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Abstract

Beta-turn prediction is useful in protein function studies and experimental design.

Although recent approaches using machine-learning techniques such as support vec-

tor machine (SVM), neural networks, and K nearest neighbor have achieved good

results for beta-turn prediction, there is still significant room for improvement. As

previous predictors utilized features in a sliding window of 4-20 residues to capture

interactions among sequentially neighboring residues, such feature engineering may

result in incomplete or biased features and neglect interactions among long-range

residues. Deep neural networks provide a new opportunity to address these issues.

Here, we proposed a deep dense inception network (DeepDIN) for beta-turn predic-

tion, which takes advantage of the state-of-the-art deep neural network design of

dense networks and inception networks. A test on a recent BT6376 benchmark data

set shows that DeepDIN outperformed the previous best tool BetaTPred3 signifi-

cantly in both the overall prediction accuracy and the nine-type beta-turn classifica-

tion accuracy. A tool, called MUFold-BetaTurn, was developed, which is the first

beta-turn prediction tool utilizing deep neural networks. The tool can be downloaded

at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldBetaTurn/download.html.
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1 | INTRODUCTION

Protein tertiary structure prediction is an important and challenging

problem, which has been an active research topic in the past

50 years.1-3 As it is challenging to predict the protein tertiary structure

directly from a protein primary sequence, this problem has been

divided into small subproblems, such as protein secondary structure

prediction. The protein secondary structures are divided into three

classes: alpha-helix, beta-sheets, and coil.4 The coil region can be clas-

sified as tight turns, bulges, and random coil structures.5 The tight

turns are further classified into alpha-turns, beta-turns, gamma-turns,

delta-turns, and pi-turns.6 Among these tight turns, beta-turns repre-

sent the most abundant type in proteins. For example, in the BT63767

data set, we found 126 016 beta-turns (9%) out of 1 397 857 amino

acids. By definition, a beta-turn contains four consecutive residues (den-

oted by i, i + 1, i + 2, and i + 3) if the distance between the Cα atom of

residue i and the Cα atom of residue i + 3 is less than 7 Å and if the cen-

tral two residues are not helical.8 An alternative but more precise defini-

tion of beta-turn is the possession of an intra-main-chain hydrogen

bond between the CO of residue i and the NH of residue i + 39 (see

Figure 1 for an illustration). There are nine types of beta-turns, which

are classified based on the dihedral angles of two central residues in a

turn10 as shown in Table 1. Beta-turns can be assigned from a Protein

Data Bank (PDB) structure by using the PROMOTIF software.10 Beta-

turns play an important role in mediating interactions between peptide

ligands and their receptors.11 In protein design, loop segments and
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hairpins can be formed by introducing beta-turns in proteins and pep-

tides.12 Hence, it is important to predict beta-turns from a protein

sequence.13

The early predictors10,14,15 used statistical information derived from

protein tertiary structures to predict beta-turns based on the positional

frequencies of amino acid residues. Zhang and Chou16 further observed

the pairing between the first and fourth residues and between the sec-

ond and the third residues, which plays an important role in beta-turn

formation. They proposed the 1-4 and 2-3 correlation model to predict

beta-turns.16 Later, Chou17 applied a sequence-coupled approach

based on the first-order Markov chain to further improve their predic-

tion model. Kaur and Raghava13 developed a web server, called Beta-

TPred, which implemented this model and achieved an Matthew

correlation coefficient (MCC) of 0.26 in beta-turn prediction.

McGregor et al18 used neural networks to predict beta-turns,

which is the first machine-learning approach for beta-turn prediction,

and they achieved an MCC of 0.20. Shepherd et al19 developed

BTPred using secondary structure information as input and achieved

an MCC of 0.34. Kim20 applied a K-nearest neighbor method for beta-

turn prediction and improved MCC to 0.40. Fuchs and Alix21 further

improved the MCC to 0.42 by incorporating multiple features such as

propensities, secondary structures, and position-specific scoring

matrix (PSSM). Kaur and Raghava22 developed the BetaTPred2 server,

which used a two-layer neural network with an MCC of up to 0.43.

Kirschner and Frishman23 developed MOLEBRNN using a novel bidi-

rectional recurrent neural network, with an MCC of up to 0.45. Hu

and Li24 used a support vector machine and incorporated features

such as increment of diversity, position conservation scoring function,

and secondary structure to raise the MCC up to 0.47. Zheng and Kur-

gan25 used the predicted secondary structures from PSIPRED,26

JNET,27 TRANSEEC,28 and PROTEUS229 to improve the performance.

Kountouris and Hirst30 used predicted dihedral angles along with

PSSM and predicted secondary structures to achieve an MCC of 0.49.

Petersen et al31 developed the NetTurnP server with an MCC of 0.50

by using independent four models for predicting four positions in a

beta-turn. Singh et al7 developed the BetaTPred3 server to achieve an

MCC of 0.51 using a random forest method, which was the most

accurate method before our work.

The above-mentioned machine-learning methods achieved some

successful results in beta-turn prediction. However, there is significant

room for improvement, particularly in predicting nine types of beta-

turns. Most of these previous methods relied on a sliding window of

4-10 amino acid residues to capture short interactions. Also, previous

neural networks with one or two layers (shallow neural networks) could

not extract high-level features from input data sets. So far, no deep

neural networks have been applied to beta-turn prediction. Deep neural

networks can learn representations of data with multiple levels of

abstraction,32 which provides a new opportunity to this old research

problem.

Our previous studies33-35 have successfully applied the stacked

convolutional neural network (CNN), the inception module,36 and the

residual module37 to protein sequence analysis and prediction prob-

lems. Following our previous work, here we propose a new deep neu-

ral network architecture called deep dense inception network

(DeepDIN) for beta-turn prediction. The contributions are presented

as follows: (a) MUFold-BetaTurn is the first beta-turn prediction soft-

ware to utilize the deep-learning framework and outperformed the

previous best predictor BetaTPred37; (b) we employed strategies such

as balanced learning and transfer learning to tackle the problem of

small sizes and imbalanced data sets for deep learning, which may pro-

vide a good example for some other deep-learning applications in bio-

informatics; and (c) we provide a free standalone software for the

research community to use.

2 | MATERIALS AND METHODS

2.1 | Preliminaries and problem formulation

To make an accurate prediction, it is important to provide useful input

features to machine-learning models. In our method, we carefully

designed feature matrices corresponding to the primary amino acid

sequence of a protein. Specifically, our feature sets include: (a) a phys-

icochemical feature set describing properties of amino acids, (b) a hid-

den Markov models (HMMs): HMM-HMM- based lightning-fast

F IGURE 1 An illustration of what a beta-turn is. C, O, N, and H
represent carbon, oxygen, nitrogen, and hydrogen atoms, respectively.
R represents a side chain. A dashed line represents a hydrogen bond

TABLE 1 Nine types of beta-turns and their dihedral angles of
central residues in degrees

Turn type Phi1 Psi1 Phi2 Psi2

I −60 −30 −90 0

I 60 30 90 0

II −60 120 80 0

II0 60 −120 −80 0

IV −61 10 −53 17

VIII −60 −30 −120 120

VIb −135 135 −75 160

VIa1 −60 120 −90 0

VIa2 −120 120 −60 0

Note: The locations of Phi1, Psi1, Phi2, and Psi2 are illustrated in Figure 1.
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iterative sequence search (HHBlits)38 profile, (c) prediction of eight

state secondary structures from MUFold-SS,33 and (d) a shape string

predicted by Frag1D.39

Physicochemical features describe hydrophobic, steric, and elec-

tric properties of amino acids and provide useful information for pro-

tein sequence analysis and prediction. By using physicochemical

properties, protein sequences are represented as an informative dense

matrix. The physicochemical feature matrix consists of seven physico-

chemical properties as defined by Heffernan et al,40 plus a number

0 or 1 representing the existence of an amino acid at this position as

an input (called NoSeq label). The reason for adding the NoSeq label is

because the proposed deep neural networks are designed to take a

fixed-size input, such as a sequence length of 700 residues in our

experiment. To run a protein sequence shorter than 700 through the

network, the protein sequence will be padded at the end with 0 values

and the NoSeq label is set to 1. If the protein is longer than 700 resi-

dues, it can be split into multiple segments, each shorter than 700 resi-

dues. Hence, a protein sequence will be represented as a 700-by-8

matrix, which is the first input feature set for DeepDIN.

The second set of useful features comes from the protein profiles

generated using HHBlits.38 In our experiments, the HHBlits software

used the database uniprot20_2013_03, which can be downloaded from

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_

dbs/. It is known that a larger and most recent sequence library will

improve the prediction results. The reason why we used an old version

of the database is to have an unbiased comparison with other predic-

tors. Larger sequence databases with recent sequences will be updated

and applied to our software tool. The profile values were transformed

by the sigmoid function into the range (0, 1). Each amino acid in the

protein sequence is represented as a vector of 31 real numbers, of

which 30 are from amino acids HHBlits profile values and one is a

NoSeq label in the last column. The HHBlits profile contains amino acids

and some transition probabilities: “A, C, D, E, F, G, H, I, K, L, M, N, P, Q,

R, S, T, V, W, Y, M->M, M->I, M->D, I->M, I->I, D->M, D->D, Neff,

Neff_I, and Neff_D.” HHBlits' profiles are more sensitive than PSI-

BLAST profiles and provide useful evolutionary features for the protein

sequence. A HHBlits profile is represented as a 700-by-30 matrix,

which is the second input feature for DeepDIN.

The third set of features, the predicted shape strings, comes from

Frag1D.39 For each protein sequence, the Frag1D predicts the classi-

cal three-state secondary structure, and three- and eight-state shape

string. A classical three-state secondary structure contains an H

(helix), S (sheet), and R (random loop). Eight-state shape string labels

are defined as: R (polyproline type alpha structure), S (beta sheet), U,

V (bridging regions), A (alpha helices), K (310 helices), G (almost

entirely glycine), and T (turns). Shape strings41 describe a one-

dimensional (1D) string of symbols representing the protein backbone

Psi-Phi torsion angles. They include regular secondary structure ele-

ments, where shape “A” corresponds to alpha helix and shape “S” cor-

responds to beta strands. In addition, shape strings classify the

random loop regions into several states that contain much more con-

formation information. For the Frag1D predicted result, each amino

acid in the protein sequence is represented as a vector of 15 numbers:

three are from the classical three-state secondary structures, three

are from the three-state shape strings, eight are from the eight-state

shape strings, and one NoSeq label is in the last column. The predicted

classical three-state secondary structure feature set is represented in

one-hot encoding as follows—helix: (1,0,0), strand: (0,1,0), and loop:

(0,0,1). The same encoding applies to three- and eight-state shape

string features. Hence, a Frag1D result is represented as a 700-by-15

matrix, which is the third input feature for DeepDIN.

The fourth set of features comes from our secondary structure pre-

diction tool: MUFold-SS.33 MUFold-SS achieved state-of-the-art per-

formance in an eight-state secondary structure prediction, and it should

provide useful features in beta-turn prediction tasks. The eight-state

secondary structures have the following components: H (alpha helix), B

(beta bridge), E (extended strand), G (3-helix), I (5 helix), T (hydrogen

bonded turn), and S (bend). Hence, an eight-state predicted secondary

structures will be represented in one-hot encoding as a 700-by-8

matrix, which is the fourth input feature for DeepDIN.

Protein beta-turn prediction is a classification problem. To be spe-

cific, it can be formulated as a residue-level prediction or turn-level

prediction as first proposed by.7

• Residue-level prediction: To predict whether each amino acid has a

class label of a turn or nonturn. Here, the predicted output is a

700-by-3 matrix, where “700” is the sequence length 700 and “3”

for two-state labels plus 1 NoSeq label.

• Turn-level prediction: At the turn-level, a sliding window of four

residues was used to generate the turn-level data sets. And the

overall predicted beta-turn output of a protein sequence is repre-

sented as a fixed-size matrix, with a (700-4+1) by 3 dimension, for

two-state labels plus 1 NoSeq label. For a nine-class classification

problem, the label is turn of a specific type or nonturn.

The evaluation metric for beta-turn prediction typically is MCC,

instead of accuracy, as the accuracy only considers the true positive

and false positive without the true negative and false negative, and

non-beta-turns (negative data) dominate the data. MCC can be calcu-

lated as follows:

MCC=
TP*TN−FP*FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP+FPð Þ TP+FNð Þ TN+FPð Þ TN+FNð Þp ð1Þ

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives, and FN is the number

of false negatives.

2.2 | New DeepDIN for protein beta-turn prediction

In this section, a new DeepDIN architecture is presented. The archi-

tecture makes use of deep inception36 networks and dense net-

works.42 Both network designs have shown promising performance in

image recognition tasks.36,42 Deep inception networks36 consist of

inception modules, which contain convolutional filters of different

kernel sizes to capture details from the input (such as images, voice
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recordings, or in this case protein sequence features) at varied scales,

(5 × 5, 3 × 3, 1 × 1, etc.). The advantages of deep inception networks

are to explore features at multiple scales together and discover high-

level features. Deep dense network42 connects each layer to every

other layer in a feed-forward fashion. For each layer, the feature-maps

of all previous layers are used as inputs. Densely connected networks

have several advantages over traditional deep convolutional net-

works; in particular, it can alleviate the vanishing-gradient problem,

strengthen feature propagation, and accommodate feature reuse. In

this article, we proposed a new network called DeepDIN, which takes

advantage of both network designs, that is, deep inception networks

and deep dense networks as shown in Figure 2. The overall beta-turn

prediction pipeline contains the following steps:

1. Given a protein sequence, generate four sets of features: physico-

chemical feature, profile features from HHBlits, predicted shape

string (using Frag1D), and predicted eight-state secondary struc-

ture (using MUFold-SS).

2. Perform the convolution operation on each feature to get the con-

volved feature map.

3. Concatenate four convolved feature maps along the feature

dimension.

4. Feed the concatenated feature map into the stringed dense incep-

tion blocks. In between, there is a convolutional layer acting as the

transition layer.

5. Predict beta-turn (either turn or nonturn) in the last dense layer,

which uses Softmax to normalize the output.

Figure 3 shows the details of a dense inception block of DeepDIN.

It consists of four small inception blocks, and each inception block is

fully connected to the latter inception blocks. In other words, a dense

inception module is constituted by connecting each inception layer to

every other inception layer after it in a feed-forward fashion. The

design of dense inception modules can extract nonlocal interactions

of residues over a diverse range in a more effective way. Adding more

dense inception blocks is possible but requires more computer mem-

ory when running the model.

Each convolution layer, such as “Conv (3)” in Figure 3, consists of

four operations sequentially: (a) an 1D-convolution operation using ker-

nel size three; (b) the batch normalization technique43 for speeding up

the training process and acting as a regularizer; (c) the activation opera-

tion, rectified linear unit44; and (d) the dropout operation45 to prevent

the neural network from overfitting by randomly dropping neurons dur-

ing the deep network training process so that the network can avoid or

reduce coadapting. DeepDIN was implemented, trained, and tested using

TensorFlow and Keras. All experiments were performed on an Alienware

Area-51 desktop computer equipped with Nvidia Titan-X GPU (11 GB

memory). In our experiments, many network hyperparameters and train-

ing parameters were tried. For the results reported, the dropout rate was

set at 0.4. The optimizer used during training is Adam,46 which can con-

trol the learning rate dynamically for network weight updates. There are

nine beta-turn classifications, and the observations for a certain class can

be as many as 40 000 or as little as 100. In different classification tasks,

the batch size varies from 50 to 200. The maximum number of epochs is

set up to 100. The training time varies from 2 to 5 hours depending on

the data size when training different classification models.

2.3 | Apply transfer learning and balanced learning to
DeepDIN to handle imbalanced small data set

Deep learning usually requires a large amount of data to train the net-

works well. Here, as some of the beta-turn classes have only a small

F IGURE 2 Overall DeepDIN
network architecture for beta-
turn prediction [Color figure can
be viewed at

wileyonlinelibrary.com]

F IGURE 3 An illustration of a dense
inception module in DeepDIN. Each dense
inception module contains four basic
inception modules, each of which is fully
connected to every other inception layer
after it in a feed forward fashion [Color
figure can be viewed at
wileyonlinelibrary.com]

146 FANG ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


amount of data, the following deep-learning strategy was used to

address the small data sets classification problem.

2.3.1 | Balanced learning

Many researchers have studied the problem of imbalanced data learn-

ing and proposed ways of balancing the data set by using either

oversampling like SMOTE47 or undersampling like Tomek Links.48 The

beta-turn data are highly unbalanced with a very small fraction of pos-

itive examples, which would cause a deep neural network like

DeepDIN prone to predict everything belonging to the negative class.

In this experiment, the protein beta-turn data classified as positive are

not large; thus, any up-sampling or down-sampling may cause loss or

pollution of useful information. Rather than resampling the training

examples, a balanced learning approach was adapted to handle the

problem. The weighted cross entropy was used as the loss function to

address the issue caused by the small sample size by rescaling the pre-

diction of each class by its weight. In this implementation, class

weights were calculated using the training data and assigned using the

Scikit-learn49 toolbox. The balanced class weights are given by n_sam-

ples/(n_classes * bincount(y)), where y is an array of original class labels

per sample, and “bincount” is a built-in function from the Scikit-learn

toolbox to calculate the number of bins.

2.3.2 | Transfer learning

We applied transfer learning to handle the limited number of beta-turn

data used in the training set. The idea of transfer learning originally

came from the image classification problem.50 This technique was pro-

posed to handle the insufficient size of a data set that can be used to

train a deep neural network. In our study, as there are nine classes of

beta-turns, and especially as those in VIa1, VIa2, and VIb contain only a

few hundred data points, the amount of data belonging to each class

may not produce a model with the ability to extract features or to be

well generalized. To solve this problem, the DeepDIN model trained for

classifying two-class beta-turns was used as the pretrained model when

separate DeepDIN models were trained for nine-class classifications.

The pretrained weights were loaded into a separate nine-class classifi-

cation model as initial weights. Notably, the pretrained model here is

the beta-turn model used to classify the two-class beta-turn problem.

As that model has “observed” some generic features of what a beta-

turn is, it should be useful to many specific nine-class beta-turn classifi-

cation tasks. Then, to train each individual class model, each individual

class training set was used to further train the pretrained network. It is

possible to fix the earlier layers of the deep networks due to the over-

fitting issue and only fine-tune the latter layers of the network. The

samples used to pretrain the network did not overlap with the testing

samples. Without the pretraining process, the model training might not

converge, especially for those classes with limited training samples.

After many trials, the final network was fine-tuned without freezing the

weights from lower level of the network.

For the learning rates during the transfer learning, a smaller learn-

ing rate (0.005) and batch size (10) were used to train the network

and fine-tune the network weights. The reason is that the pretrained

network weights are relatively good, a smaller learning rate will not

distort them too much before it converges.

2.4 | Benchmark data sets

The following two publicly available benchmark data sets were used

in our experiments. Previous predictors reported the 5-fold cross-

validation performance on an earlier benchmark BT426. The most

recent benchmark BT6376 was created by Singh et al,7 and they

reported their webserver BetaTPred3's7 5-fold cross-validation per-

formance on benchmark BT6376. To compare with previous predic-

tors, we also performed the same experiment of 5-fold cross-

validation on both data sets. We summarize the benchmark data sets

in Table 2.

1. BT42651 is a data set commonly used for benchmarking beta-turn

prediction methods. BT426 contains 426 protein chains with 25%

sequence identity cutoffs, and X-ray structures of a resolution bet-

ter than 2.0 Å. This benchmark was used to compare the perfor-

mance of several previous predictors, such as BetaTPred37 and

NetTurnP.31 In this work, 5-fold cross-validation experiments on

BT426 were performed and results were compared against other

predictors.

2. BT63767 is a public benchmark containing 6376 nonhomologous

protein chains. No two protein chains have more than 30%

sequence identity. The structures of these proteins were determined

by X-ray crystallography at 2.0 Å resolution or better. Each chain

contains at least one beta-turn. The beta-turn labels were assigned

by the PROMOTIF program.10 This benchmark provides data sets

for both the two-class beta-turn classification and the nine-class

beta-turn classification. For the nine-class beta-turn classification,

labels were annotated by using PROMOTIF. Table 3 shows a list of

class sizes in BT6376, which indicates that the data set is very imbal-

anced, as the turns samples are only 0.3% to 3.1% of the non-turns

samples.

3 | RESULTS AND DISCUSSION

In this section, extensive experimental results of the proposed deep

neural networks on the benchmark data sets and performance

TABLE 2 Summary of beta-turn benchmark data sets BT426 and
BT6376

BT426 BT6376

Number of protein chains 426 6376

Sequence identity cutoff 25% 30%

X-ray resolution 2 Å 2 Å

Two-class prediction Residue level;

turn level

Residue level;

turn level

Nine-class prediction Residue level;

turn level
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comparison with existing methods are presented. To evaluate the per-

formance of our tool DeepDIN, 5-fold cross-validation was used on all

data sets.

3.1 | How input features affect DeepDIN
performance

As we used four input features for our proposed DeepDIN architecture,

it is important to quantitatively determine how much improvement the

proposed DeepDIN can make by using single, some, or all of the fea-

tures (see Table 4). We used type I beta-turns for experiments. This

data set has 6039 proteins containing a total of 42 393 type I beta-

turns. In each experiment, five rounds of 5-fold cross-validation were

performed to take into consideration data variation and model varia-

tion. The running time for each experiment was around 15 to 17 hours.

Table 4 shows that the predicted shape string feature set, either

used alone or used in combined with other features, can significantly

improve the prediction performance. Notably, some combined fea-

tures have better prediction results than those features used alone,

which means these features are complementary. For instance, when

the predicted shape strings were combined with the predicted sec-

ondary structures as the input, the prediction performance is much

better than just using the predicted shape strings. Although both fea-

tures are related to the protein secondary structures, they may cap-

ture different aspects of features for a protein. In Table 4, the row

12 (0.465 [±0.002]) and row 15 (0.469 [±0.002]) have only marginal

difference in MCC values. This may be because the HHBlits profile

information had been already utilized in the eight-state secondary

structure prediction in MUFold-SS.

3.2 | Residue-level and turn-level two-class
predictions on BT426

Table 5 shows experimental results of comparing DeepDIN with exis-

ting methods at residue level on benchmark BT426. Other than

BetaTPred3,7 all other tools only had residue-level predictions. At turn-

level prediction, BetaTPred37 achieved MCC 0.43, while DeepDIN

achieved 0.550 (±0.019). At both residue level and turn level, DeepDIN

outperformed all existing methods. It is noted that in Ref. 52, the

authors reported their turn-level MCC around 0.66 on benchmark

BT426. However, they preprocessed the data set in a way that the neg-

ative (nonturn) samples were randomly selected when the ratio of posi-

tive to negative was 1:3,52 which significantly favored MCC over the

setting used by BetaTPred3 and DeepDIN, that is, using all the residues

in the original BT426 data set with the ratio of positive to negative as

high as 1:9. In addition, the study by Tang et al52 did not have a down-

loadable software tool or web-server to compare with. Hence, we did

not compare the performance of Tang et al52 in this study.

3.3 | Turn-level nine-class prediction on BT6376

Table 6 shows the nine-class beta-turn prediction results on BT6376.

The improvement of DeepDIN over BetaTPred3 ranges from 0.01 to

0.22 MCC. The average MCC results of DeepDIN for large class beta-

TABLE 3 Nine-class beta-turn and nonturn class sizes in BT6376

Beta-turn types
Number of
proteins

Number
of turns

Number of
nonturns

Turns/
nonturns

Type I 6039 42 393 1 366 911 0.031

Type I0 2786 4353 747 596 0.005

Type II 4750 13 559 1 183 457 0.011

Type II0 1995 2643 545 300 0.004

Type IV 5950 38 201 1 360 907 0.028

Type VIa1 600 654 182 122 0.003

Type VIa2 177 188 56 761 0.003

Type VIb 914 1082 263 099 0.004

Type VIII 4257 10 111 1 114 707 0.009

TABLE 4 Effects of feature combinations on prediction
performance in terms of MCC

Physicochemical SS8
Shape
string

HHBlits
profile MCC

x 0.186 (±0.003)

x 0.321 (±0.004)

x 0.372 (±0.004)

x 0.326 (±0.002)

x x 0.406 (±0.003)

x x 0.400 (±0.002)

x x 0.366 (±0.001)

x x 0.369 (±0.002)

x x 0.435 (±0.006)

x x 0.421 (±0.003)

x x x 0.451 (±0.002)

x x x 0.465 (±0.002)

x x x 0.440 (±0.002)

x x x 0.416 (±0.002)

x x x x 0.469 (±0.002)

Abbreviations: HHBlits, hidden Markov model (HMM)-HMM-based

lightning; MCC, Matthew correlation coefficient.

TABLE 5 Residue-level prediction on BT426

Predictor MCC

BTPred19 0.35

BetaTPred213,22 0.43

Hu and Li24 0.47

NetTurnP31 0.50

BetaTPred3-Tweak7 0.50

BetaTPred3-7Fold7 0.51

BetaTPred37 0.51

DeepDIN 0.647 (±0.016)

Abbreviations: DeepDIN, deep dense inception network; MCC, Matthew

correlation coefficient.
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turns such as I, I0 , II, II0, IV, outperformed BetaTPred3 by at least 7%,

which is a significant improvement. For some small classes such as

VIa1 and Vib, the improvement is about 3%. DeepDIN performed

comparably with BetaTPred3 on small class VIa2.

As the beta-turn data set is very imbalanced, during training, differ-

ent class weights were calculated using the Scikit-learn toolbox49 and

then assigned to the loss function during the model training process. A

5-fold cross-validation evaluation was performed on each of the nine-

class beta-turn classification tasks. The average experiment time ranged

from 2 to 4 hours depending on the different amounts of data in each

class. Figure 4 shows the training loss and validation loss curves for one

of the models trained for type I beta-turn classification, as an example.

4 | CONCLUSION

There are many successful deep learning applications in protein

bioinformatics,53-55 including applications in modeling protein sequences

to predict hierarchical labels56 and deep learning with unbalanced

data.57 Here, a new deep neural network architecture DeepDIN was

proposed for protein beta-turn prediction. Extensive experimental

results show that DeepDIN obtained more accurate predictions than

the best state-of-the-art methods and tools. Compared to previous

machine-learning methods for protein beta-turn prediction, this work

uses a more sophisticated, yet efficient, deep-learning architecture.

There are several innovations in this work.

First, the proposed DeepDIN takes input of the entire protein

sequence as the input feature, whereas all previous predictors relied on a

fix-sized sliding window. DeepDIN is more effective and efficient in

extracting long-range residue interactions, as it utilizes densely connected

inception blocks to process local and nonlocal interactions of residues.

Second, we have implemented a tool called MUFold-BetaTurn,

which utilizes the proposed DeepDIN architecture for beta-turn pre-

diction. This tool is ready for the research community to use freely.

Third, this work quantitatively discovered how different input fea-

tures affect the beta-turn prediction. For example, some features such

as shape string and HHBlits profile can improve beta-turn classification

effectively. In the future work, the small beta-turn classes still have

room for further improvement. Also, those features can be useful for

other turn prediction problems, such as gamma-turn prediction.58

Last but not least, we demonstrated a good example of the small

imbalanced data set classification problem using balanced learning and

transfer learning. The beta-turn data set is very imbalanced, where the

ratio of positive samples over negative samples is about 1:9. Balanced

learning and transfer learning were applied to overcome the problem. It

is worth mentioning that transfer learning was originally applied to

image recognition tasks, and here, we applied a similar method to train-

ing models for small beta-turn classification tasks. The pretrained net-

work is effective in learning some more general beta-turn features;

then the transfer learning technique can transfer the base network to

some more specific models that can classify nine-class beta-turns. We

have also demonstrated some techniques for tuning deep neural net-

works on small data classification problems, which may be useful in

other areas of biological sequence analyses with imbalanced data sets,

such as genomic analysis,59 poly-signal identification,60 post-

translational modification prediction,61 and so forth.
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