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Abstract

Several properties of amino acid sequences corresponding to proteins that are known

to fold are compared to those of randomly generated sequences and to sequences of

intrinsically disordered proteins in order to find properties that distinguish folding

sequences from the rest. The properties studied included helix and sheet propensities

from secondary structure prediction, adjacency correlations, directionality correla-

tions, as well as propensities of all possible triplets and quadruplets. Small differences

between known folded and random sequences were observed for the adjacency

and directional correlations, and significant differences were seen on the triplet and

especially on the quadruplet propensities. Based on the differences in the adjacency,

triplet or quadruplet propensities folding scores were defined and used to test the

accuracy of foldability prediction based on these statistics. The best predictions were

obtained from the quadruplet propensities.
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1 | INTRODUCTION AND BACKGROUND

It has been demonstrated that a randomly selected amino acid

(AA) sequence is unlikely to fold: analyzing the case of 100-residue

sequences, Dokholyan showed1 that of the 20100 possible sequences,

only about 1047 sequences are capable of forming a stable compact

structure. That means that there are significant constraints on

sequences that are capable of folding. The question thus arises: what

are the features of a sequence that lend it the capability to fold?

The question of the randomness (or lack thereof) of the sequences

in known proteins has been raised before.2 Earlier studies reached

conflicting conclusions about the degree of randomness of extant pro-

tein structures as reviewed by De Lucrezia et al.3 Some of those ear-

lier approaches looked at properties similar to those in the present

work as indicated in the Methods section.

Folding into a well-defined conformation is a stricter requirement

than forming a molten globule with some secondary structure

(SS) elements formed. In fact, experimental studies of random sequences

by LaBean et al.4 showed that randomly generated sequences generally

show evidence of forming SS elements and folding into a molten

globule. Bungard et al.5 found similar evidence of structural organization

in a de novo evolved protein.

Besides the conventional approach searching for particular corre-

lations in the data, as done in this paper as well, recent trends moved

in the direction of artificial intelligence (AI or “deep learning”), like the

paper by De Lucrezia et al. referred to above. The Baker Laboratory

combined the Rosetta structure prediction6 with metagenomics data

integrated with AI.7 While AI approaches can indeed work well for

classifying a given data set, they are intellectually less satisfying as

they do not add to the underlying science.

There have also been discussions on the existence of a folding

code—a concept than can have several interpretations but it goes

beyond the concept of nonrandomness. For example, Uversky8

suggested that the right ratio of hydrophobicity to charge can be con-

sidered a code for sequences that adopt partially formed conforma-

tions. Based on tetramers, Rackovsky9 derived a code for the SS those

tetramers are likely to form. On the other hand, Ben-Naim argues that

there is no such thing as a folding code, in the sense that one cannot

expect to predict the structure by reading the sequence of a protein.10

This paper describes some attempts to find sequence clues to

foldability. It is based on comparing various statistical properties of
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the sequences of a large number of proteins found in the Protein Data

Bank (PDB) with sequences generated randomly. The properties that

were found to be able to distinguish between folding and random

sequences were then used to define a foldability prediction algorithm,

which was found to be largely successful in distinguishing folding and

random sequences.

2 | MATERIALS AND METHODS

2.1 | Data sources

The sequence and SS of the structures in the PDB11,12 were down-

loaded as the file ss.txt in 2018 from the PDB website, https://www.

rcsb.org/. The 394 869 protein chains have been filtered by sequence

identity and length. Keeping the larger of two chains when they have

more than 90%, 70%, and 50% sequence identity, respectively, and

having at least 20 residues, resulted in 47 405, 41 042, and 35 667

chains, respectively. The analyses will be run on the set filtered to

50% identity.

The filtering involved the following steps:

1. Sort the sequences by decreasing length.

2. Accept the first sequence.

3. For each subsequent sequence Si, calculate the sequence identity

with the set of accepted sequences in decreasing order until a

sequence is found with greater sequence identity than the thresh-

old. The alignment used the substitution matrix of Henikoff and

Henikoff13; the penalty of opening a gap of −12 was −12 and of

extending a gap was −1.

4. If a similar sequence is found, delete the sequence Si. The sorting

will ensure that always the shorter sequence will be dropped from

a match.

In addition, before each analysis, putative HIS tags were removed.

Histidine sequences of at least six residues long that are separated

from either end of the sequence by less than seven residues were

considered HIS tags.

For comparison, sequences were randomly generated; for some

tests, intrinsically disordered protein (IDP) sequences were also used.

The randomly generated sequences were either sampled from the uni-

form distribution (ie, each AA was selected with probability 0.05) or

from the distribution of their propensity to occur in naturally existing

proteins (not just the proteins in the filtered PDB set). The AA propensi-

ties were taken from Ref.14, averaged over the various organism types.

Besides the propensities averaged over organism types (referred

to as generic), propensities calculated from the input set were also

used. The input-based propensities were either based on the overall

numbers of occurrence of each residue (referred to as data based) or

calculated for each protein separately and averaged over the proteins

(referred to as local). The data-based propensities calculated from the

filtered sequence set were close to the generic propensities—the dif-

ferences were significantly less than the differences among the pro-

pensities of the various organism types.

A total of 752 sequences describing intrinsically disordered

regions (IDP set) were downloaded from the DisProt database.15

Melting temperatures of 96 proteins were obtained from the data set

of Pucci et al.16

2.2 | Use of secondary structure prediction
algorithms

The idea here was that randomly generated sequences should result

in fewer residues predicted to form SS elements than folding

sequences and/or the lengths of such elements are different in the

folding and nonfolding proteins. There are several algorithms that give

predictions of SS from the protein sequence, starting with the algo-

rithm of Chou–Fassman (CF)17 and Garnier–Osguthrope–Robson

(GOR),18 followed by several more sophisticated and/or specialized

ones. As an aside, it turns out that it is very difficult to reproduce

these algorithms as the developers keep improving the parameters

but often neglect to fully document the changes.

The SS predictions were run on the filtered sequence set from the

PDB, on the IDP set, and on two randomly generated sequence sets:

sampled from the uniform distribution and from the distribution

defined by the AA propensities.

It is also important to emphasize that the SS predictions are used

here only as a tool to look for well-defined properties that are able to

discriminate between folding and nonfolding sequences. Therefore,

the accuracy of the prediction method is of secondary interest for the

purpose of this study.

2.3 | Use of residue adjacency statistics

It is reasonable to assume that folding biases the selection of residues

that are adjacent in the sequence. To establish the magnitude of this

effect for each pair (AA1,AA2), the ratio of the number of AA1-(X)n-AA2

(n ≥ 0) to the number expected if the residues are selected randomly

form the AA propensity distribution of the overall sequence data set was

calculated. A ratio of 1.0 indicates no correlation. A similar approach was

used by Santoni et al.19: they looked at the statistics of the sequence dis-

tance of different AA pairs and compared it to the expected distances

from random sequences generated with the natural AA propensities.

They included the directionality of the protein chain in the statistics.

2.4 | Use of directionality statistics

A protein chain has a well-defined directionality. It is structurally obvi-

ous in helix structures, but it may have relevance in other parts of the

protein as well. While in the present adjacency statistics, the direc-

tionality was ignored, a separate measure was used to detect possible

direction effects: for each pair (AA1,AA2), the ratio of the number of

AA1-(X)n-AA2 sequences to the number of AA2-(X)n-AA1 sequences

was calculated (n ≥ 0) on the filtered PDB set. A ratio of 1.0 indicates

no directional effect. Separating the directionality test from the adja-

cency test has the advantage that the separate directionality test does

not require reference propensities.
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2.5 | Use of triplet and quadruplet statistics

There are 8000 different triplets and 160 000 different quadruplets

that the 20 AAs can form. This means that filtered PDB set can pro-

vide good statistics for the triplets but somewhat lower quality for

quadruplets.

In the first step, for all 8000 AA triplets and for all 160 000 AA

quadruplets, the probability of their occurrences was determined

(to be precise, approximated from their relative frequencies in the

input sequence set) using the filtered PDB sequence set. Next, they

were normalized by the probability of their occurrence in randomly

generated sequences that were obtained from the distribution of the

generic AA propensities, giving a measure for each triplet and quadru-

plet for their likeliness to occur in folded sequences.

In an earlier work,20 quadruplet and quintuplet propensities were

compared with the propensities expected from random sequences.

For the quintuplets, a reduced AA representation was used to be able

to obtain adequate precision.

2.6 | Quantifying the foldability propensity based on
adjacency, triplet, and quadruplet distributions

For each sequence and construct p (pair, triplet, and quadruplet), a

score SCp was assigned as

SCp =
XN
i=1

ln PNi=PRið Þ
" #

=N

where N is the number of constructs in the sequence, PNi is the prob-

ability of finding the construct i in the PDB set, and PRi is the probabil-

ity of finding the same construct in the (propensity-weighted)

randomly generated set. It is expected that SCp will be different for

folding and nonfolding sequences.

For a given pair, triplet, or quadruplet, the ratio PNi/PRi is one if its

frequency in the PDB set is what one would expect from the protein

AA propensities, less than one if it occurs less frequently and more

than one if it occurs more frequently. Due to taking the logarithm,

zero takes the role of the separator between likely folding and likely

nonfolding sequences.

The values of ln (PNi/PRi) were calculated for all 400 pairs, 8000

triplets, and 160 000 quadruplets once and saved. For a given

sequence, the calculation is just the summation of the values

corresponding to the sequence in question.

Using the precalculated ln (PNi/PRi) values, the foldability scores

SCr (r referring to pairs, triplets, or quadruplets) were calculated for

the PDB set, the IDB set, as well as the two kinds of randomly gener-

ated sets. For each data set and each type of score, the score distribu-

tions were calculated, normalized in such a way that the area under

the curve is one. Overlap between two distributions is calculated as

the area of the region that is simultaneously under both curves.

Clearly, it has to be between zero and one.

Denoting the score distribution over the PDB set PPDB(SC) and

over the propensity-weighted random set PR(SC), where SC can be

any of the constructs (pair, triplet, and quadruplet) or a combination

thereof, the following rules were used to estimate foldability:

1. Nonfolding for sure if PR(SC) > 0 and PPDB(SC) = 0 or SC < SCR,min.

2. Folding for sure if PPDB(SC) > 0 and PR(SC) = 0 or SC > SCPDF,max.

3. Likely not to fold if PR(SC)/PPDB(SC) > 1.0.

4. Likely to fold PPDB(SC)/PR(SC) > 1.0.

However, if 0.5 < PPDB(SC)/PR(SC) < 2.0, then the estimate is also

marked as “weak.”

2.7 | Accuracy of foldability predictions based on the
adjacency, triplet, and quadruplet scores

To test the accuracy of predictions based on the propensity scores SC

9593, structures deposited in the PDB after the ss.txt file were down-

loaded and the chain information (sequence and SS) in the format of

the ss.txt file have been extracted. Filtering to 50% sequence identity

resulted in 4736 chains. For the comparison, 100 000 random

sequences were generated with different random number seed (3579)

that were used to generate the original statistics (1357).

2.8 | Software and data generated

The calculations described (filtering, conversion from .cif format, all

analyses) have been performed with the Fortran program Fold, avail-

able on the website http://inka.mssm.edu/~mezei/fold. Besides the

program, the website contains (a) the filtered sets of sequences used

to generate the distributions/scores, ss_nr50.txt; (b) the filtered set of

sequences used for the foldability predictions, ss_new_nr50.txt; and

(c) a script to run all the data generation and analyses, runall.bat. Thus,

data not shown in the paper can be generated—running all the ana-

lyses described in the paper takes a few minutes on a single CPU.

3 | RESULTS AND DISCUSSION

Comparison of results from the input sets filtered to different levels of

similarity showed little or no appreciable differences. Therefore, results

will be given only for one set, filtered at 50% sequence identity.

3.1 | Secondary structure predictions

Figure 1 shows the distribution of the predicted percentages of SS

elements (helix or sheet) in the PDB sequence set, in the IDP set, and

in two randomly generated (100 000 sequences of 200 residues each)

sets using the uniform distribution and the AA propensity distribution,

respectively, as well as for the experimental SS annotation. The pre-

dictions used the original GOR parametrization. The corresponding

averages, SDs, and ranges are given in Table 1.

The distribution corresponding to the IDP set is similar to that of

the PDB set albeit more noisy. There is, however, a clear difference

between the distribution of percentages from PDB sequences and the

sequences with residues sampled from uniform distribution but the
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difference mostly disappears when the random sequences are sam-

pled from a distribution that selected each residue with probability

proportional to the propensity of that AA to occur in the protein

space. In hindsight, this is not surprising, considering the experimental

evidence of SS formation in randomly generated sequences.4,5

The predicted length of the SS elements, however, was found to

be different in the PDB and in both randomly generated sets. Table 2

shows the predicted average helix and sheet lengths, as well as the

average predicted helix and sheet lengths in the PDB set. The closer

the set is to foldability, the longer the predicted average SS element

length is (although still somewhat below the experimental averages).

Again, the IDP set predictions are close to that of the PDB set.

Calculations were also done using a different parametrization of the

GOR method as well as using versions of the CF method but they resulted

in even less differences between folding and nonfolding sequences.

3.2 | Residue-residue correlation statistics

The initial calculation of the probabilities of finding two AAs in each

other's vicinity presented an intriguing problem: as the distance

between the correlated residues grew, the calculated correlation mea-

sure for most residue pairs converged to a value different from one.

This behavior persisted no matter which propensity scheme (generic,

data-based, or local) was used to normalize but were absent when

(as a test for the correctness of the program) random sequences were

generated using the generic propensities. This might also explain why

one of the earlier works has not found any correlation.

The unreliability of the normalization scheme led to a different way

of detecting adjacency correlations: instead of normalizing by putative

random probabilities, the adjacency frequencies were normalized by the

adjacency frequency of pairs separated by 10 residues. This factored

out the reference probabilities whose use in this context was found to

be unreliable. Note that the only error this normalization could introduce

would be an underestimation of the magnitude of correlations.

Table 3 shows the propensities of AA pairs to be adjacent (ie,

n = 0), normalized by their propensity to be 10 residues apart. Clearly,
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F IGURE 1 Distribution of the predicted % of residues forming
helix or sheet in the PDB sequences (full line), in the IDP set (dots), in
the random set following the AA propensity distribution (long dash),
and in the uniformly distributed random set (short dash). The
experimentally determined propensity distribution for secondary
structure is also plotted (dot-dash)

TABLE 1 Helix and sheet propensity
statistics

Source Method Average % of helix and sheet SD Minimum Maximum

PDB Experiment 53.4 12.5 0 99

PDB GOR1 62.2 11.2 0 100

IDP GOR1 59.0 12.8 10 96

wran GOR1 59.0 7.1 29 89

uran GOR1 42.8 7.7 14 77

Abbreviations: PDB, Protein Data Bank; IDP, intrinsically disordered protein; GOR,

Garnier–Osguthrope–Robson.

TABLE 2 Helix and sheet length statistics

Source SS element Method Average SD Minimum Maximum

PDB H Experiment 9.9 6.8 1 100

PDB S Experiment 5.3 2.7 1 45

PDB H GOR1 8.3 8.0 1 100

PDB S GOR1 4.1 2.6 1 39

IDP H GOR1 8.8 9.3 1 100

IDP S GOR1 3.9 2.5 1 23

wran H GOR1 7.0 6.2 1 78

wran S GOR1 4.2 2.7 1 40

uran H GOR1 5.9 5.3 1 65

uran S GOR1 3.3 2.2 1 28

Abbreviations: PDB, Protein Data Bank; IDP, intrinsically disordered protein; GOR, Garnier–Osguthrope–Robson.
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for most AA pairs, there is no noticeable correlation. Comparison of

the same table calculated on the first and last half of the data set indi-

cates that the precision of the values in the table is of the order of

10%. Accordingly, adjacency propensities exceeding 1.15 or below

1/1.15 are shown in bold face.

The decay of the correlations seen with sequence distance is

another indication of the significance of the data. For the AA pairs,

the sequence-distance dependence of neighborhood propensities (ie,

n > 0) where the adjacency propensity exceeded 1.15 or was below

1/1.15 is shown in Table 4 as a function of n. While the difference in

the presentation of the results does not allow detailed comparison

with the results of Santoni et al.,19 in both studies, histidine was

shown to be involved in the most and largest correlations.

The distribution of scores SCp (defined above in Section 2.6) for

the PDB and IDP sets and for the randomly generated sets (again,

100 000 sequences of 200 AA each) are shown in Figure 2. The distri-

butions are rather noisy, and there is no clear separation between any

of these distributions although at the high-score range, the PDB distri-

bution tops all the others.

3.3 | Directionality statistics

The ratios of forward and backward neighborhood propensities are

shown in Table 5. Ratios exceeding 1.15 or below 1/1.15 are shown

with bold face. For most residue pairs, no noticeable asymmetry is

found. It is probably not surprising that among the residue pairs with

significant asymmetry, PRO is the most prominent since proline is the

only AA that has no side-chain torsional freedom. The largest asym-

metry (≥ 1.15 or ≤ 1.15, shown in bold face in Table 5) was found for

the residue pairs MET-HIS (0.56), PRO-GLU (1.62), PRO-CYS (0.72),

MET-THR (1.32), MET-TRP (0.76), PRO-HIS (0.77), PRO-ILE (0.78),

ASN-GLU (0.78), PRO-TRP (1.26), PRO-ASN (0.80), PRO-GLY (1.25),

MET-LYS (1.25), TRP-LEU (1.23), PRO-MET (0.82), HIS-SER (0.83),

PRO-THR (0.83), HIS-LYS (0.83), LYS-GLY (0.83), MET-ASN (1.19),

HIS-GLU (0.84), VAL-GLY (0.85), TYR-PHE (1.17), PHE-ARG (0.86),

CYS-ILE (0.86), TRP-GLY (0.86), and CYS-TYR (0.87)—the numbers in

parenthesis give the forward/backward propensity ratios.

3.4 | Triplet and quadruplet statistics

Most triplet and quadruplet propensities are significantly different

from the propensities expected from the overall AA propensities.

Table 6 shows the triplets for which |ln (PNi/PRi)| > 1 and Table 7

shows the quadruplets for which |ln (PNi/PRi)| > 3.2. Again, the fre-

quent occurrence of histidines is noticeable (even though HIS tags

were removed). Furthermore, there are 672 quadruplets that are miss-

ing from the filtered PDB data set. For those quadruplets, PNi was set

to 0.5/160 000.

The distributions of scores for the PDB set and for the randomly

generated set (again, 100 000 sequences of 200 AA each) are shown in

Figures 3 and 4 for the triplets and quadruplet scores, respectively. The

fact that the distribution of the PDB sequence scores is shifted toward

positive scores indicates that certain quadruplets are significantly more

likely to occur in folded sequences than what would follow from the

AA propensities. Conversely, the fact that the distribution of the ran-

domly generated sequence scores is shifted toward negative scores

indicates that such sequences contain significantly more of the triplets

TABLE 4 Sequence-distance dependence of residue-residue adjacency propensities

HIS CYS SER MET MET MET CYS PRO PRO GLN TRP HIS HIS GLU MET
HIS CYS GLY PHE ALA HIS HIS TRP ASN ASP GLN LYS GLU SER TYR

1 1.71 0.74 1.23 0.83 1.19 1.19 1.18 0.85 1.17 0.85 1.16 0.86 0.87 0.87 0.87

2 1.64 0.81 1.07 0.88 1.03 1.05 1.01 0.98 1.05 0.87 1.13 0.94 0.90 0.93 0.95

3 1.46 0.56 1.01 0.98 1.02 1.05 1.03 0.96 1.06 0.98 1.05 0.93 0.94 1.00 0.96

4 1.39 0.99 1.03 0.97 1.02 1.01 1.07 0.98 1.03 0.92 1.11 0.95 0.97 0.96 0.95

5 1.23 0.96 1.00 0.95 1.02 1.03 1.01 0.95 1.05 0.95 1.07 0.99 0.98 0.96 0.96

6 1.10 0.99 1.00 0.92 1.00 1.02 1.02 0.94 1.04 0.95 1.04 0.98 0.96 0.96 0.99

7 1.08 0.96 1.01 1.00 1.01 1.02 1.01 1.00 1.03 0.98 1.04 0.98 0.97 0.99 0.98

8 1.03 0.99 1.00 0.99 1.02 1.03 1.02 0.99 1.01 1.00 1.03 0.97 0.99 0.99 0.99

9 1.01 0.99 1.00 0.95 1.02 1.05 1.00 0.99 1.00 0.99 1.03 1.00 0.97 0.99 0.98

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
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and quadruplets that are less likely to occur in folded sequences than

what would follow from the AA propensities.

While there is a significant overlap between the distributions of

the PDB set and the randomly generated sets, both the triplet and the

quadruplet score distributions on the random sets are quite distinct

from that of the PDB set. The difference is slightly less when the ran-

dom sequences are sampled from the AA propensity distribution. The

differences are larger for the quadruplet score distributions: the over-

lap between the triplet PDB and propensity-sampled random distribu-

tion is 0.307 while the corresponding overlap between the quadruplet

distributions is only 0.191 (for identical distributions, the overlap

would be 1.0).

The IDP triplet and quadruplet score distributions are also shown

in Figures 3 and 4. They are both close to the PDB distribution, but

are slightly shifted toward the random distributions. Furthermore,

Tables 8 and 9 show the average triplet and quadruplet scores,

respectively, for the four different sets. As expected, the IDP scores

are slightly lower than the PDB scores for both the triplet and quadru-

plet scores, indicating weaker tendency for folding.

Table 9 also shows the correlation of the triplet and quadruplet

scores. On all four data sets, it is of the order of 0.9. This suggests that

TABLE 6 Absolute and relative triplet propensities with |ln (PNi/
PRi)| > 1

Sequence 1000*PNi ln (PNi/PRi)

GLY-SER-HIS 0.1134 1.108

GLY-HIS-MET 0.0331 1.117

ALA-ALA-ALA 0.3503 1.092

SER-HIS-MET 0.0417 1.873

ASP-ASP-ASP 0.1053 1.041

GLU-GLU-GLU 0.1770 1.012

GLN-GLN-GLN 0.0450 1.034

HIS-HIS-MET 0.0114 1.247

HIS-MET-ALA 0.0365 1.157

TYR-PHE-GLN 0.0580 1.483

TRP-PRO-CYS 0.0117 −1.236

HIS-HIS-HIS 0.0106 3.302

TABLE 7 Absolute and relative quadruplet propensities with |ln
(PNi/PRi)| > 3.2

Sequence 1000*PNi ln (PNi/PRi)

ALA-PHE-MET-CYS 0.1477 −3.386

ALA-CYS-SER-TRP 0.1419 −3.346

LEU-TYR-PHE-GLN 0.5778 3.548

ILE-TRP-MET-VAL 0.1275 −3.239

SER-ILE-CYS-TRP 0.1273 −3.237

THR-CYS-THR-MET 0.1332 −3.282

ASN-MET-MET-THR 0.1569 −3.446

HIS-HIS-HIS-TRP 0.0141 3.785

ARG-GLY-SER-HIS 0.5341 3.331

PHE-CYS-TYR-ASN 0.1580 −3.453

TYR-PHE-GLN-GLY 0.3710 3.317

TRP-SER-HIS-PRO 0.1098 3.430

GLY-SER-HIS-MET 0.2671 4.477

ILE-HIS-HIS-HIS 0.0670 4.027

HIS-HIS-HIS-MET 0.0250 4.578

ARG-GLY-CYS-PHE 0.2683 −3.983

HIS-HIS-HIS-HIS 0.0233 6.738
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F IGURE 3 Triplet score distribution for the nonredundant PDB
sequences (full line), for the propensity-based random sequences
(long dashes), for the uniformly distributed random sequences (short
dashes), and for the IDP sequences (dots)
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F IGURE 4 Quadruplet score distribution for the nonredundant
PDB sequences (full line), for the propensity-based random sequences
(long dashes), for the uniformly distributed random sequences (short
dashes), and for the IDP sequences (dots)

TABLE 8 Triplet score statistics

Data set <Triplet score> SD Number of sequences

PDB 0.047 0.062 35 668

IDP 0.044 0.067 752

W-random −0.043 0.032 100 000

U-random −0.051 0.034 100 000

Abbreviations: PDB, Protein Data Bank; IDP, intrinsically disordered

protein.
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combining the triplet and quadruplet scores would not improve the

separation of distributions. In fact, combining (adding) the triple and

quadruplet scores, the overlap between the PDB scores and the

propensity-sampled random distribution scores is 0.225—it is larger

than the overlap with the quadruplet scores only.

3.5 | Conformation dependence of the triplet
and quadruplet statistics

As discussed in the introduction, the current study is aimed at charac-

terizing sequences without the knowledge of their structure (if any).

However, it is also important to note that the AA distributions are dif-

ferent for different secondary-structure elements. While a detailed

study of such distinctions is beyond the scope of this work, a few

comparisons were carried out using our triplet and quadruplet scores

based on SS-specific distributions.

In the first step, triplet and quadruplet distributions were calculated

separately for segments that were annotated as helices, sheets, and

loops (defined here as segments not annotated as helix or sheet). Next,

the distributions of the scores from the same sequence set as used in

the earlier studies (Figures 3 and 4) and from the random (sampled from

the propensity distribution) set were calculated. The shapes of these dis-

tributions were similar to those in Figures 3 and 4. Since it was shown

that using the scores based on the triplet and quadruplet scores from

the full set were able to differentiate between random and folding

sequences to a good degree as demonstrated by the small overlap

between the corresponding distributions, the results of the SS-

dependent scores are also presented in terms of distribution overlaps.

The overlaps between the distributions based on the three SS types

are shown in Table 10. It is somewhat surprising that differences among

triplet distributions are rather small (ie, the overlaps are so large). For

quadruplets, the overlaps are less, especially between helices and sheets.

The overlaps between the distributions based on the SS-specific

PDB set and the propensity-based random set are shown in Table 11.

There is no significant difference among the overlaps of three SS dis-

tribution with the random set as the full PDB set. It is thus no surprise

that both the triplet and quadruplet SS distributions have similar over-

laps with the random set as the full PDB set.

3.6 | Melting temperature calculations

Since scores based on the triplet or quadruplet distribution were shown

to display different behavior for folding and nonfolding sequences, the

question arose if these scores can also be used as an indicator of

stability. To address this question, the melting temperatures of the

96 proteins16 were correlated with their triplet scores. Both Pearson

and Spearman (rank) correlations were calculated, resulting in correla-

tion coefficients of 0.12 and 0.10, respectively. Given the high correla-

tion between triplet and quadruplet scores, correlation with the

quadruplet scores cannot be significantly higher. This result suggests

that neither the triplet nor the quadruplets score is a useful measure

for the characterization of the stability of folded proteins.

3.7 | Foldability predictions based on the score
distributions

As the triplet and quadruplet score distributions showed significant

separation between the folding and random sequences (unlike the

adjacency score distribution), the results of prediction calculations are

presented only using the triplet and quadruplet score distributions.

Tables 12 and 13 present the foldability predictions based on the trip-

let and quadruplet score distributions, respectively. The predictions

using the quadruplet distributions are found to be slightly more reli-

able than those based on the triplet distributions. Also, the predictions

on the random sequence sets that were generated with the experi-

mental AA propensities predicted slightly more sequences to be fold-

able than the set using the uniformly random AA distribution. This is

in accordance with the conclusion of the SS prediction study's result

(Section 3.1) suggesting that the experimental AA distribution is one

contribution to foldability.

TABLE 9 Quadruplet score statistics

Data set <Quadruplet score> SD Number of sequences Triplet-quadruplet score correlation

PDB 0.094 0.097 35 668 0.94

IDP 0.070 0.100 752 0.97

W-random −0.082 0.048 100 000 0.94

U-random −0.109 0.052 100 000 0.89

Abbreviations: PDB, Protein Data Bank; IDP, intrinsically disordered protein.

TABLE 10 Overlaps between the various triplet and quadruplet
score distributions using SS-based statistics on the PDB sequence set

Statistics sources Triplet overlap Quadruplet overlap

Helix Sheet 0.74 0.23

Helix Loop 0.76 0.50

Sheet Loop 0.69 0.60

TABLE 11 Overlaps between triplet and quadruplet score
distributions limited to different SS elements of the PDB set and the
propensity-based random set

Statistics source Triplet overlap Quadruplet overlap

Helix 0.26 0.22

Sheet 0.29 0.23

Loop 0.25 0.20
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Tests were also run trying (a) using the adjacency score distribu-

tion but limiting the score calculations for residue pairs that show sig-

nificant separation between folding and random or (b) combination of

predictors (either with arithmetic or with geometric averaging) but no

improvement was obtained in either case.

4 | CONCLUSIONS

The analysis of the folded sequences in the PDB yielded several proper-

ties that are significantly different in the PDB set from randomly gener-

ated sets. The SS prediction test confirmed the importance of the

sequence following the known AA propensities but was found to be

unable to distinguish foldable and randomly generated but following the

experimental AA distribution. Small but significant differences were seen

in the residue adjacency propensities; smaller but still significant differ-

ences were found in the asymmetry of residue pair propensities. Much

larger differences were obtained with the distribution of triplets and qua-

druplets prompting the definition of a propensity score; distribution of

these scores for folding and randomly generated sequences were utilized

to formulate a prediction whether a given sequence is likely to fold. The

predictions were largely successful. On the other hand, an attempt to

use the propensity score to correlate it with stability was unsuccessful.

Comparison of the properties of randomly generated sequences

using the uniform and the AA-propensity distributions shows that

sequences whose composition follows the AA-propensity distribution

are more similar to the folding sequences than sequences based on

the uniform AA distribution. This difference is most evidenced in the

results from the SS prediction algorithm. This leads to the conclusion

that the nonuniform AA distribution is one contributor to foldability.

However, other results in this paper also show that simply following

the AA propensity distribution is unlikely to guarantee foldability.

The present work tested differentiating between folding and ran-

domly generated sequences using only the triplet or quadruplet distri-

bution. There are other properties that showed differences between

folding and randomly generated sequences but they were not included

in the folding prediction. Future work may find a way to use these addi-

tional properties to improve the folding/nonfolding prediction.
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