 (average: 53.03).

The parameter optimization was performed separately for the

short and the long MD runs. For the short MD runs we generated forty

1.2 ns-long trajectories while for the long MD runs we computed up to

three 20 ns-long trajectories for the starting models of the targets.

Long MD runs were finished only for 31 out of 36 targets before the

first refinement target was released in CASP12.

We first tested in total of 3888 (5 3*72*18) combinations of the

three parameters (r, u, g) for selecting models (Figure 1B), which come

from three values, 1.0, 1.5, and 2.0 for r, 72 values from 0 to 355 with

an interval of 5 for u, and 18 values from 5 to 90 with an interval of 5

for g. We examined the average change of GDT-HA of the selected

models with each parameter set from that of the initial model (dGDT-

HA). The results are visualized with a color scale in Figure 2. Higher in

the color scale, purple to blue, are better than dark red that is at the

bottom of the scale. Several important trends were observed: (1) Inter-

estingly, as shown in Figure 2, none of the parameter combination

gave on average better GDT-HA (i.e., positive dGDT-HA) than the

starting model. However, as we show later, averaging structures

selected by a good parameter set improved GDT-HA from the starting

model. (2) Also, it was evident that the short MD runs (left panels) gave

better results than the long MD runs (right panels). (3) The parameter

space that gave better results locates at the right bottom corner of the

panel, where u is around 300 to 350 and g is around 0 to 30 degrees.

This region corresponds to the red regions in Figure 1B. (4) For this

region, using a larger radius r gave better results. (5) The parameter

space that did not perform well are at the middle bottom of the panel,

where u is around 150 and g is around 0 to 50 degrees. This is the

opposite region from the good performing region shown in red in Fig-

ure 1B.

We selected 76 and 40 parameter combinations with largest

dGDT-HA for the short and long MD runs. Then, for each parameter

combination, we generated an averaged structure model from the

selected models by the combination. The generated models were eval-

uated by dGDT-HA. A combination of r52.0, u5310, and g 5 35

was found to be optimal for the short MD trajectories and a r51.5, u

5 325, and g530 combination was best for the long MD runs.

3.2 | Refinement results on the CASP11 targets

Table 1 summarizes the performance of our protocol using the opti-

mized refinement protocol with short and long MDs (Figure 1) on the

CASP11 refinement targets. For comparison, results of the top 10

groups in CASP11 including our group (Kiharalab) are shown. Results

are on the first model (Model 1) of the groups. In the table, the average

value of three scores, GDT-TS, GDT-HA, and Ca-RMSD (RMS_CA) are

shown, which were major evaluation scores used by the CASP asses-

sors. GDT-TS (Global Distance Test-Total Score) and GDT-HA (Global

Distance Test-High Accuracy) are the average of the percentage of Ca

FIGURE 3 Comparison of the refined models by the short MD
protocol on the CASP11 refinement targets. Models were
evaluated by GDT-TS in the left column and by GDT-HA in the
right column. A, refined models by the short MD in comparison
with starting models. B, the short MD results compared with the
long MD results. C, The refined models with the short MD runs
compared with models submitted by Kiharalab (Group number 333)
in CASP11. D, the short MD results compared with models by
FEIG (Group number 288) in CASP11
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atoms within four distance cutoffs from the corresponding Ca atoms in

the native structure after structure superimposition. GDT-TS uses 1.0,

2.0, 4.0, and 8.0 Å while GDT-HA uses 0.5, 1.0, 2.0, and 4.0 Å for the

distance cutoffs. Both scores ranges from 0 to 100 where 100 is the

best score for a model. RMS_CA is RMSD of Ca atoms of a model to

the native, which was calculated with the LGA program.32

Seven groups, FEIG, Seok, Seok-refine, Schroderlab, PRINCE-

TON_TIGRESS, Kiharalab, and Lee showed improvement over the

starting model in terms of all three scores, GDT-TS, GDT-HA, and

RMS_CA (Table 1). In CASP11, our group (Kiharalab) used twenty10 ns

MD runs with the Screened Coulomb Potential implicit solvent model

(SCPISM). The current protocol using the short and long MD runs are

shown at the bottom of the table. The Short MD runs performed very

well, ranking the third in terms of GDT-HA (54.27) and GDT-TS (73.26)

and the fourth for RMS_CA (3.62). The long MD runs performed worse

than the short runs. On average, it failed to improve the starting mod-

els and ranked lower than the top 10 groups when GDT-TS and GDT-

HA were considered, and was ranked ninth for RMS_CA.

In Figure 3, we examined refinement results with the short MD

protocol in comparison with other refinement protocols. Figure 3A

shows that short MD improved from the starting models in majority of

the cases, 26 (72.2%) and 21 (58.3%) out of 36 targets in terms of GDT-

TS and GDT-HA, respectively. It is also observed in Figure 3A that

improvement by the short MD did not depend on the initial quality of

the starting models. Next, we compared with the results with the long

MD runs (Figure 3B). Consistent with the data shown in Table 1 and Fig-

ure 2, the short MD performed substantially better than the long MD. In

terms of GDT-TS and GDT-HA, the models of the short MD were better

for 26 and 27 targets (83.9% and 87.1%) than the long MD models

among the 31 targets for which we had data with the long MD runs. In

the next two panels, we compared the short MD refinement with the

models submitted in CASP11 by Kiharalab (Figure 3C) and FEIG (Figure

3D). Compared with CASP11 Kiharalab models, the short MD’s results

were comparable. For about half of targets (17/36 targets), the short

MD models had better GDT-TS and GDT-HA than the Kiharalab models.

On the other hands, for only 7 (19.4%) targets the short MD models had

better GDT-TS and GDT-HA than the FEIG models (Figure 3D). How-

ever, it is worth noting that the computational cost for the short MD

protocol is much smaller than FEIG. The former used in total of 48 ns

(40*1.2 ns) MD runs with implicit solvent while the latter used 1.2 ls

MD runs with the TIP3P explicit solvent model.21

3.3 | Results in CASP12

Now we discuss our group’s performance in CASP12. In CASP12, we

applied our refinement protocol to all 42 refinement targets from

TR520 to TR948. The starting models were obtained from CASP web-

site (http://predictioncenter.org/casp12/). The residue length of the

targets were 54–414 residues (average: 193). The initial quality of the

starting models ranged from 1.15 to 13.86 Å Ca RMSD (average: 5.5

Å), 37.03 to 92.07 in terms of GDT-TS (average: 66.93), and GDT-HA

ranged from 24.33 to 78.36 (average: 49.76).

First we see our performance in CASP12 relative to other groups.

Table 2 summarize the average performance of top10 groups in

TABLE 2 Average performances of the top10 groups in the CASP12 refinement targets

Groupa Group ID Assessors’ formulab GDT-TS GDT-HA RMS_CA MolProbityc SphGrd QCSe

GOAL 220 21.79 67.08 50.13 5.14 2.06 69.05 80.23

Seok 023 18.39 67.79 50.93 5.43 1.11 68.37 81.22

BAKER 247 17.73 67.11 50.48 5.36 0.87 69.28 81.02

Seok-server 250 16.91 67.40 50.34 5.42 1.11 68.05 78.57

SVMQA 208 15.01 67.72 51.01 5.48 1.71 67.30 80.70

FEIG 204 13.66 67.58 50.89 5.51 0.94 66.67 79.81

LEEab 450 13.58 64.94 47.42 5.37 1.83 68.13 78.53

Kiharalab 102 12.38 67.33 50.46 5.52 1.45 66.80 80.44

GOAL_COMPLEX 430 11.87 67.33 50.78 5.52 1.80 66.67 80.45

LEE 011 11.75 65.76 48.42 5.32 1.80 67.66 80.21

Average of All
39 Groups

n/a　 211.57 62.85 45.85 6.14 2.08 62.87 76.14

Starting model n/a n/a 66.93 49.76 5.50 1.77 66.99 79.74

aThe names of Top 10 groups were obtained from CASP12 result page (http://predictioncenter.org/casp12/zscores_final_refine.cgi?formula5 assessors)
ranked by the assessors’ formula.
bCombined Z score of GDT-HA, RMS_CA, SphGr, QCS and MolProbity score defined as;
0:17ZGDT2HA20:46ZRMSCA10:20ZSphGr10:15ZQCS20:02ZMolProbity .
cMolProbity considers the number of steric clashes and the percentages of outliers in rotamer and backbone conformations. A low MolProbity score
indicates that a model is more physically favorable.
dSphereGrinder evaluates local structural similarity between a model and the native structure.
eQuality Control Score. QCS evaluates the correctness of secondary structure element predictions in a model.
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CASP12. Refined model quality was evaluated by GDT-TS, GDT-HA,

RMS_CA, MolProbity,33 SphereGrinder (SphGr),34 and Quality Control

Score (QCS),35 which were the scores used in assessors’ evaluation.

Kiharalab was ranked eighth according to the asessors’ formula (see

Table 2 caption). In terms of individual scores, we were ranked fifth in

GDT-TS, sixth in GDT-HA, ninth in RMS_CA, fifth in MolProbity, eighth

in SphGr, and fifth in QCS. These ranking results are slightly worse

than in CASP11, where our group was ranked at fourth (the CASP11

evaluation paper,15 Table 2).

It is noted that the differences of individual scores between the

top 10 groups are small. Interestingly, the difference between Kiharalab

and FEIG is very small, and indeed became smaller in CASP12 relative

to CASP11. For example, the average difference of GDT-HA between

Kiharalab and FEIG was 2.23 in CASP11, which became as small as

0.43 this time. To reveal the significance of the differences of the

group performance, we applied the paired Student’s t test on the

common set of predicted targets in CASP12. Table 3 shows the results

on GDT-TS and GDT-HA. According to the test, our group (Kiharalab,

Group ID: 102) showed significantly better results (P values<0.05)

than LEEab (Group ID: 450), LEE (Group ID: 011), and the starting

model for both GDT-TS and GDT-HA. On the other hands, only

SVMQA (Group ID: 208) performed significantly better than our group,

and the other seven groups were indistinguishable in this test with our

group.

3.4 | Analyses of short MD (model 1) models in

CASP12

From this section, we analyze our submitted models in details. In Figure

4, we examined our Model 1 models generated by the short MD proto-

cols. First we checked how many cases the Model 1 improved over

starting models (Figure 4A). When evaluated by GDT-TS and GDT-HA,

TABLE 3 Head-to-head comparison of the top 10 groups in CASP12

(A) Paired t-test on GDT-TS

ID 220 023 247 250 208 204 450 102 430 011 Starting model

220 – 0.84 0.52 0.68 0.82 0.75 0.02 0.65 0.65 0.02 0.40

023 0.16 – 0.18 0.03 0.38 0.31 0.00 0.05 0.04 0.00 0.00

247 0.48 0.82 – 0.67 0.82 0.74 0.01 0.64 0.63 0.03 0.39

250 0.32 0.97 0.33 – 0.87 0.65 0.01 0.40 0.40 0.00 0.04

208 0.18 0.63 0.18 0.13 – 0.34 0.00 0.01 0.00 0.00 0.00

204 0.25 0.69 0.26 0.35 0.66 – 0.01 0.22 0.21 0.00 0.05

450 0.99 1.00 0.99 0.99 1.00 1.00 – 0.99 0.99 0.90 0.98

102 0.35 0.95 0.36 0.60 0.99 0.78 0.01 – 0.48 0.00 0.03

430 0.35 0.96 0.37 0.60 1.00 0.79 0.01 0.52 – 0.00 0.01

011 0.98 1.00 0.98 1.00 1.00 1.00 0.10 1.00 1.00 – 0.98

Starting model 0.60 1.00 0.61 0.96 1.00 0.95 0.02 0.97 0.99 0.02 –

(B) Paired t test on GDT-HA

ID 220 023 247 250 208 204 450 102 430 011 Starting model

220 – 0.86 0.66 0.61 0.87 0.81 0.01 0.69 0.82 0.01 0.30

023 0.14 – 0.29 0.01 0.61 0.47 0.00 0.09 0.31 0.00 0.00

247 0.34 0.71 – 0.43 0.76 0.69 0.00 0.49 0.67 0.01 0.18

250 0.39 0.99 0.58 – 0.98 0.81 0.00 0.66 0.92 0.00 0.04

208 0.13 0.39 0.24 0.02 – 0.40 0.00 0.02 0.13 0.00 0.00

204 0.19 0.53 0.31 0.19 0.60 – 0.00 0.17 0.41 0.00 0.03

450 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 0.94 0.99

102 0.31 0.91 0.51 0.34 0.99 0.83 0.00 – 0.92 0.00 0.02

430 0.18 0.69 0.34 0.08 0.87 0.59 0.00 0.08 – 0.00 0.00

011 0.99 1.00 0.99 1.00 1.00 1.00 0.06 1.00 1.00 – 0.97

Starting model 0.71 1.00 0.82 0.97 1.00 0.97 0.01 0.98 1.00 0.03 –

The performances of the top 10 groups were compared using paired Student’s t-tests. Statistically significant wins (P values<0.05) of the group listed
in the first column from the left against each group listed in the first raw are shown in bold.
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25 (59.5%) and 29 (69.0%) out of 42 targets were improved, respec-

tively. These fractions of improved targets are similar to those

observed on the CASP11 dataset (Figure 3A). Consistent with what

was observed in the CASP11 dataset (Figure 3A), improvements were

observed to starting models of various initial quality.

When compared with models from the long MD runs, which were

submitted as Model 2 models, the short MD models were better for 30

(71.4%) and 33 (78.6%) out of 42 targets. This result is qualitatively

consistent with the observation on the CASP11 dataset, but the frac-

tions of the wins by the short MD models are lower than before (Fig-

ure 3B). To understand the better performance of the short MD over

the long MD, we performed short-MD-based refinement using the

constraints of 0.05 kcal mol21 Å22, the relatively weak constraint we

used in the long-MD refinement. This comparison was performed on

FIGURE 4 Comparison of short MD models submitted as Model 1 with other models in CASP12. GDT-TS (on the left column) and GDT-
HA (right) are used for evaluation. A, comparison with the starting models. B, compared with refined models with the long MD runs that
were submitted as Model 2. C, comparison with Model 1 models from the FEIG group
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36 CASP12 refinement targets that had their native structures avail-

able. TR944 had its native structure in PDB but was excluded from the

analysis because its trajectory files used in CASP12 were corrupted

and could not be used at the time of the post-analysis. With the

increasing constraint strength of 0.1, 0.2 to 0.4 kcal mol21 Å22, which

was used in CASP12, the average GDT-TS and GDT-HA obtained for

the 36 targets were 67.32 and 50.11, respectively. These values were

decreased to 66.29, and 48.60 for GDT-TS and GDT-HA, respectively,

when the constant 0.05 kcal mol21 Å22 was used. Thus, we would

have obtained better results with long-MD-based refinement if a stron-

ger constraint had been used.

Long MD performed substantially worse than short MD for high-

quality targets whose initial GDT-HA were >70 (Figure 5). This is prob-

ably because moving target structures far away from initial structures

by the long MD was more harmful for targets that were already in high

quality.

We also examined if the oligomeric state of targets affected to

the refinement results. In Table 4, we show the average GDT-HA of

monomer and oligomer targets in CASP12. Both short MD and long

MD performed worse on the oligomer targets and the difference

between the short MD- and the long MD-based refinement was

smaller for the oligomer targets. Thus, it is not the case that the long

MD worked particularly worse on the oligomer targets. The reason of

the worse performance on the oligomer targets would probably

because we applied the refinement protocol to a single target protein

even for an oligomer target without considering physical interaction to

other proteins. This would mean, conversely, a structure would be bet-

ter refined when its interacting proteins, either other subunits in a

complex if there are any, or crystal contacts in the protein crystal is

considered in refinement.

Next, we compared with the Model 1 models from FEIG, which

used a similar MD-based refinement protocol (Figure 4C). The FEIG

models were better than Kiharalab in 27 (64.3%) and 25 (59.5%) out of

42 targets in terms of GDT-TS and GDT-HA, respectively. This differ-

ence between the two groups is much smaller than on the CASP11

dataset (Figure 3D), which is consistent with the results shown as over-

all average scores in Table 2 and the results in Table 3 that shows the

two groups were statistically indistinguishable.

3.5 | Examples of refined models

Examples of models with successful and failed refinement are shown in

Figure 6. Improved and deteriorated regions in a model are colored in

blue and red, the darker more substantial. Green regions are those which

did not move >0.1 Å. The first example in the top row is TR948. For this

target, the overall improvement of GDT-HA (dGDT-HA) was large, 4.70,

and this model was ranked sixth among all the first models submitted by

the 36 groups. As shown in the color code, improvement occurred at

almost all the helical regions in the structure and degradation occurred at

ends of some helices. The next one, TR912, is another successful exam-

ple, where dGDT-HA of 4.58 was achieved. This model was the best in

GDT-HA among all the 31 groups’ Model 1 models. Similar to the previ-

ous example, improvement occurred globally, at almost all b-strands in

the structure. In TR868, the third example, there was a modest improve-

ment where dGDT-HA at 0.72 was observed. This model was ranked

seventh among 34 groups who submitted models for this target. In this

refined model, improved and degraded regions co-exist, mixed in the

structure, which is typically observed in models with a small improvement

of <1.0 dGDT-HA. The last one, TR891, is a case that our refinement

failed. The model had a dGDT-HA of 23.57 and ranked 18th among 36

groups. As shown, the refinement protocol moved all the b-sheets away

from the native structure. We observed failure for other three targets of

b-barrel structures, too (TR879, dGDT-HA of 25.0; TR891, 23.57;

TR928, 22.79). Overall, these examples illustrate that improvement and

deterioration occurred globally in a model including the structure core

rather than merely moving flexible loop regions.

3.6 | Relaxing or compressing?

Observing that the structural change occurs globally to a model by

our refinement protocol, we questioned whether the observed

FIGURE 5 GDT-HA difference between short MD and long MD
models relative to the initial quality of the targets. The x axis
shows GDT-HA of the starting models. The y axis shows the differ-
ence of GDT-HA of Model 1 (short MD) and Model 2 (long MD).
The positive value indicates that GDT-HA of Model 1 was higher
than Model 2

TABLE 4 Average GDT-HA of monomer and oligomer targets in
CASP12

No. of Targets Short MD Long MD Difference

Monomers 24 52.69 49.82 2.88

Oligomers 18 47.49 46.32 1.17

Among the 48 refinement targets, the following targets are oligomers:
TR520, 594, 694, 862, 866, 870, 875, 877, 881, 887, 893, 896, 909,
912, 913, 917, 945, 947 (all IDs with TR as prefix).
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improvement was due to simply compression of the structure since it

is widely known that compression of Ca coordinates of a model

decreases the radius of gyration, which contributes to apparent

improvement of some quality assessment scores, such as GDT-TS,

GDT-HA, and RMSD. To answer this question, we evaluated a com-

pactness of refined models and the starting models by comparing the

radius of gyration (Rg) of the structures. It is defined as:

Rg5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i
jvi2v j2

N

vuuut
(5)

where N is a total number of Ca atoms in the model, vi is the coordi-

nate of ith Ca atom, v is the average coordinate of all Ca atoms of the

model. In this calculation, we ignored largely incorrect regions in the

FIGURE 6 Examples of successful and failed refinement by our group. The left column shows the native structures (magenta) and the
starting models (cyan). The right column shows our Model 1 models that were refined with the short MD runs. The refined models are
colored according to the degree of improvement of Ca atom positions from the starting models. Improved regions in a model are colored
from light blue to dark blue for small to large improvements. On the other hand, deteriorated regions are colored from light to dark red for
slight to large deteriorations. Green represents regions that did not change >0.1 Å. Deviation of the Ca positions of a model from the
starting structure was judged after superimposing the starting structure and the model to the native structure using the LGA program with

a 4.0 Å threshold
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starting model where the distance between the corresponding Ca

atom positions to the native structure was larger than 4.0 Å, because

these regions are highly unlikely to influence refined model’s GDT-TS

and more so for GDT-HA. To assess the compression or relaxation of

refined models, we computed the difference of Rg between the starting

model and the refine model (dRg), dRg 5 Rg(refined model)2Rg(starting

model). A positive dRg indicates that the refined model was relaxed

(expanded) while a negative value shows the model was compressed

from the starting model.

In Figure 7A, the improvement of models (dGDT-HA) was pre-

sented in a color code relative to dRg and GDT-HA of starting models.

First, by examining dRg, models for 32 out of 37 targets (five targets

were excluded from this analysis because their native structures were

not available for computing GDT-HA of their starting models) have

positive values, indicating that the refinement actually expanded (or

relaxed), not compressed the structures. This figure also shows that the

degree of the relaxation did not depend on the quality of the starting

models and larger improvement (points in blue) occurred for starting

models with a middle range GDT-HA and dRg, namely about 50 and

0.2, respectively. Figure 7B compares dGDT-HA with dRg and the devi-

ation of refined models from their starting structures (iGDT-HA). There

is an obvious correlation between iGDT-HA and dRg, which simply

shows that the model drifted away from the initial structure as it

expanded (larger dRg). An interesting observation is that two

FIGURE 7 Refinement results relative to the change of radius of gyration of models. Improvement of models (dGDT-HA) is shown in color
code relative to the change of the radius of gyration (dRg) by the short MD refinement protocol. dGDT-HA of over 24.0 to >4.0 is shown
in a color scale from red to blue. Each data point represents a Model 1 refined model for the 37 targets that have their native structure
available for the analysis. A, The x axis shows the quality, GDT-HA of starting models. B, The x axis is the structural deviation of refined
models form the starting model (iGDT-HA)

FIGURE 8 Improvement of GDT-HA (dGDT-HA) relative to the
quality of starting models (GDT-HA(Starting Model)). Red points
represent Model 1 models and open circles represent Model 2 to
Model 5. The best dGDT-HA models among the five models for
each target are connected with a line

TABLE 5 Average performance of Kiharalab model 1–5 in CASP12

GDT-TS GDT-HA RMS_CA MolProbity SphGr QCS

Model 1a 67.33 50.46 5.52 1.45 66.80 80.44

Model 2b 65.84 48.32 5.51 1.80 66.11 79.76

Model 3c 65.29 47.19 5.59 2.01 65.85 78.79

Model 4d 64.37 46.22 5.63 1.94 65.40 76.73

Model 5e 66.16 48.38 5.56 2.10 65.59 79.84

Starting
Model

66.93 49.76 5.50 1.77 66.99 79.74

The best result among Model 1–5 and the starting model for each score
is shown in bold.
aAveraged and relaxed model generated from the subset of short MD
trajectories.
bAveraged and relaxed model generated from the subset of long MD
trajectories.
cThe lowest DFIRE model.
dThe lowest GOAP model.
eThe highest iGDT-HA model.
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unsuccessful refined models (TR879, dGDT-HA: 25.0; TR928, dGDT-

HA: 22.8), which are shown in red and orange, are found at high dRg

(0.47 and 0.55, respectively) and low iGDT-HA (59.7 and 73.8, respec-

tively), distinct from the other models, in Figure 7B. This result suggests

that models of unsuccessful refinement may be better identified by the

combination of iGDT-HA and dRg rather than only using iGDT-HA.

This idea works particularly well for distinguishing TR879 (the red data

point) from the other models that have a similar iGDT-HA value.

3.7 | What went right and what went wrong

Following the tradition of the CASP predictors’ reports, we discuss

things that worked well and those which need improvement.

One thing which clearly worked well was the ranking of the sub-

mitted models. Table 5 summarizes the average of evaluation scores of

Model 1 to 5 and Figure 8 presents dGDT-HA of individual models rel-

ative to the quality (GDT-HA) of the starting models. In the figure,

Model 1 models are shown in red and the best model (i.e., the model

with the largest dGDT-HA) for each target are connected with lines.

From Table 5, Model 1 models were on average the best among the

five submitted models for all the evaluation scores except for that of

the RMS_CA, where Model 1 was ranked second, following Model 2.

Figure 8 visualizes the same conclusion; 28 out of 42, of the Model 1

models were the best for the targets, and if not they were close to the

best.

Second, as discussed with Figure 4A, our refinement protocol with

short MD runs improved models for most of the cases. Additionally,

the structure sampling from short MD runs with an increasing Ca con-

straints, which increased from 0.1, 0.2 to 0.4 kcal mol21 Å22 for every

400 ps, worked well. As shown in Table 6, sampling structures from dif-

ferent portions of MD runs we tried all worked worse than the method

we used. Thus, overall, we can conclude that we were successful in

exploiting inexpensive short MD runs with an implicit solvent model

very effectively. This point becomes evident when our group’s results

were compared with a contrasting approach that used significantly

more expensive MD runs but had similar performance (Table 2).

On the other hand, by design our protocol could not make large

refinement to models due to the use of short MD simulations. To make

substantial corrections to a model conformation, such as rearrange-

ment of secondary structures or domain moves, a completely different

algorithm design, probably with a different protein model, such as a

coarse-grained model,2,36,37 is obviously needed. Indeed, this is the

challenge left for the whole CASP refinement community.

4 | CONCLUSION

We discussed our group’s performance in the CASP12 refinement cat-

egory. Our protocol makes use of inexpensive short MD simulations

with implicit solvent and successfully showed consistent improvements

to starting models regardless of the quality of the starting models. By

examining submitted models, we found that achieved improvements

are due to relaxation of structures rather than compression, which also

suggested that the degree of relaxation (dRg) could be another metric

to eliminate unsuccessful refined models. However, the protocol does

not make large conformational refinement by design due to the use of

short MD trajectories, which is still the goal of further development.
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