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Abstract

Proteins play important roles in living organisms, and their function is directly linked

with their structure. Due to the growing gap between the number of proteins being

discovered and their functional characterization (in particular as a result of experi-

mental limitations), reliable prediction of protein function through computational

means has become crucial. This paper reviews the machine learning techniques used

in the literature, following their evolution from simple algorithms such as logistic

regression to more advanced methods like support vector machines and modern

deep neural networks. Hyperparameter optimization methods adopted to boost pre-

diction performance are presented. In parallel, the metamorphosis in the features

used by these algorithms from classical physicochemical properties and amino acid

composition, up to text-derived features from biomedical literature and learned fea-

ture representations using autoencoders, together with feature selection and dimen-

sionality reduction techniques, are also reviewed. The success stories in the

application of these techniques to both general and specific protein function predic-

tion are discussed.
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1 | INTRODUCTION

Proteins are made up from 20 different types of amino acids, which

occur in nature and are encoded by DNA sequences. Proteins perform

essential roles in the cells of organisms. These include cell signaling,

regulation, recognition, catalysis of reactions, membrane transport,

and the provision of structure. The function performed by a protein

depends on its structure, which is indirectly, a result of its DNA

sequence.

A classical view of protein function focuses on the action of a sin-

gle protein molecule. For example, the catalysis of a given reaction or

the binding of a molecule, which may be small or large. Today this

local function is occasionally termed the “molecular function” of the

protein, such as to distinguish it from the expanded view of function

(Figure 1). A protein is defined as an element in the network of its

interactions in the case of an expanded view of protein function.

Numerous terms such as “contextual function” or “cellular function,”

have been coined for this expanded view of function.2 The idea

conveyed is that each protein plays a role in an extended network of

interacting molecules. Therefore, a function can be thought of as

“anything that happens to or through a protein”.3

The extent to which a protein's function is altered upon mutating

an amino acid depends on the type and position of the amino acid that

is mutated, for example whether the amino acid is found in an enzyme

active site. Thus, numerous mutations may affect protein function in a

complicated manner, and are therefore, difficult to predict. Due to lim-

itations imposed by experimental methods,4 predicting protein func-

tion by computational means has become crucial. Protein functions

can be described at different levels of complexity, which include cellu-

lar, biochemical, physiological, and phenotypic levels. In addition, pro-

tein function may be defined in a hierarchical manner. For instance, at

a high level, superoxide dismutase is an oxidoreductase, while at a

lower level, it converts superoxide radicals into hydrogen peroxide

and molecular oxygen.

Gene Ontology (GO) terms offer an accurate description of the

several levels of protein function.5 It is vital to comprehend that the

molecular or biochemical function of a protein is demonstrated via
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sequence and/or structural data. Therefore, in silico approaches can

aid in the prediction of protein function.6 As discussed by Lee et al,

there are different interdependent levels of protein function, which

may be divided into three major types of GO categories: molecular

function, biological process, and cellular component (Figure 2).7

Molecular function refers to activity at the molecular level (eg, cataly-

sis), and is commonly predicted through computational methods,

which identify homologues or orthologues. Biological process

describes broader functions, which are performed by assemblies of

molecular functions, such as a particular metabolic pathway. Genomic

inference methods can identify the direct physical protein-protein

interactions and indirect functional associations, which are found in

biological processes. Finally, cellular component describes the

location(s) within a cell in which the protein performs its function. Pre-

diction of protein subcellular localization is an important component

of bioinformatics based prediction of protein function and genome

annotation, as it can aid the identification of drug targets.8 This com-

ponent can be predicted through methods that predict signal

sequences, residue composition, membrane association, or post-

translational modifications.

Protein information is stored in several databases, such as

UniProt,9 which is the leading protein sequence database or Pfam,

which is a database of protein function families, for which the protein

sequence is known but the function is unknown.10 The gap between

the amount of protein sequences and the functional annotations has

been growing continuously (Figure 3). There is an order of magnitude

more of protein sequences today than 10 years ago in the UniProt

Knowledgebase (UniProtKB). However, the number of manually

annotated and reviewed protein sequences (UniProtKB/SwissProt)

has only marginally increased.

Therefore, a main challenge in bioinformatics involves predicting

the role played by proteins in biological processes and disease, as well

as predicting mechanisms by which such functions are performed. As

new algorithms are developed to address these questions, it is essen-

tial to evaluate the performance of these different function prediction

algorithms with respect to more traditional, manual methods. The bio-

informatics community has sought to address the problem of auto-

mated protein function prediction through initiatives such as the

Critical Assessment of Function Annotation (CAFA) challenge.11 This

is an experiment designed to provide large-scale assessment of com-

putational methods used to predict protein function.

Since more than a decade ago, researchers have used or machine

learning techniques to derive sequence-function relationships.

Machine learning models of protein function have shown to provide

good predictive performance, even when the underlying mechanisms

were not well understood. Bernardes et al documented the growing

critical mass of literature in which machine learning techniques were

used to predict protein function in their review paper.12 However, fol-

lowing the trend in other domains, besides the use of established

methods like random forests, support vector machines (SVM) and

neural networks, the use of deep learning has also caught on, with

impressive results. Deep learning is well suited to big data problems,

and is now within reach due to the rapid evolution in computational

performance. Therefore, we extend the review of the literature

beyond the one performed by Bernardes et al in 2013 to include

novel sources of features and deep learning approaches, among

others. Other reviews have focused on specific taxonomies and ontol-

ogies, such as enzyme functional class prediction13 and subcellular

localization,14 whereas this review is intended to be more comprehen-

sive to cover a wide array of features and techniques which may be

interchangeable across different taxonomies.

The notion of protein function and a recapitulation of the existing

techniques used for function prediction were already provided in this

introduction. The next part of this review presents protein function

F IGURE 1 The evolution of the meaning of protein function. The

traditional view is illustrated on the left, and the post-genomic view
on the right. Adapted from Reference 1 [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Classification of protein function according to GO:
molecular function, biological process, and cellular component [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Number of sequences deposited and experimentally
validated in UniProtKB over the past decade. The drop observed
between 2015 and 2016 is due to procedures deployed by curators
to identify and remove redundant proteomes
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prediction as a problem which can be targeted using machine learning

techniques. These techniques range from the generation and selection

of suitable features, to algorithms and models, which can be trained to

perform this task. In addition, the applications of these techniques to

general and specific function prediction are also discussed. This

review concludes with the future perspectives for these techniques in

this domain.

2 | MACHINE LEARNING TECHNIQUES FOR
PROTEIN FUNCTION PREDICTION

2.1 | Feature engineering and representation

The inputs to a predictive model, which is trained using machine

learning techniques pertinent to a particular object, in this case a pro-

tein, are known as features. A key step in applying machine learning

to any application is identifying suitable features. This can allow the

model to discriminate between one category of data and another in a

classification problem, or fit a suitable function to some data in a

regression problem. Generating suitable features is also known as fea-

ture engineering. A group of features representing one particular

object is known as a feature vector, while the n-dimensional space

associated with the feature vector is termed the feature space.

Typical protein features include amino acid sequences, physico-

chemical properties, and protein-protein interactions. Amino acid

sequences can be used to derive parameters such as amino acid com-

position, which refers to the occurrence of amino acids in a particular

sequence; amino acid transition, which represents the frequency with

which specific amino acid types are followed or preceded by other

amino acid types within the sequence; and amino acid distribution,

which captures the dissemination of specific amino acid types within

specific portions of the sequence. A particular category of sequence-

based features is the sequence motif, which consists of an amino acid

sequence pattern, which is widespread, and is thought to have a cer-

tain biological significance. Therefore, the presence or absence of a

particular sequence motif can be used as a binary feature. N-terminal

targeting sequences have also been used as features.15,16 Sequence-

related features such as Auto Covariance, Conjoint triad, local descrip-

tor, and Moran autocorrelation have proved useful in mining interac-

tion information in the sequence.17

Physicochemical properties of protein residues include isoelectric

points, molecular weights, polarity, hydrophobicity, normalized van

der Waals volume, polarity, extinction coefficients, polarizability,

charge, and surface tension. Protein-protein interaction (PPI) net-

works are mathematical representations of the physical contacts

between proteins. The linkage-based assumption,18 also known as the

guilt-by-association rule, comes from the observation that immediate

neighbor proteins and level-2 neighbors have a high probability of

sharing functions. Therefore a protein's function could be determined

from the majority of its neighbors’ functions. In addition to consider-

ing neighboring proteins, it is also common to consider the weights of

the interactions, which are proportional to the reliability of the experi-

mental sources. PPI tools such as Cytoscape,19 provide access to

further network features, such as average shortest path length, neigh-

borhood connectivity, radiality, and the topological coefficient. Fea-

tures can also be generated based on the overall Composition,

Transition and Distribution (CTD) of amino acid attributes such as

physicochemical properties, secondary structure, and solvent accessi-

bility.20 This feature vector was used to classify protein locations in

cellular sorting pathway.

After introducing the basic sources, we now discuss how features

can be better represented. The concept of protein granularity and the

possibility of extracting features was originally proposed in Reference

21. Protein granularity captures information about sequence-order

effects and amino acid composition. As machine learning algorithms

can only handle vectors, the Pseudo Amino Acid Composition

(PseAAC)22 was developed to formulate an amino acid sequence of

arbitrary length, such as a vector. A protein sequence with length

L amino acid residues R1R2R3…RL, where R1 represents the residue at

sequence position 1, R2 represents the residue at position 2 and so

on, may be denoted as a (20 + λ)-dimensional vector, defined by 20

+ λ discrete numbers, that is

X = : x1…x20x20+1…x20 + λ½ � ð1Þ

The first 20 numbers above represent the classic amino acid com-

position, while the next lambda discrete numbers reflect the effect of

sequence order.

The position-specific scoring matrix (PSSM) was first introduced

for detecting distantly related proteins.23 The original PSSM intro-

duced by Gribskov et al consists of the following components:

(a) position: indicates the sequentially increased index of each amino

acid residue in a sequence after multiple sequence alignment;

(b) probe: a group of typical sequences of functionally related proteins

that have been aligned by sequence or structural similarity; (c) profile:

a matrix consisting of 20 columns corresponding to 20 amino acids;

(d) consensus: a sequence of amino acid residues that are closest to all

of the alignment residues of probes at each position. It is generated

by selecting the highest score in the profile at each position.

Therefore, a PSSM for a given protein consists of a N × 20 matrix,

where N is the length of the protein sequence. It assigns a score Pij for

the jth amino acid in the ith position of the query sequence with a large

value indicating a highly conserved position, and a small value indicat-

ing a weakly conserved position. However, as machine learning algo-

rithms typically require a fixed input size, the PSSMs need to be

processed further.

A systematic study of three different feature sets extracted using

PSSM was performed by Jeong et al.24 The first feature set consisted

of the averaged PSSM profiles over blocks, each with 5% of a

sequence. A protein sequence, regardless of length, is divided into

two blocks and each block consists of 20 features derived from the

20 columns in the PSSMs. In the second feature set, instead of consid-

ering the locations of domains in a sequence, the authors focused on

the domains with similar conservation rates. In the third feature set,

the physicochemical properties of probed residues using original pro-

tein sequences were considered. A total of nine physicochemical
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properties, were categorized into two groups such as average and

density groups. Hydrophobicity, isoelectric point, and mess scale

were averaged, while hydrophobic, hydrophilic, polar, nonpolar, posi-

tive, and negative charge residues were used for calculating densi-

ties. Following training using machine learning models such as SVMs,

Random Forests, and decision trees, the second feature set was

found to be the most effective in protein function prediction. In Ref-

erence 25, the authors used protein granularity as one of the input

features.

Machine learning algorithms generally require numerical features

in order to develop a suitable model. While this is straightforward for

most sequence-, physiochemical- and PPI-derived features, it is also

possible to use text-based features if these are converted into a

numerical format. Advances in Natural Language Processing (NLP)

techniques have resulted in a greater exploitation of text-based fea-

tures for protein function prediction from biomedical literature, such

as abstracts or full-texts of journal articles.26 NLP techniques are also

well suited due to the nature of data storage in biological and bio-

chemical databases.27

These techniques were previously used in representing amino

acid sequences as text, and extracting features such as n-grams

and term frequency-inverse document frequency (TFIDF). An n-

gram is a contiguous sequence of n items from a sequential

dataset, such as a protein sequence. In TFIDF, each document is

represented by a vector of all terms in a controlled vocabulary.

For each term in a document, a weight is calculated as the prod-

uct of the TF and IDF, where TF is its frequency in this document,

and IDF is its inverse document frequency in the full dataset of

documents. The basic idea of TFIDF is to emphasize the terms

with more occurrences in a document and less occurrences (more

discriminable) in the document dataset. Another representation is

document-to-vector, which is a dense, semantic representation

for documents.28 In NLP, text features are represented using vec-

tors and techniques such as Word2Vec.29 Asgari and Mofrad

describe how they developed ProtVec to represent amino acid

sequences.30 Text mining applied to bioinformatics literature has

been shown to be particularly useful in extracting protein-protein

interactions and extracting the relationship between gene func-

tions and diseases.

In the specific case of cellular component prediction, immunohis-

tochemistry images have also been used as features. From September

2018 to January 2019, a Kaggle competition31 was organized by the

Human Protein Atlas to bring together computer scientists and biolo-

gists to identify protein locations from these images.

When using traditional machine learning algorithms and models,

typically, feature generation needs to be guided to some extent by

domain experts. However, deep learning algorithms have shown to be

capable of extracting the relevant and salient features from a given

input. Therefore, in this case the feature generation is said to be data-

driven. A typical example of data-driven feature generation is a neural

network autoencoder, which attempts to learn its own inputs. In this

case, the features are extracted from the output of the neurons in

middle of the network, and can then be used to train other

classifiers. A pictorial example of this architecture is shown in figure

of Reference 32. Some work has already been done to use

autoencoders as feature generations for protein function predic-

tion.32,33 A summary of typical features used to represent proteins for

functional classification is shown in Table 1.

2.2 | Feature selection

In several applications, such as biology, the usage of machine learning

techniques suffers from the curse of dimensionality, which means that

the feature space is so large that the available data become sparse,

and in turn, a performance degradation results. Therefore, this wealth

of information needs to be filtered out to obtain a final set of features,

which are suitable for the problem at hand. This step is known as

dimensionality reduction. Feature selection, in which subsets of the

original set of features are kept, is a special case of dimensionality

reduction.

Naively, one would test each possible subset of features, and select

the subset, which minimizes the error with respect to the ground truth.

However, this brute-force approach is computationally feasible for only

small feature sets. Molina et al hold that Feature Selection Algorithms

(FSAs) can be characterized as a search problem in the hypothesis

space (ie, space of candidate feature subsets) in terms of three aspects:

search strategy, which is the general strategy with which the space of

hypothesis is explored; generation of successor candidates (the mecha-

nism by which possible variants of the current hypothesis are pro-

posed); and evaluation measure, which is the function by which

successor candidates are evaluated, allowing to compare different

hypotheses to guide the search process.85 A general review of feature

selection in bioinformatics, with specific applications of these tech-

niques in sequence analysis, microarray analysis, and mass spectra anal-

ysis is available in Reference 86. On the other hand, Wang et al87

categorize feature selection algorithms for big data bioinformatics into

exhaustive search, heuristic search, and hybrid methods.

Feature selection algorithms are generally classified into three

main categories: wrapper methods, filter methods, and embedded

methods. Wrapper methods evaluate candidate feature subsets by

using the same type of predictive model (eg, random forest or support

vector machines) that will be applied to the selected features later,

when the final classification model will be built. Each new feature sub-

set is used to train a model, which is tested on a hold-out set to obtain

an error-rate. As wrapper methods train a new model for each subset,

they are computationally intensive, but tend to provide the best per-

forming feature set for that particular model. Recursive Feature Elimi-

nation (RFE) is an example of a wrapper method. The predictive

model is initially fitted with all available features, and the weakest fea-

ture is then removed until a predetermined minimum number is

reached. Examples of work, which used RFE include References 69,

71. On the other hand, forward feature selection starts with the eval-

uation of each individual feature and selects the one, which results in

the best performing model. Then, all possible combinations of that

selected feature and subsequent features are evaluated in order to

select a second feature. This is iteratively repeated until a maximum
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number. Forward feature selection was used in Reference 72. In Ref-

erence 41, feature ranking was performed in the WEKA tool88 using

SVM as an evaluator.

Filter methods evaluate candidate feature subsets by using a

proxy measure instead of the error rate obtained by the algorithm to

be applied to the selected features later. This measure is chosen as it

is computationally inexpensive, but still captures the usefulness of the

feature set. Common examples include mutual information and the

Pearson product-moment correlation coefficient. The t test and ANal-

ysis Of VAriance (ANOVA) are two examples of univariate parametric

filter methods, while the Wilcoxon rank sum is an example of a univar-

iate model-free method. The ANOVA method was used by Tang et al

to rank 400 dipeptides, which were later used to train a SVM classifier

to predict differences between growth hormone binding proteins.89

Al-Shahib et al used a filter-based approach to select discriminatory

features. For each feature, the Wilcoxon signed-rank test was per-

formed for each comparison of functional classes.2 Features were

retained if for at least one comparison of classes a Wilcoxon P-value <

.02 was achieved, that is, they contribute potentially discriminating

information. A filter method called FrankSum was specifically devel-

oped for protein function prediction.90 It uses a combination of the

Wilcoxon rank test P-value to measure the statistical significance of a

single feature in discriminating two functional classes, and correlation

coefficients to examine redundancy between features.

The Information Gain Ratio measure can also be used to rank fea-

tures. This was used in References 40, 43. XGBoost, a type of gradient

boosted tree algorithm, was used as a filter method in Reference 68

to select 32 GO features from an initial 21 000 features. In Reference

42, the authors evaluated the use of rough set theory as well as Cor-

relation Feature Selection, Fast Correlation-Based Filter and Artificial

Immune System as feature selection algorithms for classifying protein

function. In Reference 91, rough sets were used to rank the top

15 features from a feature set built based on compositional percent-

ages of the 20 amino acids properties. The Minimum Redundancy

Maximum Relevance (mRMR) feature selection algorithm92 is an

extension of maximum-relevance, in which the selected features are

those, which correlate strongest to the classification variable. As bio-

logical data often contains relevant but redundant data, mRMR

attempts to address this problem by removing these redundant sub-

sets. Several works made use of mRMR43,51,76 for protein function

prediction.

Embedded methods are a catch-all group of techniques, which

perform feature selection as part of the model construction process.

The classical example is the LASSO method for constructing a linear

model, which penalizes the regression coefficients with an L1 penalty,

reducing many of them to zero. Any features, which have nonzero

coefficients, are “selected” by the LASSO algorithm. Another example

of an embedded method is the Random Forest, which can be used to

obtain feature importance. This technique was used in Reference 55,

to rank protein sequence features for enzyme function classification.

After feature ranking by a random forest, Lou et al, performed

wrapper-based feature selection using a best-first forward search

strategy.57

On the other hand, techniques such as Principal Component Anal-

ysis (PCA) or Linear Discriminant Analysis (LDA) produce a smaller set

of new synthetic features from a linear combination of the original

ones. PCA was used in References 17, 25, 93-95, while multilabel

LDA was used in Reference 59. Apart from reducing the dimensional-

ity of the input features, it may also be desirable to reduce the space

of possible output labels. Makrodimitris et al. developed two novel

Label-Space Dimensionality Reduction (LSDR) techniques to improve

the CAFA performance of several function prediction algorithms.58

From a NLP point of view, non-negative matrix factorization was used

in Reference 96, to transform the bag of words input features into a

new, compressed space that captures the variability of the data.

2.3 | Machine learning algorithms and models

Machine learning techniques are used to determine the parameters of

a data-driven model, which would translate a given input to the

TABLE 1 Summary of typical features used to represent proteins for functional classification

Feature Advantages Disadvantages Usage in literature

Physicochemical

properties

Simple and numeric Do not capture enough information

about the protein

25 34-44

Sequence-based Capture plenty of information Typically require a conversion process to

numeric data for machine learning

2,7,15-17,33,34,36,38,40,42-72

PPI networks Neighboring proteins have a high probability of

sharing functions

Reliability of PPI data depends on the

experimental source

45,68,73-76

Biomedical text Provides a rich source of information which is

currently under-utilzed

Results are strongly affected by how

informative the selected terms are

16,77-82

Immunohistochemistry

images

Rich in features, easy to visualize Requires more computational power and

larger datasets, only useful for

subcellular localization tasks

83

Representation learning Removes the need for manual feature

engineering and selection

Requires more computational power and

larger datasets

32,33,45,47,64,77,84
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correct output. Protein function prediction is a classification problem,

as the input needs to be mapped to a discrete output. Classifier

models can be trained to perform this task using supervised,

unsupervised, or semi-supervised learning. In supervised learning, a

training dataset is available with a series of output labels (known as

the ground truth) corresponding to input vectors. On the other hand,

in unsupervised learning no ground truth is provided. Therefore,

unsupervised learning techniques are primarily concerned with finding

patterns and structures (eg, clusters) in the data, which then may need

to be analyzed further. Semi-supervised learning lies between the two

previous learning paradigms, in that the training set typically contains

a mixture of a small amount of labeled data and a large amount of

unlabeled data.

A large variety of machine learning algorithms and models have

been developed in the past decades, and have also been applied in

many contexts and applications. Among the simplest of supervised

learning algorithms is logistic regression, in which a sigmoid function

is used as a squashing function to map a real-valued input to a range

from 0 to 1. You et al trained a logistic regressor on text-based fea-

tures (TFIDF and D2V), derived from the MEDLINE biomedical litera-

ture database. This was done to predict between molecular function,

biological process, and cellular component.77 A kernel logistic regres-

sion model based on diffusion kernels for protein interaction networks

was developed in Reference 73. The model achieved better prediction

accuracy when compared to a previous model based on Markov ran-

dom fields. Similarly, the authors in Reference 74 also trained a logis-

tic regressor to predict protein function based on protein-protein

interactions.

Naive Bayes classifiers are a family of simple, probabilistic classi-

fiers, which apply Bayes’ theorem with the strong (naive) assumption

that all features are independent from each other given the class vari-

able. In Reference 97, the authors train a Naive Bayes classifier to pre-

dict protein-protein interaction sites, while in Reference 98, the

Extended Local Hierarchical Naive Bayes algorithm99 was used.

The SVM algorithm100 seeks to maximize the separation between

points corresponding to different classes in some n-dimensional

space, and therefore, determines a maximum-margin hyperplane. As

the data are often not linearly separable in the original feature space,

they are typically mapped to a higher-dimensional space in which the

separation should be easier. This is achieved by means of kernel func-

tions, such as the polynomial or the radial basis function (Gaussian

function). These kernels have different variables (known as hyper-

parameters), which need to be tuned in order to achieve better perfor-

mance. In the case of the widely used radial basis function, these

include γ (which controls the width of the gaussian) and C (a penalty

factor which controls overfitting vs underfitting) hyperparameters.

Due to its successes in other fields, it is the most commonly used

algorithm in initial works, which attempted to use machine learning

techniques for protein function prediction. Examples of prior work

using SVMs include References 2, 15, 32, 35, 38, 39, 41, 42, 46, 51,

60, 65-67, 69, 72, 81, 82, 95, 101-107. Generally, the best hyper-

parameters are identified through a grid search in the parameter

space. In Reference 37, other techniques such as genetic algorithms

and particle swarm optimization were also attempted, however, the

grid search still yielded the best values.

The k nearest neighbors (kNN) algorithm is a nonparametric

method which classifies a given observation through a majority vote

of the labels of the closest k points in a given feature space. No model

training is required. However, the majority voting procedure suffers

when the class distribution is skewed. Examples in the literature in

which kNN was used include References 25, 54, 58, 76, 80.

Ensemble methods combine several base models in order to pro-

duce a better predictive model. There are two categories of ensemble

methods. In sequential methods, “boosting” is used to incrementally

build an ensemble, by training each model on the same dataset but

adjusting the weights of individual data points according to the error

of the last prediction. Examples of such methods include AdaBoost108

and Gradient Boosting.109 The XGBoost algorithm,110 is a scalable

tree boosting system, which was used in Reference 68 to classify

human proteins as aging-related or nonaging-related.

On the other hand, parallel methods use “bagging” (also known as

bootstrap aggregation), to generate multiple base models simulta-

neously. The random forest111 uses bagging as one of the two main

sources of randomization, the other being the fact that it randomly

samples features to be used as candidate features for selecting the

best feature to split the data at each tree node. This technique was

used for protein function prediction in References 43, 55, 71, 112. In

Reference 113, a protein function prediction method called tran-

sductive multilabel classifier was developed, based on a directed

birelational graph that models the relationship between proteins and

functions. This was extended in the same paper to transductive multi-

label ensemble classification.

Pitting several machine learning models against each other, and

then determining the prediction output based on voting can also be

used to develop an ensemble method. In Reference 114, the majority

vote was used together with the mean ensemble and top k ensemble

algorithms in predicting human protein subcellular localization.

Decision trees are one of the simplest machine learning models.

Each leaf in the tree represents a decision or output of the model. A

decision would have been reached after traversing a particular path

along the tree's branches. Several implementations of decision trees

exist. The C4.5 decision tree,115 is generally used for classification and

has been used in Reference 40. A novel decision tree classifier pres-

ented in Reference 62, improved on the C4.5 technique by using the

uncertainty measure for best attribute selection. In Reference 116,

the Clus-HMC heuristic117 was used to select the best attributes to

construct the tree. Another novel implementation of a decision tree

was the Recursive Maximum Contrast Tree developed in Refer-

ence 118.

A neural network consists of a series of interconnected layers of

units called neurons. Neurons are also known as perceptrons, which

give rise to the term “multilayer perceptron,” a typical neural network

architecture. The number of neurons in the input layer should match

the input feature dimension, while the number of neurons in the out-

put layer should match the number of outputs. In classification prob-

lems, it is desirable to represent the output from the network using
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one hot encoding. In one hot encoding, categorical variables are repre-

sented by a binary vector having a length equivalent to the cardinality

of the set of values of the categorical variables. The vector is filled

with zeros, except at the index of the categorical value, which is

assigned a 1. The output of a given neuron is computed via an activa-

tion function, which in turn, takes as an input the weighted sum from

the previous layer of neurons. Typical activation functions include the

sigmoid, tanh and rectified linear unit (ReLU). Therefore, the goal of

training is to learn appropriate values for the weights so as to obtain a

correct output for a given input. In order to learn more complex input-

output mappings, the neural network architecture typically has a num-

ber of intermediate layers called hidden layers.

In Reference 119, the authors performed hierarchical multilabel

classification using local multilayer perceptrons. This approach takes

into account the fact that proteins may perform several functions,

which may be further specialized into subfunctions. The large number

of output labels (eg, several thousand) can hinder the performance of

machine learning algorithms. Therefore, in Reference 93, an ensemble

of 100 neural networks was trained to predict protein function, each

with 100 outputs, rather than a single neural network. A hierarchical

neural network was also trained in Reference 120, exploiting the

inherent hierarchical nature of protein function. The authors trained

both Adaline networks, composed of a single layer of adjustable

weights, and multilayer perceptrons (two layers). The latter architec-

ture achieved better performance. Multilabel hierarchical classification

was performed using competitive neural networks in Reference 121.

The difference with respect to standard multilayer perceptrons is that

neurons of the output layer compete to be activated, such that only

one output neuron will be declared the “winner” of the competition

process.

Another algorithm, which seeks to mimic the function of the brain,

is the neural response.122 It simulates the neuronal behavior of the

visual cortex, and was used for protein function prediction in Refer-

ence 61, by defining a distance metric that corresponds to the similar-

ity of the amino acid subsequences. The latter was important to

understand how the brain can distinguish different sequences. Proba-

bilistic neural networks use the Bayes optimal decision rule for classi-

fication, and take into account the probability density function for

each class. The latter can be estimated using the Parzen nonparamet-

ric estimator. Probabilistic neural networks were used in Reference

46, and offered better predictive performance than kNN and SVM in

identifying protein functional families from sequence.

Rather than being limited to predicting continuous or discrete val-

ued outputs, deep learning123 is particularly concerned with learning

data representations, that is, feature learning. This allows the model

to automatically discover the required features, replacing the tradi-

tional feature engineering and selection process. Therefore, they are

also known as end-to-end models. Deep learning is commonly associ-

ated with neural network architectures, which have several hidden

layers. With the advances in computing power afforded by Graphical

Processing Units (GPUs), training of deep learning models for a variety

of tasks is now within reach. This holds only for the cases where a

very large amount of data is available, in order to properly estimate

the very large number of parameters of deep neural networks.123

In Reference 45, three separate models (one per each GO sub-

ontology) were trained using deep learning on amino acid sequence

and protein-protein interaction data. Trigrams were built from the

amino acid sequences and converted to dense embeddings, while the

PPI network features were used to generate knowledge graph embed-

dings. The sequence features were then passed through a 1D con-

volutional layer, and max pooling was then performed. The output

from max pooling was then combined with the PPI network features

into a fully connected layer with 1024 neurons, which was subse-

quently passed to hierarchically structured neural networks with sig-

moid activation functions for classification. The full architecture is

shown in figure of Reference 45.

Three deep architectures were evaluated in Reference 84 to pre-

dict human protein function. A multitask deep neural network

(MTDNN), which consisted of shared hidden layers and task-specific

hidden layers, comprised the first architecture and was developed by

the authors. Its performance was compared to a multilabel deep neu-

ral network (in which shared hidden layers are used all the way until

the final output layer), and a single-task deep neural network. The

MTDNN performed better than the other two architectures, as well

as FFPred3 and BLAST.

Deep network fusion was used for protein function prediction in

Reference 32. A multimodal deep autoencoder was used to extract

features, which were then passed on to a SVM. In Reference 47, deep

learning was used to learn embeddings for protein sequences, which

were restricted to a maximum length of 2000. Each amino acid was

represented as a 23-dimensional vector. A convolutional layer

together with average pooling was then trained on a GPU. A similar

approach was used in Reference 107, in which the output from a sta-

cked denoising autoencoder was passed onto a binary-relevance

SVM. The input dataset consisted of microarray expression data and

phylogenetic profiles for yeast. The authors in Reference 64 focused

on human protein subcellular localization, and also used a stacked

autoencoder. They tried SVM, random forests and softmax regression

in the last layer of the deep learning network to make predictions, and

found that the best results were achieved with the latter. Protein-

protein interaction was the subject of machine learning based predic-

tion in Reference 48. The authors applied a stacked autoencoder to

protein sequence autocovariance Pan's PPI dataset. A similar

approach was used in Reference 49.

Deep learning has also been applied to protein function prediction

with text-based features. Deep semantic text representation was used

in Reference 77 for biomedical literature. Multifunctional enzyme

function prediction was achieved in Reference 78, with hierarchical

multilabel deep learning.

As mentioned previously, immunohistochemistry images are a

potential source of features in protein function prediction. Standard

(so-called vanilla) neural network architectures run into problems

when they need to be applied to images (in two dimensions or more

when also considering, eg, color) or sequential data. In the case of the

former, the high dimensionality due to the high image resolution
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means that the neural network will have many parameters, which

need to be learned. This leads to slow training and poor performance.

Convolutional Neural Networks (CNNs),124 on the other hand, take

advantage of local spatial coherence in the images, and perform con-

volution operations, which result in fewer parameters, which need to

be learned. Several CNN architectures developed recently, such as

VGG16125 or AlexNet,126 are achieving high performance. In addition,

it is possible to use these pretrained models on unseen data. In Refer-

ence 127, the author used a CNN in conjunction with both a SVM

and a kNN classifier to predict protein function. On the other hand, in

Reference 70, CNNs were trained to identify families of efflux pro-

teins in transporters on features extracted from PSSM profiles.

Recurrent Neural Networks (RNNs)128 are suitable for processing

sequential data, as their architecture allows for maintaining an internal

state. Long short-term memory (LSTM)129 networks are an evolution

of RNNs, which have been applied successfully in a number of

domains, from speech recognition130 to DNA sequences.131 In Refer-

ence 53, a deep RNN was used to predict protein function from

sequence, while in Reference 132 the authors used a three-unit LSTM

together with neural machine translation.

In several cases, rather than just using a single machine learning

model, results were achieved through a combination of algorithms.

For instance, in Reference 63 the classification results from neural

networks and SVM were fused via a heuristic fusion rule. In Reference

133, an ensemble multi-instance, multilabel learning neural network

was trained. Multi-instance,134 multilabel learning is useful when an

observation is described by multiple instances and associated with

multiple class labels.135 Therefore, it is particularly applicable to pro-

tein function prediction, as proteins are often inherently multidomain

and multifunctional, and each domain may fulfill its own function inde-

pendently or in a concerted manner with its neighbors. A two-layer

architecture was developed in Reference 133. In the first layer, train-

ing examples for each class label were clustered by invoking k-

medoids, and then medoids of clustered groups were retained. Then

neural nets were used to compute the basis functions between one

example and the medoids.

Several other machine learning algorithms and models were used

only sparingly in the literature. Rough set theory was developed in the

early 1980s as a mathematical approach to intelligent data analysis

and data mining.136 It distinguishes between objects based on the

concept of indiscernibility, and deals with the approximation of sets

using binary relations constructed from empirical data. Rough sets

were used in Reference 91 to predict between seven pectin lyase-like

subfamilies. In Reference 137, the protein was modeled as a docu-

ment, while the protein function label was the topic. A supervised

topic model (labeled latent Dirichlet allocation138) was used to make

predictions based on protein sequences organized into a bag of

words. Bag of words from protein sequence was also used to generate

features in Reference 59, with a model based on multilabel linear dis-

criminant analysis then being trained. Finally, multilabel Gaussian ker-

nel regression was used in Reference 139.

3 | MACHINE LEARNING MODEL
IMPLEMENTATION, TUNING, AND
EVALUATION

In the past decade, machine learning frameworks have evolved in

response to increasing demand across various disciplines. The most

commonly used frameworks are Scikit-Learn140 for the Python pro-

gramming language (which has been ranked as the most commonly

used programming language by the IEEE Spectrum since 2017141),

several packages in R and the Statistics and Machine Learning toolbox

of MATLAB.142 Due to the computationally intensive nature of deep

learning, several libraries and frameworks have also been developed

which allow models to be trained at faster speeds on GPUs and com-

puting clusters, such as TensorFlow,143 Keras,144 Caffe,145 and

PyTorch.146 With increasing amounts of training data available, from

Gene Ontology to biomedical literature, as well as new, computation-

ally intensive architectures, which use deep learning, the use of GPUs

is becoming more prevalent in training machine learning algorithms to

predict protein function. Examples of works in the literature, which

made use of hardware acceleration include References 45, 47,

64, 107.

The machine learning models described in the previous

section often need to be tuned to achieve a more satisfactory perfor-

mance. This involves determining appropriate hyperparameters (which

are set prior to training by the data scientist as opposed to the param-

eters, which are learnt during training), which also allow the model to

generalize and perform well even with unseen data. There are only a

few general hyperparameters, such as the optimizer (eg, Adam,147

RMSprop,148 or stochastic gradient descent) and the learning rate,

while the rest are usually specific to a particular model or algorithm. In

particular, in neural networks, these might be the activation function

of the neuron, as well as the number of neurons in each layer and the

number of hidden layers. Neural network performance can also be

boosted by conducting the training over multiple epochs, or by

increasing the number of times that the training data flows through

the network.

Although there are suggested ranges of values and rules of thumb,

there is no exact science of selecting the best hyperparameters prior

to training. The most widely used method is to perform a search in

the space of hyperparameters, either in a random fashion or using a

systematic grid search. The hyperparameter search is often facilitated

by several modern machine learning frameworks and combined with

cross-validation. In k-fold cross-validation, its simplest form, the ran-

domly shuffled training dataset is split into k groups, and in each

group a percentage of samples is used as a training set, while the

remainder is used as a test set. Therefore, an averaged performance

result can be obtained, avoiding the so-called “lucky split.”

Sometimes, the performance of machine learning classifiers can be

boosted by mitigating class-imbalance, which occurs when the num-

ber of samples in each class is skewed. In Reference 149, the authors

compared the performance of three class-balance strategies for SVM

in relation to protein function prediction. These included under-
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sampling (in which the extra samples of the majority class(es) are dis-

carded), Synthetic Minority Over-sampling Technique (SMOTE), in

which synthetic samples of the minority class are added to the

dataset, and weighted SVM, which keeps the number of samples in

each class but assigns appropriate weights during training to specifi-

cally improve the performance for the minority class. The latter two

techniques achieved the best results, although weighted SVM was

less computationally demanding.

As protein function prediction is generally treated as a classification

problem, the metrics used to evaluate the performance of the machine

learning models typically include accuracy, precision, recall (sensitivity),

specificity, and the F1-score. The F1-score is defined as the harmonic

average of the precision and the recall, and handles class imbalance bet-

ter than accuracy (since accuracy can be trivially maximized by always

predicting the majority class). In addition, for better visualization and

performance understanding, a Receiver Operating Characteristic (ROC)

curve can be obtained by plotting the true positive rate as a function of

the false positive rate. The larger the Area Under Curve (AUC), the bet-

ter the performance, as this normally means that a higher true positive

rate is achieved for the same false positive rate. A similar metric can be

derived from the precision-recall (PR) curve, known as Area Under PR

(AUPR). Two further metrics used as the gold standard in the CAFA

challenges are Fmax and Smin.
11 The former is defined as the maximum

F1-score obtained by varying the classifier threshold (and therefore the

working point along, eg, a precision-recall curve), while the latter is

obtained by minimizing the uncertainty and misinformation. A list of

commonly used metrics found in the literature for evaluating the per-

formance of classifiers for protein function prediction is shown in

Table 2. Typically, several metrics tend to be calculated in a given work

as most of them provide complementary information.

Although certain algorithms and models have proved to learn

input-output mappings more effectively than others, and in a variety

of domains, it is appropriate to train different machine learning models

and see which results in the best performance. In Reference 152, the

performance of logistic regression, Naive Bayes, SVMs, a decision tree

and a neural network, was compared to evaluate the suitability of

using dissimilarity representations. The SVM algorithm was found to

give the best results in terms of F1-score and AUC metrics. In Refer-

ence 17, extreme machine learning was compared to a SVM, while in

Reference 57, Gaussian Naive Bayes was trained together with a deci-

sion tree, random forest, logistic regression, kNN and SVM with both

polynomial and RBF kernels. A SVM and the kNN algorithm were

trained on sequence motifs for enzyme classification.52 Finally, in Ref-

erence 153, the performance of a simple neural network was com-

pared to that of a SVM for prediction of protein-protein interactions

in human Bacillus anthracis.

4 | APPLICATIONS OF MACHINE LEARNING
FOR PROTEIN FUNCTION PREDICTION

In most of the literature, machine learning algorithms are trained to

predict protein function using a particular classification scheme as a

ground truth. The most common taxonomies are Functional Catalogue

(FunCat),154 Enzyme Commission (EC),155 and Gene Ontology.5 The

FunCat annotation scheme consists of 28 main categories that cover

general features such as cellular transport, metabolism, and protein

activity regulation. Each of the main branches has a hierarchical, tree-

like structure. The EC is a hierarchical classification scheme for

enzymes, based on the chemical reactions they catalyze. The top level

consists of seven enzyme classes, such as oxidoreductases, hydro-

lases, and ligases. Gene ontology (GO) defines a representation of

terms for gene product properties. The ontology covers three

domains: cellular component (which refer to parts of a cell or its extra-

cellular environment); molecular function (the elemental activities of a

gene product at the molecular level, such as binding or catalysis); and

biological process (operations or sets of molecular events with a

defined beginning and end, relevant to the functioning of integrated

living units such as cells and tissues). Each of the three GO ontologies

is a Directed Acyclic Graph (DAG), where a node (GO term) can have

multiple parents in the hierarchy, unlike the simpler tree-based hierar-

chies for the EC code and FunCat mentioned earlier.

Earlier works focused on classification schemes such as EC and

FunCat. In Reference 36, the authors train a SVM and a Random For-

est to predict top-level EC classes from seven features, such as amino

acid sequence, molecular weight, and chain length. SVMs were also

used in Reference 60 for the same class prediction, this time using

two sequences per protein corresponding to the primary and second-

ary structures. In Reference 34, SVMs were trained on features such

as physicochemical properties and sequence similarities to predict five

different levels of enzymatic function. Very good results (F1-score of

�0.99) were achieved. Protein functions were predicted according to

the FunCat taxonomy in Reference 59, using multilabel linear discrimi-

nant analysis, and in Reference 75 using multilabel semi-supervised

learning on graphs, which were based on input features from protein-

protein interactions. The latter category of input features was also

used in Reference 74 to train a logistic regressor and predict 17 Fun-

Cat classes.

Protein function prediction based on GO terms is a more recent

initiative. The various editions of the CAFA challenge have made

available an increasing number of sequences to the community with

the task of predicting GO annotations. A summary of the latest

CAFA3 and CAFA-π challenges is available in Reference 156. The

GOLabeler ensemble method,50 which combines BLAST-kNN, logistic

regression and a Naive GO term frequency computation to solve the

problem of Learning To Rank (LTR) achieved the best performance

when compared to other CAFA3 entries across the board (ie, for

molecular function, biological process and cellular component ontol-

ogies). Machine learning techniques have been used to prediction

functions related to one, two, or all three domains. According to

CAFA, the prediction accuracy, which uses machine learning tech-

niques is lowest for the Biological Process domain.11 Around a dozen

works attempt to predict protein function related to all three domains.

The techniques used, which were already expanded upon earlier,

range from deep neural networks32,45,47,84,132 to kNN,58 logistic

regression,77 and SVMs.56,79,103 In Reference 80, a kNN classifier was
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used to predict protein function from text-based features derived

from biomedical literature in both the molecular function and biologi-

cal process domains.

Only molecular function was considered in the works of Refer-

ences 70, 89, 96, 149, 157. Transductive multilabel ensemble classifi-

cation was used to determine protein functions related only to

Biological Process in Reference 113. Most of the literature, which

focused on predicting protein function pertinent to a sole domain,

was relevant to the cellular component category. The most used

machine learning model has been SVM, which was used in References

15, 16, 44, 65, 66, 72, 81, 101, 150, 158. Deep learning is used in

References 64, 139. In Reference 83, immunohistochemistry images

from the Human Protein Atlas database were used. An ensemble

strategy was used in Reference 114 for human protein subcellular

localization, while the authors in Reference 71, used a random forest

to predict Golgi-resident protein types from non-Golgi resident.

In other instances in the literature, machine learning algorithms

were trained to predict whether a given protein would fit into one of

a select number of classes. In Reference 151, three different models

(SVM, random forest, and kNN) were trained on short-linear motifs to

predict whether a particular protein was a calmodulin-binding or a

mitochondrial protein. A SVM was also used in Reference 104, to

TABLE 2 List of commonly used metrics found in the literature for evaluating the performance of classifiers for protein function prediction

Metric Advantages Disadvantages Usage in literature

Accuracy Answers the question: how many samples

were correctly labeled out of all

samples?

Provides misleading information in the

event of class imbalance

16,17,25,32,47,48,53,54,56,60,64-67,91,105,139,150,151

Precision Answers the question: how many samples

labeled as COI actually belong to the

COI?

Does not consider false negatives 17,34,36,46-48,53-55,60,82,107,132,150

Recall Answers the question: of all the samples

which actually belong to the COI, how

many were correctly predicted?

Does not consider false positives 15,17,34,36,39,46-48,53-56,60,74,82,107,132,139,150

Specificity Answers the question: of all the samples

which do not belong to the COI, how

many were correctly predicted?

Does not consider false negatives 15,39,46,48,56,62,74,139,150

F1-score Better suited for cases of class imbalance Not as intuitive as other metrics 32,34,36,47,53,56,96,107,132

AUROC Score is independent of the threshold set

for the classifier

Provides misleading information in the

event of class imbalance

36,50,56,69

AUPR Score is independent of the threshold set

for the classifier and not affected by

class imbalance

Does not consider true negatives 50,58,77

Fmax Considers predictions across the full

spectrum from high to low sensitivity

Penalizes specific predictions 45,50,77,82,84

Smin Takes the structure of the ontology and

the dependencies between terms

induced by a hierarchical ontology into

account

Assumes that a Bayesian network

structured according to the underlying

ontology will perfectly model the prior

probability distribution of a target

variable

50,77

Abbreviations: COI, class of interest; FN, false negative; FP, false positive; TN, true negative; TP, true positive.

TABLE 3 Performance comparison of various machine learning models and algorithms on the EC taxonomy

Taxonomy Protein ML method
Hyperparameter
optimization Result (metric)

Usage in
literature

EC Enzyme Random forest N/A 0.486 (F1-score) 36

Enzyme SVM N/A 0.480 (F1-score) 34

Enzyme C4.5 Classifier N/A 0.7213

(F1-score)

40

Enzyme SVM GA 0.70 (F1-score) 37

Enzyme SVM PSO 0.69 (F1-score) 37

Enzyme Deep neural

network

N/A 0.965 (F1-score) 78

Abbreviations: GA, genetic algorithm; PSO, particle swarm optimization.
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determine whether a particular protein was an apolipoprotein or

not. Apolipoproteins are crucial in cardiovascular systems and

drug design. The authors in Reference 89 developed a tool

(HBPred) to identify growth hormone-binding proteins. Dipeptide

composition, which describes the correlation between the two

most contiguous amino acid residues, was used as a feature on

which a SVM was trained. The same type of machine learning

model was also used in Reference 69 to classify signaling proteins

based on molecular star graph descriptors. A plethora of tech-

niques, including Gaussian Naive Bayes, decision trees, random

forest, and logistic regression, were used in Reference 57, to

develop a binary classifier between DNA-binding and non DNA-

binding proteins. In Reference 62, a decision tree classifier was

trained to predict between the five molecular classes of HPRD,

namely defensin, cell surface receptor, DNA repair protein, heat

shock protein, and voltage gated channel. In Reference 54, a kNN

multilabel classifier was used to predict enzyme function at the

level of chemical mechanism. A SVM was used to predict between

RNA-binding, DNA-binding and EF-hand proteins in Reference 41.

Rough sets were used to predict between seven pectin lyase-like

subfamilies in Reference 91, based on features derived from

amino acid composition.

Despite the significant body of work in which machine learning

algorithms are trained to predict protein function, relatively little

effort has been devoted to the issue of class imbalance in function

labels. This imbalance is a result of the fact that for example, the GO

TABLE 4 Performance comparison of various machine learning models and algorithms on the FunCat taxonomy

Taxonomy Protein ML method
Hyperparameter
optimization Result (metric)

Usage in
literature

FunCat Yeast MLDA N/A 0.412 (F1-score) 59

Yeast MLDA + graph N/A 0.437 (F1-score) 59

Yeast NMLDA + graph N/A 0.440 (F1-score) 59

Yeast MCSL-d (PPI-weight,

infor)

grid-search 0.4857

(F1-score)

75

Yeast MCSL-b (PPI-weight,

infor)

grid-search 0.4865

(F1-score)

75

Abbreviations: MCSL, multilabel correlated semi-supervised learning; MLDA, multilabel linear discriminant analysis; NMLDA, L1-normalized MLDA.

TABLE 5 Performance comparison of various machine learning models and algorithms on the GO taxonomy (molecular function)

Protein ML method
Hyperparameter
optimization Result (metric)

Usage in
literature

Yeast Autoencoder + SVM Manual adjustment of activation functions, number and sizes

of hidden layers, batch sizes and learning rates for

autoencoder Nested 5-fold CV via grid-search over γ and C

for RBF kernel for SVM

0.27 (F1-score) 32

Human Autoencoder + SVM Same as above 0.18 (F1-score) 32

Human Deep neural network Manual tuning of minibatch size, number of convolution

filters, filter size, number of neurons in fully connected layer

and learning rate.

0.51 (Fmax)
45

Difficult proteins LR and BLAST-kNN N/A 0.62 (Fmax)
77

Difficult proteins LR and BLAST-kNN N/A 5.171 (Smin)
77

Difficult proteins LR and BLAST-kNN N/A 0.567 (Fmax)
50

Difficult proteins LR and BLAST-kNN N/A 5.087 (Smin)
50

Human LR and BLAST-kNN N/A 0.625 (Fmax)
156

Human MTDNN grid-search performed using HYPEROPT 160 to obtain number

of shared layers, number of hidden units in each shared

layer, number of specific layers, number of hidden units in

each shared layer, drop-out rate, learning rate, L1/L2

regularization

0.311 (Fmax)
84

Human MLDNN grid-search performed using HYPEROPT 160 on number of

hidden layers, number of units inside each hidden layer,

batch size, learning rate, dropout rate and L1/L2

regularization

0.343 (Fmax)
84

Human STDNN Same as MLDNN 0.338 (Fmax)
84

Note: Difficult proteins have a global sequence identity of less than 60%.

Abbreviations: CV, cross-validation; LR, logistic regression.
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TABLE 6 Performance comparison of various machine learning models and algorithms on the GO taxonomy (biological process)

Protein ML method Hyperparameter optimization Result (metric)
Usage in
literature

Yeast Autoencoder + SVM Activation functions, number and sizes of hidden layers, batch

sizes and learning rates for autoencoder Nested 5-fold CV

via grid-search over γ and C for RBF kernel for SVM

0.19 (Fmax)
32

Human Autoencoder + SVM Same as above 0.125 (Fmax)
32

Human Deep neural network Manual tuning of minibatch size, number of convolution

filters, filter size, number of neurons in fully connected layer

and learning rate.

0.42 (Fmax)
45

Difficult proteins LR and BLAST-kNN N/A 0.46 (Fmax)
77

Difficult proteins LR and BLAST-kNN N/A 16.82 (Smin)
77

Difficult proteins LR and BLAST-kNN N/A 0.382 (Fmax)
50

Difficult proteins LR and BLAST-kNN N/A 14.538 (Smin)
50

Human MTDNN grid-search performed using HYPEROPT 160 to obtain number

of shared layers, number of hidden units in each shared

layer, number of specific layers, number of hidden units in

each shared layer, drop-out rate, learning rate, L1/L2

regularization

0.298 (Fmax)
84

Human MLDNN grid-search performed using HYPEROPT 160 on number of

hidden layers, number of units inside each hidden layer,

batch size, learning rate, dropout rate and L1/L2

regularization

0.287 (Fmax)
84

Human STDNN Same as MLDNN 0.288 (Fmax)
84

Note: Difficult proteins have a global sequence identity of less than 60%.

Abbreviations: CV, cross-validation; LR, logistic regression.

TABLE 7 Performance comparison of various machine learning models and algorithms on the GO taxonomy (cellular component)

Protein ML method Hyperparameter optimization Result (metric) Usage in literature

Yeast Autoencoder + SVM Activation functions, number and sizes of hidden layers, batch

sizes and learning rates for autoencoder Nested 5-fold CV

via grid-search over γ and C for RBF kernel for SVM

0.155 (Fmax)
32

Human Autoencoder + SVM Same as above 0.125 (Fmax)
32

Human Deep neural network Manual tuning of minibatch size, number of convolution

filters, filter size, number of neurons in fully connected layer

and learning rate.

0.60 (Fmax)
45

Difficult proteins LR and BLAST-kNN N/A 0.69 (Fmax)
77

Difficult proteins LR and BLAST-kNN N/A 4.45 (Smin)
77

Difficult proteins LR and BLAST-kNN N/A 0.706 (Fmax)
50

Difficult proteins LR and BLAST-kNN N/A 5.344 (Smin)
50

Human LR and BLAST-kNN N/A 0.6 (Fmax)
156

Human MTDNN grid-search performed using HYPEROPT 160 to obtain number

of shared layers, number of hidden units in each shared

layer, number of specific layers, number of hidden units in

each shared layer, drop-out rate, learning rate, L1/L2

regularization

0.484 (Fmax)
84

Human MLDNN grid-search performed using HYPEROPT 160 on number of

hidden layers, number of units inside each hidden layer,

batch size, learning rate, dropout rate and L1/L2

regularization

0.449 (Fmax)
84

Human STDNN Same as MLDNN 0.425 (Fmax)
84

Note: Difficult proteins have a global sequence identity of less than 60%.

Abbreviations: CV, cross-validation; LR, logistic regression.
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database rarely stores which proteins do not possess a particular func-

tion. In Reference 159, the authors developed two novel negative

selection algorithms (Selection of Negatives through Observed Bias

and Negative Examples from Topic Likelihood) to determine whether

a protein does or does not perform a particular function.

A summary of the comparison in performance between various

machine learning models and algorithms is provided in Tables 3 and 4

for the EC and FunCat taxonomies respectively, and Tables 5–7 for

the molecular function, biological process, and cellular component GO

taxonomies respectively. As can be seen, machine learning methods

applied to the EC and FunCat taxonomies generally did not disclose

any hyperparameter optimization strategy, except for a grid search. In

particular, in Reference 37 genetic algorithms and particle swarm opti-

mization were used, however did not result in an increase in perfor-

mance with respect to Reference 40, which used a decision tree.

Multilabel correlated semi-supervised learning75 with grid-search gave

an improvement in terms of F1-score over multilabel linear discrimi-

nant analysis59 for the FunCat taxonomy. The best performance for

molecular function GO terms was given by GoLabeler which did not

make use of deep learning or hyperparameter optimization. A similar

model developed by the same authors also gave the best performance

for biological process for difficult proteins (ie, proteins have a global

sequence identity of less than 60%).77 However, for the cellular com-

ponent ontology, it performed as well as a deep neural network

approach (which required hyperparameter optimization) for human

proteins.45

5 | CONCLUSIONS AND FUTURE
PERSPECTIVES

This paper has reviewed the evolution in features and machine learn-

ing techniques used to train data-driven models for protein function

prediction. Although there has been a rise in the use of deep learning

techniques to extract meaningful features and develop high per-

forming predictors, methods using classical machine learning tech-

niques such as logistic regression were still able to outperform deep

learning approaches. In addition, methods which do not use machine

learning still feature prominently in the top 10 performers of CAFA

3, as opposed to deep learning approaches. The fact that deep learn-

ing requires a very large amount of data remains a limitation, which

probably reduces its success at least in some studies concerning pro-

tein function prediction. Nevertheless, the bioinformatics community

has been quite successful in its efforts to bring machine learning and

proteins together, through initiatives such as the CAFA challenge and

Kaggle competitions. The community will keep this momentum going

by facilitating the proliferation of databases and frameworks which

are more appropriate for machine learning. Researchers are now also

resorting to a much wider variety of input features, particularly those

derived from biomedical text. Reliable data-driven models are key to

narrowing the gap between the number of sequences with known

and unknown function, which will ultimately help elucidate the effect

of mutations in proteins on diseases and in the engineering of new

proteins.

ORCID

Rosalin Bonetta https://orcid.org/0000-0003-4696-7770

Gianluca Valentino https://orcid.org/0000-0003-3864-7785

REFERENCES

1. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO. Protein function

in the post-genomic era. Nature. 2000;405:823-826.

2. Al-Shahib A, Breitling R, Gilbert DR. Predicting protein function by

machine learning on amino acids sequences - a critical evaluation.

BMC Genomics. 2007;8:78.

3. Rost B, Liu J, Nair R, Wrzeszczynski KO, Ofran Y. Automatic predic-

tion of protein function. Cell Mol Life Sci. 2003; 60: 2637-2650.

4. Mills CL, Beuning PJ, Ondrechen MJ. Biochemical functional predic-

tions for protein structures of unknown or uncertain function. Com-

put Struct Biotechnol J. 2015;02(13):182-191. https://www.ncbi.nlm.

nih.gov/pubmed/25848497.

5. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the

unification of biology. Nat Genet. 2000;25:25-29.

6. Friedberg I. Automated protein function prediction - the genomic

challenge. Brief Bioinform. 2006;7:225-242.

7. Lee D, Redfern O, Orengo C. Predicting protein function from

sequence and structure. Nat Rev Mol Cell Biol. 2007;8:995-1005.

8. Gardy JL, Brinkman FS. Methods for predicting bacterial protein sub-

cellular localization. Nat Rev Microbiol. 2006;4:741-751.

9. The UniProt Consortium. UniProt: the universal protein

knowledgebase. Nucleic Acids Res. 2017;45:D158-D169.

10. Punta M, Coggill PC, Eberhardt RY, et al. The Pfam protein families

database. Nucleic Acids Res. 2012;40:D290-D301.

11. Jiang Y, Oron TR, Clark WT, et al. An expanded evaluation of protein

function prediction methods shows an improvement in accuracy.

Genome Biol. 2016;17:184.

12. Bernardes JS, Pedreira CE. A review of protein function prediction

under machine learning perspective. Recent Pat Biotechnol. 2013;7:

122-141.

13. Sharma M, Garg P. Computational approaches for enzyme functional

class prediction: a review. Curr Proteomics. 2014;11(1):17-22.

https://www.ingentaconnect.com/content/ben/cp/2014/

00000011/00000001/art00003.

14. Wang Z, Zou Q, Jiang Y, Ju Y, Zeng X. Review of protein subcellular

localization prediction. Curr Bioinformatics. 2014;9(3):331-342.

https://www.ingentaconnect.com/content/ben/cbio/2014/

00000009/00000003/art00015.

15. Hoglund A, Donnes P, Blum T, Adolph HW, Kohlbacher O. MultiLoc:

prediction of protein subcellular localization using N-terminal

targeting sequences, sequence motifs and amino acid composition.

Bioinformatics. 2006;22:1158-1165.

16. Shatkay H, Hoglund A, Brady S, Blum T, Donnes P, Kohlbacher O.

SherLoc: high-accuracy prediction of protein subcellular localization

by integrating text and protein sequence data. Bioinformatics. 2007;

23:1410-1417.

17. You ZH, Lei YK, Zhu L, Xia J, Wang B. Prediction of protein-protein

interactions from amino acid sequences with ensemble extreme

learning machines and principal component analysis. BMC Bioinfor-

matics. 2013;14:S10.

18. Schwikowski B, Uetz P, Fields S. A network of protein-protein inter-

actions in yeast. Nat Biotechnol. 2000;18:1257-1261.

BONETTA AND VALENTINO 409

https://orcid.org/0000-0003-4696-7770
https://orcid.org/0000-0003-4696-7770
https://orcid.org/0000-0003-3864-7785
https://orcid.org/0000-0003-3864-7785
https://www.ncbi.nlm.nih.gov/pubmed/25848497
https://www.ncbi.nlm.nih.gov/pubmed/25848497
https://www.ingentaconnect.com/content/ben/cp/2014/00000011/00000001/art00003
https://www.ingentaconnect.com/content/ben/cp/2014/00000011/00000001/art00003
https://www.ingentaconnect.com/content/ben/cbio/2014/00000009/00000003/art00015
https://www.ingentaconnect.com/content/ben/cbio/2014/00000009/00000003/art00015


19. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks.

Genome Res. 2003;13:2498-2504.

20. Govindan G, Nair AS. Composition Transition and Distribution

(CTD)? A dynamic feature for predictions based on hierarchical

structure of cellular sorting. 2011 Annual IEEE India Conference,

2011. p. 1–6.
21. Liu ZX, Liu SL, Yang HQ, Bao LH. Using protein granularity to extract

the protein sequence features. J Theor Biol. 2013;331:48-53.

22. Chou KC. Prediction of protein signal sequences and their cleavage

sites. Proteins. 2001;42:136-139.

23. Gribskov M, McLachlan AD, Eisenberg D. Profile analysis: detection

of distantly related proteins. Proc Natl Acad Sci USA. 1987;84:4355-

4358.

24. Jeong JC, Lin X, Chen XW. On position-specific scoring matrix for

protein function prediction. IEEE/ACM Trans Comput Biol Bioinform.

2011;8:308-315.

25. Wang W, Zhang X, Meng J, Luan Y. Protein function prediction

based on physiochemical properties and protein granularity. Pro-

ceedings of IEEE International Conference on Granular Computing

Beijing, China, 2013. p. 342–346.
26. Verspoor KM. Roles for text mining in protein function prediction.

Methods Mol Biol. 2014;1159:95-108.

27. Zeng Z, Shi H, Wu Y, Hong Z. Survey of natural language processing

techniques in bioinformatics. Comput Math Methods Med. 2015;

2015:1-10.

28. Mikolov T, Sutskever I, Chen K, Corrado G, Deap J. Distributed rep-

resentations of words and phrases and their compositionality. Pro-

ceedings of 26th International Conference on Neural Information

Processing Systems Lake Tahoe, USA, 2013. p. 3111–3119.
29. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word

representations in vector space, 2013.

30. Asgari E, Mofrad MR. Continuous distributed representation of bio-

logical sequences for deep proteomics and genomics. PLoS One.

2015;10:e0141287.

31. Kaggle, Human Protein Atlas Image Classification. 2018. https://

www.kaggle.com/c/human-protein-atlas-image-classification.

32. Gligorijevic V, Barot M, Bonneau R. deepNF: deep network fusion

for protein function prediction. Bioinformatics. 2018;34:3873-3881.

33. Wang J, Zhang L, Jia L, Ren Y, Yu G. Protein-protein interactions

prediction using a novel local conjoint triad descriptor of amino acid

sequences. Int J Mol Sci. 2017;18:E2373.

34. Dalkiran A, Rifaioglu A, Martin M, Cetin-Atalay R, Atalay V, Dogan T.

ECPred: a tool for the prediction of the enzymatic functions of pro-

tein sequences based on the EC nomenclature. BMC Bioinformatics.

2018;19:334.

35. Rahman S, Bakar A, Hussein Z. Data mining framework for protein

function prediction. Proceedings of IEEE International Symposium

on Information Technology Kuala Lumpur, Malaysia, 2008.

36. Srivastava A, Mahmood R, Srivastava R. A comparative analysis of

SVM random forest methods for protein function prediction. Pro-

ceedings of IEEE International Conference on Current Trends in

Computer, Electrical, Electronics and Communication Mysore, India,

2018. p. 1008–1010.
37. Silva M, Leijoto L, Nobre C. Algorithms analysis in adjusting the SVM

parameters: an approach in the prediction of protein function. J Appl

Artif Intell. 2017;31:316-331.

38. Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ. SVM-Prot: Web-based sup-

port vector machine software for functional classification of a pro-

tein from its primary sequence. Nucleic Acids Res. 2003;31:3692-

3697.

39. Cai CZ, Wang WL, Sun LZ, Chen YZ. Protein function classification

via support vector machine approach. Math Biosci. 2003;185:

111-122.

40. Lee B, Ryu K. Feature extraction from protein sequences and classi-

fication of enzyme function. Proceedings of IEEE International Con-

ference on Biomedical Engineering and Informatics Sanya, China,

2008. p. 138–142.
41. Lee B, Lee H, Kim D, Ryu K. Feature extraction in spatially-

conserved regions and protein functional classification. Proceedings

of Frontiers in the Convergence of Bioscience and Information

Technologies Jeju City, Korea, 2007. p. 165–170.
42. Rahman S, Bakar A, Hussein Z. Experimental study of different FSAs

in classifying protein function. Proceedings of IEEE International

Conference of Soft Computing and Pattern Recognition Malacca,

Malaysia, 2009. p. 516–521.
43. Li F, Li C, Wang M, et al. GlycoMine: a machine learning-based

approach for predicting N-, C- and O-linked glycosylation in the

human proteome. Bioinformatics. 2015;31:1411-1419.

44. Acquaah-Mensah GK, Leach SM, Guda C. Predicting the subcellular

localization of human proteins using machine learning and explor-

atory data analysis. Genomics Proteomics Bioinformatics. 2006;4:

120-133.

45. Kulmanov M, Khan MA, Hoehndorf R, Wren J. DeepGO: predicting

protein functions from sequence and interactions using a deep

ontology-aware classifier. Bioinformatics. 2018;34:660-668.

46. Li Y et al. SVM-Prot 2016: a web-server for machine learning predic-

tion of protein functional families from sequence irrespective of sim-

ilarity. PLoS One. 2016;11:e0155290.

47. Nauman M, Rehman H, Politano G, Benso A. Beyond homology

transfer: deep learning for automated annotation of proteins. J Grid

Comput. 2018;17:225–237.
48. Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein

protein interaction using a deep-learning algorithm. BMC Bioinfor-

matics. 2017;18:277.

49. Wang YB, You ZH, Li X, et al. Predicting protein-protein interactions

from protein sequences by a stacked sparse autoencoder deep neu-

ral network. Mol Biosyst. 2017;13:1336-1344.

50. You R, Zhang Z, Xiong Y, Sun F, Mamitsuka H, Zhu S. GOLabeler:

improving sequence-based large-scale protein function prediction

by learning to rank. Bioinformatics. 2018;34:2465-2473.

51. You ZH, Zhu L, Zheng CH, Yu HJ, Deng SP, Ji Z. Prediction of

protein-protein interactions from amino acid sequences using a

novel multi-scale continuous and discontinuous feature set. BMC

Bioinformatics. 2014;15:S9.

52. Ben-Hur A, Brutlag D. Sequence motifs: highly predictive features of

protein function. In: Guyon I, Nikravesh M, Gunn S, Zadeh L, eds.

Feature Extraction. Berlin, Heidelberg: Springer; 2006:625-645.

53. Liu X. Deep Recurrent Neural Network for Protein Function Predic-

tion from Sequence, 2017.

54. Ferrari LD, Mitchell J. From sequence to enzyme mechanism using

multi-label machine learning. BMC Bioinformatics. 2014;15:150.

55. Kumar C, Li G, Choudhary A. Enzyme function classification using

protein sequence features and random forest. Proceedings of IEEE

International Conference on Bioinformatics and Biomedical Engi-

neering Beijing, China, 2009.

56. Lee B, Shin M, Young J, Hae O, Ryu K. Identification of protein func-

tions using a machine-learning approach based on sequence-derived

properties. Proteome Sci. 2009;7:27.

57. Lou W, Wang X, Chen F, Chen Y, Jiang B, Zhang H. Sequence

based prediction of DNA-binding proteins based on hybrid feature

selection using random forest and Gaussian naive Bayes. PLoS

One. 2014;9:e86703.

58. Makrodimitris S, van Ham R, Reinders M. Improving protein function

prediction using protein sequence and GO-term similarities. Bioinfor-

matics. 2018;35:1116-1124.

59. Wang H, Yan L, Huang H, Ding C. From protein sequence to protein

function via multi-label linear discriminant analysis. IEEE/ACM Trans

Comput Biol Bioinform. 2017;14:503-513.

410 BONETTA AND VALENTINO

https://www.kaggle.com/c/human-protein-atlas-image-classification
https://www.kaggle.com/c/human-protein-atlas-image-classification


60. Resende W, Nascimento R, Xavier C, Lopes I, Nobre C. The use of

support vector machine and genetic algorithms to predict protein

function. Proceedings of IEEE International Conference on Systems,

Man and Cybernetics Seoul, South Korea, 2012. p. 1773–1778.
61. Yalamanchili HK, Wang J, Xiao Q. NRProF: neural response based

protein function prediction algorithm. Proceedings of IEEE Interna-

tional Conference on Systems Biology Zhuhai, China, 2011.

p. 33–40.
62. Singh M, Singh P, Singh H. Decision tree classifier for human protein

function prediction. Proceedings of IEEE International Conference

on Advanced Computing and Communications Surathkal, India,

2006. p. 564–568.
63. Amidi S, Amidi A, Vlachakis D, Paragios N, Zacharaki EI. Automatic

single- and multi-label enzymatic function prediction by machine

learning. PeerJ. 2017;5:e3095.

64. Wei L, Ding Y, Su R, Tang J, Zou Q. Prediction of human protein sub-

cellular localization using deep learning. J Parallel Distr Comput.

2018;117:212-217.

65. Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of pro-

teins for gram-negative bacteria by support vector machines based

on n-peptide compositions. Protein Sci. 2004;13:1402-1406.

66. Park KJ, Kanehisa M. Prediction of protein subcellular locations by

support vector machines using compositions of amino acids and

amino acid pairs. Bioinformatics. 2003;19:1656-1663.

67. Zhou X, Chen C, Li Z, Zou X. Using Chou's amphiphilic pseudo-amino

acid composition and support vector machine for prediction of

enzyme subfamily classes. J Theor Biol. 2007;248:546-551.

68. Kerepesi C, Daroczy B, Sturm A, Vellai T, Benczur A. Prediction and

characterization of human ageing-related proteins by using machine

learning. Sci Rep. 2018;8:4094.

69. Fernandez-Lozano C, Cuinas RF, Seoane JA, Fernandez-Blanco E,

Dorado J, Munteanu CR. Classification of signaling proteins based

on molecular star graph descriptors using machine learning models.

J Theor Biol. 2015;384:50-58.

70. Taju SW, Nguyen TT, Le NQ, Kusuma R, Ou YY. DeepEfflux: a 2D

convolutional neural network model for identifying families of efflux

proteins in transporters. Bioinformatics. 2018;34:3111-3117.

71. Yang R, Zhang C, Gao R, Zhang L. A novel feature extraction method

with feature selection to identify golgi-resident protein types from

imbalanced data. Int J Mol Sci. 2016;17:218.

72. Lin H, Ding H, Guo FB, Huang J. Prediction of subcellular location of

mycobacterial protein using feature selection techniques. Mol Divers.

2010;14:667-671.

73. Lee H, Tu Z, Deng M, Sun F, Chen T. Diffusion kernel-based logistic

regression models for protein function prediction. OMICS. 2006;10:

40-55.

74. Ni Q, Wang Z, Han Q, Li G, Wang X, Wang G. Using logistic regres-

sion method to predict protein function from protein-protein inter-

action data. Proceedings of IEEE International Conference on

Bioinformatics and Biomedical Engineering Beijing, China, 2009.

75. Jiang J, McQuay L. Predicting protein function by multi-label corre-

lated semi-supervised learning. IEEE/ACM Trans Comput Biol Bio-

inform. 2012;9:1059-1069.

76. Hu L, Huang T, Shi X, Lu WC, Cai YD, Chou KC. Predicting functions

of proteins in mouse based on weighted protein-protein interaction

network and protein hybrid properties. PLoS One. 2011;6:e14556.

77. You R, Huang X, Zhu S. DeepText2GO: improving large-scale pro-

tein function prediction with deep semantic text representation.

Methods. 2018;145:82-90.

78. Zou Z, Tian S, Gao X, Li Y. mIDEEPre: multi-functional enzyme func-

tion prediction with hierarchical multi-label deep learning. Front

Genet. 2019;9:714.

79. Rice SB, Nenadic G, Stapley BJ. Mining protein function from text

using term-based support vector machines. BMC Bioinformatics.

2005;6:S22.

80. Wong A, Shatkay H. Protein function prediction using text-based

features extracted from the biomedical literature: the CAFA chal-

lenge. BMC Bioinformatics. 2013;14:S14.

81. Zheng W, Blake C. Using distant supervised learning to identify pro-

tein subcellular localizations from full-text scientific articles.

J Biomed Inform. 2015;57:134-144.

82. Funk CS, Kahanda I, Ben-Hur A, Verspoor KM. Evaluating a variety

of text-mined features for automatic protein function prediction

with GOstruct. J Biomed Semant. 2015;6:9.

83. Shao W, Liu M, Zhang D. Human cell structure-driven model con-

struction for predicting protein subcellular location from biological

images. Bioinformatics. 2016;32:114-121.

84. Fa R, Cozzetto D, Wan C, Jones DT. Predicting human protein func-

tion with multi-task deep neural networks. PLoS One. 2018;13:

e0198216.

85. Molina L, Belanche L, Nebot A. Feature selection algorithms: a sur-

vey and experimental evaluation. Proceedings of IEEE International

Conference on Data Mining Maebashi City, Japan, 2002.

p. 306–313.
86. Saeys Y, Inza I, Larranaga P. A review of feature selection techniques

in bioinformatics. Bioinformatics. 2007;23:2507-2517.

87. Wang L, Wang Y, Chang Q. Feature selection methods for big data

bioinformatics: a survey from the search perspective. Methods.

2016;111:21-31. http://www.sciencedirect.com/science/article/pii/

S1046202316302742 big Data Bioinformatics.

88. Frank E, Hall MA, Witten IH. The WEKA Workbench. Online Appen-

dix for “Data Mining: Practical Machine Learning Tools and Tech-

niques”. Morgan Kaufmann; 2016.

89. Tang H, Zhao YW, Zou P, et al. HBPred: a tool to identify growth

hormone-binding proteins. Int J Biol Sci. 2018;14:957-964.

90. Al-Shahib A, Breitling R, Gilbert DR. Franksum: new feature selec-

tion method for protein function prediction. Int J Neural Syst. 2005;

15:259-275.

91. Rahman S, Bakar A, Hussein Z. Feature selection and classification

of protein subfamilies using rough sets. Proceedings of IEEE Interna-

tional Conference on Electrical Engineering and Informatics

Selangor, Malaysia, 2009. p. 32–35.
92. Ding C, Peng H. Minimum redundancy feature selection from micro-

array gene expression data. Proceedings of IEEE Conference on

Computational Systems Bioinformatics Stanford, USA, 2003.

93. Clark WT, Radivojac P. Analysis of protein function and its predic-

tion from amino acid sequence. Proteins. 2011;79:2086-2096.

94. Moreira IS, Koukos PI, Melo R, et al. SpotOn: high accuracy identifi-

cation of protein-protein interface hot-spots. Sci Rep. 2017;7:8007.

95. Santos BD, Nobre C, Zarate L. Multi-objective genetic algorithm for

feature selection in a protein function prediction context. Proceed-

ings of IEEE Congress on Evolutionary Computation Rio de Janeiro,

2018.

96. Fodeh S, Tiwari A, Yu H. Exploiting PubMed for protein molecular

function prediction via NMF based multi-label classification. Pro-

ceedings of IEEE International Conference on Data Mining Work-

shops New Orleans, USA, 2017. p. 446–451.
97. Maheshwari S, Brylinski M. Prediction of protein-protein interaction

sites from weakly homologous template structures using meta-

threading and machine learning. J Mol Recognit. 2015;28:35-48.

98. Fabris F, Freitas A. An efficient algorithm for hierarchical classifica-

tion of protein and gene functions. Proceedings of IEEE International

Workshop on Database and Expert Systems Applications Munich,

Germany, 2014. p. 64–68.
99. Merschmann L, Freitas A. An Extended Local Hierarchical Classifier for

Prediction of Protein and Gene Functions. Berlin: Springer; 2013.

100. Boser B, Guyon I, Vapnik V. A training algorithm for optimal margin

classifiers. Proceedings of 5th Annual ACM workshop on computa-

tional learning theory. Proceedings of 5th Annual ACM Workshop

BONETTA AND VALENTINO 411

http://www.sciencedirect.com/science/article/pii/S1046202316302742
http://www.sciencedirect.com/science/article/pii/S1046202316302742


on Computational Learning Theory Pittsburgh, Pennsylvania, USA,

1992. p. 144–152.
101. Cai YD, Liu XJ, Xu X, Zhou GP. Support vector machines for

predicting protein structural class. BMC Bioinformatics. 2001;2:3.

102. Lanckriet GR, Deng M, Cristianini N, Jordan MI, Noble WS. Kernel-

based data fusion and its application to protein function prediction

in yeast. Pacific Symposium on Biocomputing Hawaii, USA, 2004.

p. 300–311.
103. Cozzetto D, Minneci F, Currant H, Jones DT. FFPred 3: feature-

based function prediction for all Gene Ontology domains. Sci Rep.

2016;6:31865.

104. Tang H, Zou P, Zhang C, Chen R, Chen W, Lin H. Identification of

apolipoprotein using feature selection technique. Sci Rep. 2016;6:

30441.

105. Zhang SB, Tang QR. Predicting protein subcellular localization based

on information content of gene ontology terms. Comput Biol Chem.

2016;65:1-7.

106. Badal VD, Kundrotas PJ, Vakser IA. Natural language processing in

text mining for structural modeling of protein complexes. BMC Bioin-

formatics. 2018;19:84.

107. Miranda L, Hu J. A deep learning approach based on stacked den-

oising autoencoders for protein function prediction. Proceedings of

IEEE 42nd Annual Computer Software and Applications Conference

Tokyo, Japan, 2018. p. 480–485.
108. Freund Y, Shapire RE. A decision-theoretic generalization of on-line

learning and an application to boosting. J Comput Syst Sci. 1997;55:

119-139.

109. Friedman JH. Greedy function approximation: a gradient boosting

machine. Ann Stat. 2001;29:1189-1232.

110. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Pro-

ceedings of the 22nd ACM Conference on Knowledge Discovery

and Data Mining San Francisco, USA, 2016. p. 785–794.
111. Breiman L. Random forests. Machine Learning, 2001.

112. Peled S, Leiderman O, Charar R, Efroni G, Shav-Tal Y, Ofran Y. De-

novo protein function prediction using DNA binding and RNA bind-

ing proteins as a test case. Nat Commun. 2016;7:13424.

113. Yu G, Rangwala H, Domeniconi C, Zhang G, Yu Z. Protein function

prediction using multilabel ensemble classification. IEEE/ACM Trans

Comput Biol Bioinform 2013;10:1045–1067.
114. Guo X, Liu F, Ju Y, Wang Z, Wang C. Human protein subcellular

localization with integrated source and multi-label ensemble classi-

fier. Sci Rep. 2016;6:28087.

115. Quinlan J. C4.5: Programs for Machine Learning. Boston: Morgan

Kaufmann Publishers; 1993.

116. Cerri R, Basgalupp M, Mantovani R, de Carvalho A. Multi-label fea-

ture selection techniques for hierarchical multi-label protein func-

tion prediction. Proceedings of IEEE International Joint Conference

on Neural Networks Rio de Janeiro, Brazil, 2018.

117. Vens C, Struyf J, Shetgat L, Dzeroski S, Blockeel H. Decision trees

for hierarchical multi-label classification. Mach Learn. 2008;73:

185-214.

118. Yang J, Yang M. Assessing protein function using a combination of

supervised and unsupervised learning. Proceedings of IEEE Sympo-

sium on Bioinformatics and Bioengineering Arlington, USA, 2006.

p. 35–44.
119. Cerri R, Barros RC, de Carvalho A, Jin Y. Reduction strategies for

hierarchical multi-label classification in protein function prediction.

BMC Bioinformatics. 2016;17:373.

120. Nievola J, Paraiso E, Freitas A. A hierarchical neural network for

predicting protein functions. Proceedings of IEEE International Con-

ference on Bioinformatics and Bioengineering Belgrade, Serbia, 2015.

121. Borges H, Nievola J. Multi-label hierarchical classification using a

competitive neural network for protein function prediction. Pro-

ceedings of International Joint Conference on Neural Networks

Brisbane, Australia, 2012. p. 172–177.

122. Smale S, Rosasco L, Bouvrie J, Caponnetto A, Poggio T. Mathematics

of the neural response. Found Comput Math. 2010;10:67-91.

123. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:

436-444.

124. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning

applied to document recognition. Proc IEEE. 1998;86:2278-2324.

125. Simonyan K, Zisserman A. Very deep convolutional networks for

large-scale image recognition; 2015.

126. Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with

deep convolutional neural networks. Proceedings of Neural Informa-

tion Processing Systems Conference Lake Tahoe, USA, 2012.

p. 1106–1114.
127. Zacharaki E. Prediction of protein function using a deep con-

volutional neural network ensemble. PeerJ Comput Sci. 2017;3:e124.

128. Pearlmutter B. Learning state space trajectories in recurrent neural

networks. Neural Comput. 1989;1:263-269.

129. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Com-

put. 1997;9:1735-1780.

130. Graves A, Mohamed A, Hinton G. Speech recognition with deep

recurrent neural networks. Proceedings of IEEE International Con-

ference on Acoustics, Speech and Signal Processing Vancouver,

Canada, 2013. p. 6645–6649.
131. Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep

neural network for quantifying the function of DNA sequences.

Nucleic Acids Res. 2016;44:e107.

132. Cao R, Freitas C, Chan L, Sun M, Jiang H, Chen Z. ProLanGO: pro-

tein function prediction using neural machine translation based on a

recurrent neural network. Molecules. 2017;22:E1732.

133. Wu JS, Huang SJ, Zhou ZH. Genome-wide protein function predic-

tion through multi-instance multi-label learning. IEEE/ACM Trans

Comput Biol Bioinform. 2014;11:891-902.

134. Dietteric R, Lathrop R, Lozano-Perez T. Solving the multiple instance

learning problem with axis-parallel rectangles. Artif Intell. 1997;89:31-71.

135. Zhou Z, Zhang M, Huang S, Li Y. Multi-instance multi-label learning.

Artificial Intelligence. Artificial Intelligence. 2012;176:2291-2320.

136. Pawlak Z. Rough sets. Int J Comput Inf Sci. 1982;11:341-356.

137. Liu L, Tang L, He S, Yao S, Zhou W. Predicting protein function via

multi-label supervised topic model on gene ontology. Biotechnol Bio-

technol Equip. 2017;31:630-638.

138. Ramage D, Hall D, Nallapati R, Manning C. Labeled LDA: a super-

vised topic model for credit attribution in multi-labeled corpora. Pro-

ceedings of Conference on Empirical Methods in Natural Language

Singapore, 2009. p. 248–256.

139. Cheng X, Lin WZ, Xiao X, Chou KC. pLoc_bal-mAnimal: predict sub-

cellular localization of animal proteins by balancing training dataset

and PseAAC. Bioinformatics. 2019;35:398-406.

140. Pedregosa F et al. Scikit-learn: machine learning in Python. J Mach

Learn Res. 2011;12:2825-2830.

141. Spectrum I, The Top Programming Languages in 2018; 2018.

https://spectrum.ieee.org/static/interactive-the-top-programming-

languages-2018.

142. The MathWorks I, MATLAB and Statistics Toolbox Release 2018b;

2018.

143. Adabi M, et al. TensorFlow: a system for large-scale machine learning.

Proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation Savannah, USA, 2016. p. 265–283.
144. Chollet F, et al.; 2015. https://keras.io.

145. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al.

Caffe: convolutional architecture for fast feature embedding. Pro-

ceedings of ACM International Conference on Multimeda Orlando,

USA, 2014. p. 675–678.

146. Paszke A, et al. Automatic differentiation in PyTorch. Proceedings of Neu-

ral Information Processing Systems Conference. Proceedings of Neural

Information Processing Systems Conference Long Beach, USA, 2017.

412 BONETTA AND VALENTINO

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://keras.io


147. Kingma D, Ba J. Adam: a method for stochastic optimization. Pro-

ceedings of International Conference on Learning Representations

San Diego, USA, 2015.

148. Tielman T, Hinton G. Lecture 6.5 - rmsprop: Divide the Gradient by

a Running Average of its Recent Magnitude, 2012.

149. Mercado-Diaz L, Navarro-Garcia J, Jaramillo-Garzon J. A comparison

of class-balance strategies for SVM in the problem of protein func-

tion prediction. Proceedings of 20th Symposium on Signal

Processing, Images and Computer Vision Bogota, Colombia, 2015.

150. Lu Z, Szafron D, Greiner R, et al. Predicting subcellular localization

of proteins using machine-learned classifiers. Bioinformatics. 2004;

20:547-556.

151. Li Y, Maleki N, Carruthers N, Rueda L, Stemmer P, Ngom A. Predic-

tion of calmodulin-binding proteins using short-linear motifs. Pro-

ceedings of International Conference on Bioinformatics and

Biomedical Engineering Granada, Spain, 2017. p. 107–117.
152. Santis ED, Martino A, Rizzi A, Mascioli F. Dissimilarity space repre-

sentation and automatic feature selection for protein function pre-

diction. Proceedings of International Joint Conference on Neural

Networks Rio de Janeiro, Brazil, 2018.

153. Ahmed I, Witbooi P, Christoffels A. Prediction of human-Bacillus

anthracis protein-protein interactions using multi-layer neural net-

work. Bioinformatics. 2018;34:4159-4164.

154. Ruepp A, Zollner A, Maier D, et al. The FunCat, a functional annota-

tion scheme for systematic classification of proteins from whole

genomes. Nucleic Acids Res. 2004;32:5539-5545.

155. Nomenclature Committee of the International Union of Biochemis-

try and Molecular Biology on the Nomenclature and Classification

of Enzymes. Enzyme Nomenclature. San Diego, CA: Elsevier; 1992.

156. Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW,

et al. The CAFA challenge reports improved protein function predic-

tion and new functional annotations for hundreds of genes through

experimental screens. bioRxiv 2019;https://www.biorxiv.org/

content/early/2019/05/29/653105.

157. Wu J, Zhu W, Jiang Y, Sun G, Gao Y. Predicting protein functions of

bacteria genomes via multi-instance multi-label active learning. Pro-

ceedings of IEEE International Conference on Integrated Circuits

and Microsystems Shanghai, China 2018. p. 302–307.
158. Tung CH, Chen CW, Sun HH, Chu YW. Predicting human protein

subcellular localization by heterogeneous and comprehensive

approaches. PLoS One. 2017;12:e0178832.

159. Youngs N, Penfold-Brown D, Bonneau R, Shasha D. Negative exam-

ple selection for protein function prediction: the NoGO database.

PLoS Comput Biol. 2014;10:e1003644.

160. Bergstra J, Yamins D, Cox DD. Making a science of model search:

Hyperparameter optimization in hundreds of dimensions for vision

architectures. Proceedings of the 30th International Conference on

International Conference on Machine Learning - Volume

28 ICML'13, JMLR.org; 2013. p. I–115–I–123. http://dl.acm.org/

citation.cfm?id=3042817.3042832.

How to cite this article: Bonetta R, Valentino G. Machine

learning techniques for protein function prediction. Proteins.

2020;88:397–413. https://doi.org/10.1002/prot.25832

BONETTA AND VALENTINO 413

https://www.biorxiv.org/content/early/2019/05/29/653105
https://www.biorxiv.org/content/early/2019/05/29/653105
http://jmlr.org
http://dl.acm.org/citation.cfm?id=3042817.3042832
http://dl.acm.org/citation.cfm?id=3042817.3042832
https://doi.org/10.1002/prot.25832

	Machine learning techniques for protein function prediction
	1  INTRODUCTION
	2  MACHINE LEARNING TECHNIQUES FOR PROTEIN FUNCTION PREDICTION
	2.1  Feature engineering and representation
	2.2  Feature selection
	2.3  Machine learning algorithms and models

	3  MACHINE LEARNING MODEL IMPLEMENTATION, TUNING, AND EVALUATION
	4  APPLICATIONS OF MACHINE LEARNING FOR PROTEIN FUNCTION PREDICTION
	5  CONCLUSIONS AND FUTURE PERSPECTIVES
	REFERENCES


