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Abstract

In this paper, using Word2vec, a widely-used natural language processing method,

we demonstrate that protein domains may have a learnable implicit semantic “mean-

ing” in the context of their functional contributions to the multi-domain proteins in

which they are found. Word2vec is a group of models which can be used to produce

semantically meaningful embeddings of words or tokens in a fixed-dimension vector

space. In this work, we treat multi-domain proteins as “sentences” where domain

identifiers are tokens which may be considered as “words.” Using all InterPro (Finn

et al. 2017) pfam domain assignments we observe that the embedding could be used

to suggest putative GO assignments for Pfam (Finn et al. 2016) domains of unknown

function.
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1 | INTRODUCTION

Word2vec1 is a group of models which can be used to learn the

embeddings of words in a continuous fixed-dimension vector space,

given a corpus of sentences as training data. Often Natural Language

Processing (NLP) tasks consider words as sets of unrelated tokens,

subjecting them to no-more rigorous analysis than simple frequency

counting. While this is mathematically and computationally conve-

nient, it ignores the fact that most words have degrees of similarity,

such as verbs with differing tenses, adverbs with differing endings or

words which share the same suffixes. Word2vec aims to produce

embeddings of words in a vector space where distance in the vector

space correctly encodes the degree to which words or terms are simi-

lar or can be used in similar semantic context. Although a great degree

has been written about these methods it remains unclear exactly why

these models are so performant.2 Nevertheless, they do show good

performance in the task of clustering words with related semantic

meaning, and interested readers should consult the original paper for

further details of the model.1 Since lexical word embeddings have

become popular, they have been adapted and applied directly to pro-

tein and gene sequences. prot2vec, gene2vec, and seq2vec are exam-

ples of such methods.3,4 Another prior application of Word2vec is the

work of Viehweger,5 applying protein domain embeddings as a

method to encode whole genomes.

Proteins are often composed of discrete domains, and these can

either be conceptualized as sub-sequences of independent protein

sequences which share homology (and by extension evolutionary

origin),6 or alternatively, domains may be considered structurally,

where they are subsections of the proteins which are compact, inde-

pendently folding and observed to be shared between a variety of

proteins.7-9 An extension of this observation, that proteins can be

decomposed into sets of domains, is the hypothesis that domains act

as sub-functional units and when composed together, a protein's

given combination of domains is what gives rise to the protein's over-

all specific function10,11 In the following study, we show that protein

domains can be embedded in a “semantically” meaningful vector space

and that this embedding space reflects meaningful information about

the functional roles (in terms of GO term assignments) of the individ-

ual protein domains.

Protein function prediction has received a great deal of attention

in the preceding 20 years12 and a great number of function prediction

methods have been developed. Many of these make use of sequence

comparison and some manner of nearest neighbor functional assign-

ment.13,14 As the field has progressed work has been carried out to

integrate more sophisticated statistical methods and models with
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many contemporary methods leveraging machine learning with

ensemble or meta-prediction methodologies. Current state of the art

in protein function is measured by the Critical Assessment in Function

Annotation (CAFA) community experiment.15 In this experiment

groups, attempt to predict experimentally validated Gene Ontology

(GO) terms16 over a blind set of unannotated protein sequences. The

most successful methods in CAFA employ a wide variety of predictive

methodologies. Among the most common are methods which inte-

grate data and annotations from a wide variety of sources including

blast searches, protein–protein interaction networks, multiple

sequence alignment analysis, sequence analysis, expression data, and

many more.17-20 A number of other successful methodologies eschew

integrating heterogenous data sources and make use of more focused

analyses, such as phylogenetic analysis,21 literature analysis,22 MSA

analysis,23 domain function analysis [24, 25]. Information about pro-

tein domains is typically only included indirectly, such as in the

methods INGA and PFPDB which make use of Pfam to derive phylo-

genetic or domain architecture patterns. Less common are methods

which directly attempt to annotate domains with function and then

leverage this information for function prediction. Both the SIFTER,

CATH-Funfam,24 and Superfamily-dcGO25 methods in CAFA were

successful methods which directly leverage such domain function

annotations. It is clear that understanding the relationship between

protein domains and their function can make a significant contribution

to accurate function prediction. Nevertheless, even with the wide

range of prediction methodologies, performance and progress in the

CAFA experiment indicates that protein function prediction remains a

challenging problem in the field of bioinformatics.

In the following work, we discuss the use of Word2vec in protein

domain embedding. We prepare such a domain embedding and

attempt to explore the its properties to discern whether such embed-

dings encode biological information that may be useful in either a pre-

dictive or analytic context. Such embeddings may be a useful adjuncts

or input features in protein function prediction as it may give a

homology-free way to characterize and functionally cluster protein

domains. At the end of the paper we note that such an embedding

could be used for the purposes of homology-free GO term inheritance

and we show a naïve application of this for Pfam Domains of

Unknown Function.

2 | METHOD

2.1 | Datasets

InterPro 6226 was downloaded along with the associated GO and pro-

tein domain assignments. The files were parsed to extract only the

eukaryotic proteins and their GO and Pfam domain assignments. This

work looks only at eukaryotic proteins as there are few examples of

proteins with multiple domains with independent evolutionary histo-

ries in the bacterial and archaeal kingdoms, as such little domain con-

text information would be available for proteins from those kingdoms.

Only GO assignments with the following evidence codes were

retained: EXP, IBA, IDA, IEP, IGC, IGI, IMP, and IPI. These are

(respectively); inferred from EXPeriment, Inferred from Biological

Aspect of ancestor, inferred from Direct Assay, Inferred from Expres-

sion Pattern, Inferred from Genomic Context, Inferred from Genetic

Interaction, Inferred from Mutant Phenotype and Inferred from Physi-

cal Interaction. This eliminates all the high throughput and more tenu-

ous computational annotation assignments. The resulting dataset

contains 9 030 650 eukaryotic proteins, which have domain assign-

ments over 11 355 of the available Pfam domain families and these

proteins are associated with annotations from 2358 GO Terms.

Not all regions within each protein have been assigned to domains

(see Table 1). In large part because not all domains are known and

assigned but also because many eukaryotic proteins possess regions

of intrinsic disorder,27 regions of low complexity or coiled-coiled

sequences. All such unassigned regions were compiled (see below). As

Word2vec analyses words based on the semantic context of neigh-

boring words representing unassigned regions in our corpus could

contain important domain context information, and so we wished to

preserve this.

These data were then used to derive which Pfam domains are

seen to be associated to which GO terms. For every Pfam domain, we

associated all GO terms assigned to all the proteins the Pfam domain

was observed in. This assigns a varied bag of GO terms to each Pfam

domain and this bag of terms can be viewed as representing the spec-

trum of observed functional diversity for that Pfam domain.

2.2 | Unassigned sequence region assignments

The sequence database for InterPro 62 was masked for both coiled

coil and low complexity regions using pfilt.28 Disordered regions were

derived directly from the existing InterPro disorder annotations. Gap

regions which did not contain disorder annotations, coiled-coil or low

complexity sequence were assigned given the length of the

unassigned regions. These remaining gap regions were binned into

size bins based on their lengths (see Figure 1). The majority of gap

regions are around 100 residues in length, as the typical structural

domain size is around 100 residues five gap types were created to

represent unassigned regions of various sizes which are approximate

multiples of the typical domain size, see Table 2. All non-domain

regions: gaps, disordered, low complexity, and coiled-coil regions were

TABLE 1 Table of the total residue counts across the eukaryotic
Interpro protein set and the number of residues assigned to each class
of domain or region

Class Residue count Percentage

Total 5 001 517 961 —

Domains 1 256 832 058 25.1

Gaps 3 405 089 896 68.1

Disordered 167 103 753 3.3

Coiled coil 3 309 167 0.06

Low complexity 2 079 334 0.04
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then compiled as a set of adjunct domain-like sequence regions to

complement the Pfam domain assignments.

2.3 | Building the word embedding

To build Word2vec embeddings, we treat protein sequences and their

domain assignments as “sentences.” The Pfam IDs and other sequence

region assignments are used as tokens/pseudo-words in such a pseudo-

sentence. For instance, a typical protein may be converted to a sen-

tence such as “PF00170 PF003534 G200 LowComplexity PF00678.”

Which would indicate two leading Pfam domains followed by a gap

region up to 200 residues, a region of low complexity sequence finally

terminating in a Pfam domain (see Figure 2). We compile such sen-

tences for every eukaryotic protein in InterPro62 and this set of sen-

tences becomes the corpus we use to create the word embedding.

Python library gensim (https://radimrehurek.com/gensim/) was

used to create the word2vec model from the corpus. The size parame-

ter was set to 100, representing the dimensionality of the vector

space to project the words in to. The minimum word count was set to

0, indicating that all words would be positioned in the vector space.

This ensures that all domains, including important infrequent ones are

considered, also the embedding uses the skip-gram algorithm and

model to build the embedding. The goal of Word2vec is to learn the

weights in the hidden layer of a simple neural network, this hidden

layer is an n by m matrix, where n is the number of input words in the

corpus and m is the size parameter (eg, 100). To train these weights

the network is given a training task, the skip-gram task, which asks

the network to predict, for each word in turn to output the probability

that other words from the corpus are near to the input word (ie,

within a given window size, in this instance a window of 5). Once the

training is complete the output probabilities are discarded and only

the weights of the hidden layer are retained as this matrix is regarded

as the word embedding. It is possible to develop alternative training
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F IGURE 1 Distribution of gap
regions (regions without Pfam domain
assignments) in InterPro eukaryotic
sequences

TABLE 2 Names and sizes of gap pseudo-domains and the
number of interpro proteins where we observe at least one of these
regions

Gap region ID Size (residues) Protein count

G100 20–100 4 234 931

G200 101–200 2 635 225

G300 201–300 1 168 553

G400 301–400 575 517

G500 401–>500 926 673

F IGURE 2 The example of the domain and sequence region
assignment. Pfam domains and disorder regions are derived from
InterPro annotations. Low complexity and coiled coil regions are
calculated by pfilt and gaps are assigned given their size [Color figure
can be viewed at wileyonlinelibrary.com]
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tasks to learn the embedding matrix. A target behavior of Word2vec

is that words which fulfill similar semantic roles should be near one

another in the embedding and it is believed that the skip-gram task,

by having the network learn about which words are local to one

another, in turn is encoding this information in the weights of the hid-

den layer.

The embedding process is illustrated full in Figure 3. For the bench-

mark below an all-against-all distance matrix of domains was derived.

2.4 | Benchmark

We are interested in whether Word2vec embeds Pfam domains in a

manner which is biologically meaningful. This would in turn would indi-

cate that there is some manner of semantic meaning in the positioning

or sequence context for protein domains. To investigate the embedding,

initially we attempted to project the domain vectors into three dimen-

sions (data not shown) using multi-dimensional scaling. However, the

resulting projection did not yield any trivially interpretable result.

An alternative means of investigating whether the embedding is

biologically meaningful would be to establish if functionally related

domains are placed near one another in the embedding. To investi-

gate this, we assigned GO terms to the Pfam domains. This was car-

ried out by allowing Pfam domains to inherit all GO terms assigned

to the proteins each Pfam domain is observed in. Pfam domains

inherit an average of 19.6 GO terms, although some domains may

have upwards of 100 terms associated, see Figure 4. Although this is

somewhat imprecise, as GO annotations reflect protein functions

rather than domain function, each domain's “bag” of GO terms will

reflect the functional diversity for the contexts a domain is observed

in. A total of 2358 GO terms were assigned over the 11 355 Pfam

domains observed in the eukaryotic proteins. These assignments

could then be used for a nearest-neighbor benchmark test.

3 | RESULTS

3.1 | Nearest-neighbor performance

Performance in nearest neighbor functional annotation was calculated to

assess whether the vector embedding of domains displayed any mean-

ingful structure. That is, domains with similar functionality were placed

near one another in the embedding. Each domain was in turn considered

by inheriting the GO terms from its k-nearest neighbors and comparing

these predicted terms to the known terms assigned via InterPro annota-

tions. Table 3 gives the precision and Matthew's Correlation Coefficients

(MCC) scores for the nearest-neighbor benchmark. The MCC value indi-

cates the predicted terms are non-random (greater than 0) which in turn

suggests that there is some meaningful structure in the embedding of

domains in a vector space. Mean accuracy is high and this is a conse-

quence of there being a very large number of GO terms where typically

only a few (relatively) are used to annotate any given protein or domain.

This in turn means any given domain has very large numbers of true neg-

atives most of which are called correctly. As K is increased recall also

increases as the bag of assigned terms gets very large but this comes at

the cost of a sharply declining precision.

F IGURE 3 Compiling protein “sentences.” InterPro compiles assignments of domains on Uniprot protein sequences. We take only the Pfam
domain assignments the InterPro database stores and complement those with the assignments of disorder and our own low complexity (LC) and
coiled-coil (CC) region assignments. These are then tokenized to create a corpus of “sentences.” The corpus can then be used as input to
Word2vec. The output is a vector space which places each token at a point within that space, here stylized in two-dimensional. Tokens which
appear in similar syntactic contexts in the corpus should be placed near one another in the vector space
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Word2vec is designed to embed human language words in a vec-

tor space such that words which occur in similar semantic contexts

are close to one another in the vector space. That our domain embed-

ding is non-random implies that multidomain proteins exhibit some

form of semantic structure. That is, certain domains appear in con-

texts near or adjacent to other domains and it may be possible to

learn grammar-like rules which govern this.

It is worth noting that increasing the number of neighbors (increasing

K) from which functional roles can be inherited degrades performance in

this function-annotation task. Domains are typically involved in a large

number of possible different protein functions. By increasing the number

of neighbors, GO terms can be inherited from the number of false posi-

tives is greatly increased and so performance degrades.

3.2 | Per ontology results

MCC values were also calculated for each of the three GO Ontologies

(see Table 4). Of the 2358 GO terms used to annotate eukaryotic

sequences in InterPro: 1,018 are from the molecular function ontol-

ogy, 1,026 are from the biological process ontology and 314 from the

cellular component ontology. The MCC values indicate different func-

tional inheritance performance for each ontology with. In the context

of the vector embedding this may imply that the simple syntax con-

tained in the domain orderings contains some additional information

about where a protein is located within the cell. Given the results of

the previous CAFA experiment15 it may, more simply, be that cellular

component prediction is an easier task.

In general, we believe the MCC calculated may underestimate the

quality of the domain embedding. Given the figures in Table 1 we see

that nearly 70% of the proteins are gap regions. This indicates many

domain assignments and domain types may be missing. We would

expect with better domain coverage we would also have a more

robust and biologically meaningful embedding.

Alongside this, using GO assignments to genes to annotate domains

is inherently noisy. GO annotations may not be good descriptors of the

specific role a domain plays in a given protein. For instance,

GO:0051987 (Chaperone Binding), assigned to 92 Pfam domains, might

be regarded as property or function of a whole protein rather than just a

specific domain. An alternative issue is illustrated by Pfam domain

PF00176 which is assigned both GO:0009916 (alternative oxidase activ-

ity) and GO:0001733 (galactosylceramide sulfotransferase activity).

These assignments come through differing InterPro proteins but repre-

sent different catalytic reaction chemistries this domain is unlikely to

possess both of these. Within the context of a multidomain proteins,

domains provide specific sub-functionality such as providing catalytic

sites, presenting one or more small molecule binding sites, providing

membrane anchoring and so forth. It seems plausible if domains were

annotated at a level, that better reflected these more specific sub-

functional roles (rather than the protein's role), then the nearest-neighbor

assignment would return better results. The lack of a computer readable

“domain ontology” remains a barrier for large scale studies of domain

functionality and evolution.

3.3 | Comparison to first-order Markov
representation

As sets of domains are sequences of symbols or states, it is possible to

represent the information contained in the corpus of domain strings as a

Markov process. We also investigated whether the Word2vec domain

embedding was a more robust representation of the information con-

tained in the domain corpus than a first-order Markov process. Parsing

the corpus of proteins, a table of the transition probabilities of all

domains against all domains was prepared. A given domain's immediate

context can be read from the table as the rows give the probabilities of
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F IGURE 4 Distribution of Gene Ontology term assignments

TABLE 3 Mean precision and
accuracy and Matthew's Correlation
Coefficients (MCC) given nearest
neighbor inheritance of Gene Ontology
terms

k-Nearest neighbors Mean precision Mean recall Mean accuracy Mean MCC

1 0.33 0.30 0.99 0.28

3 0.23 0.42 0.98 0.28

5 0.18 0.49 0.98 0.26

10 0.12 0.57 0.96 0.23

TABLE 4 Matthew's correlation coefficients (MCC) values for
nearest neighbor inheritance of Gene Ontology (GO) terms, calculated
for each separate GO ontology

k

Ontology 1 3 5 10

Biological process 0.27 0.20 0.19 0.17

Molecular function 0.30 0.23 0.22 0.19

Cellular component 0.33 0.22 0.22 0.20
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the following domain and columns indicate the probabilities of preceding

domains. It follows that pairs of domains which share both similar row

and column vectors are used in the same context in multidomain pro-

teins. A distance matrix of Euclidean distances between all domains' vec-

tors was prepared and the nearest-neighbor assignment analysis was

described above was performed, the results can be seen in Table 5.

These results indicate that the Word2vec domain embedding is substan-

tially better at encoding the biological information contained in the cor-

pus of multidomain proteins. The comparison may not be completely

equivalent, Markov probabilities take in to account only the preceding

symbol (or symbols in higher order chains) whereas the Word2vec

method considers a window of tokens around each domain, and this fea-

ture is likely a better match for modeling protein domain placement.

Considering the incoming and outgoing probabilities for each domain

could be considered equivalent to considering a window of three

domains. The default window size for Word2vec is 5. This comparison

may under report the performance of a Markov process to model this

data. However, the corpus of multidomain proteins only contains a tiny

fraction of the possible 3- and 5-mers of domains and with many

unassigned regions it getting accurate probabilities may not be possible.

3.4 | Vector arithmetic on the domain embeddings

One observation of semantic embeddings of natural languages is that

arithmetic operations on the vectors frequently have semantic or lexi-

cal meanings, one classic example being:

King –Man+Woman=Queen:

We wished to investigate if simple vector arithmetic or translations

for the protein domain embedding might have similar lexical meaning.

In the King to Queen example (see Figure 5), subtracting Man

from King takes you to a space in the embedding with the meaning of

man “removed” such that adding the Woman vector will take you to

Queen. We can perform similar vector subtractions for the domain

embedding. In this context, we would treat a domain's set of GO

terms as equivalent to its “meaning,” although, as discussed, this is a

lossy way to conceptualize the meaning of a domain. Nevertheless, if

we subtract two domain vectors we would hope the third vector is in

a space where the remaining set of GO terms is the set difference of

the two domains.

We took the most common 20 Pfam domains, removing the one

that is not present in eukaryotes and in turn subtracted all possible

domain vectors. For the resulting third vector, we found the nearest

domain and tested the GO term overlaps with the initial two domains.

In nearly all cases the resulting domain has minimal GO term overlaps

with its parents. It is clear that this operation moves us to a region in

the vector space where the domains' “meaning” is profoundly altered,

much as removing Man from King might be thought of as moving to a

gender-neutral space. What is not clear is what is the functional

meaning of this in protein domain terms.

To investigate whether we could find more meaningful move-

ments in the vector space we looked instead for translations in the

vector space between mutually exclusive binary annotations. King and

Queen are typically used as mutually exclusive labels that straddle

some conceptual binary assignment (ie, gender) and much the same is

true of many GO terms. For instance, in the cellular component ontol-

ogy annotation, terms such as intracellular and extracellular might be

viewed as a similar mutually exclusive binary.

We chose three binary cellular component term pairs; intracellular

(GO:0005622) vs extracellular (GO:0005615), nucleus (GO: 0005634) vs

cytoplasm (GO: 0005737), and cytoplasm (GO: 0005737) vs transmem-

brane (GO: 0009279). For each pairing, we identified proteins with

domains annotated exclusively with one term and not the other term.

Then for the first term we calculated the vector which moves from the

location of the domain with the first term to the closest domain annotated

with the second term. As with the prior analysis not having a detailed

domain ontology prevents us from knowing if this closest domain is the

most appropriate domain to move to. This led to a population of transla-

tion vectors which we could test to measure if the translation from a

domain with one term to a domain with the other term was always vector

oriented in a similar direction.We compared all Intracellular to extracellular

vectors in an all against all fashion and did the same for the other two pairs

of terms (see Figure 6). If the translation is preserved in the vector space,

we would expect that all the vectors to have a small angle of deflection

between them. In the transmembrane case, there was no such alignment

and no trend in the angles between the vectors. In both, the intracellular

to extracellular and the nucleus to cytoplasmic cases, there is a clear distri-

bution which peaks around 1.5 rad, indicating that in general the transla-

tion is commonly orthogonal and is not preserved in the vector space. This

stands somewhat at oddswith the prior observation that vector arithmetic

which encodes semantic translations is a general property of these embed-

dings. The caveat to make here is that our embedding may not of high

enough quality to perform this analysis productively. As noted above there

may not be enough domain coverage to robustly place the domains in the

embedding space. Alternatively when choosing the domain pairs, the clos-

est paired domain may not be the correct domain to calculate the angle

between either we have selected the wrong extant domain or the correct

domain is yet to be added to Pfam.

However, the intracellular to extracellular histogram shows a small

leading tail below 1 rad (see Figure 7) indicative of a small population

of vectors which do approach alignment. And indeed, we are able to

find small numbers of genes in InterPro which share Pfam domains

and where the difference is a substitution of one or more intracellular

TABLE 5 Comparison of Matthew's correlation coefficients
(MCC) performance between first-order Markov encoding and the
Word2vec embedding of the domain corpus

k-Nearest Neighbors

Mean MCC

Word2vec Markov

1 0.28 0.13

5 0.28 0.14

5 0.26 0.14

10 0.23 0.11
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annotated domains for extracellular domains. Two examples, such as

G3I6X9 (solute carrier family 25 member 46) and A0A0L6WZ71 (gly-

cogen debranching enzyme) or I3L0A0 (Human Transcript

TMEM189-UBE2BV1) and G7Y5H3 (Ubiquitin-conjugating enzyme

E2 L3), see Figure 8. The first pair, G3I6X9 and A0A0L6WZ71, have

respectively extracellular and intracellular functions. The second pair;

G7Y5H3 has a cytoplasmic function but it is less clear what the role

of I3L0A0 might be. The fact that this appears to work in some limited

cases may suggest that an embedding based on a dataset with much

greater domain coverage might be more accurate.

3.5 | Domains of unknown function

As the Word2vec embedding has some meaningful structure with

regards GO term inheritance we can also use a nearest neighbor

approach to suggest putative sets of GO terms that each eukaryotic

Pfam domain of unknown function (Pfam DUFs) may take part in. This

allows a homology-free way to estimate GO assignments. Our corpus

of eukaryotic genes contained annotations from 3918 DUFs. Using a

single nearest neighbor inheritance method, 1292 of these domains

could be assigned new GO terms (ie, their nearest neighbor in the

embedding was annotated and was not a gap or other sequence

region). On average each DUF gets 11 novel GO terms assigned.

Surveying the GO assignments, we note that the mean ontology

depth for each assigned term (ie, the shortest number of steps from

an assigned term to the root of the ontology) is a depth on the graph

4.9 steps from the root of the ontology. The distribution of assigned

term depths is also somewhat positively skewed (data not shown).

(A) (B) (C)

F IGURE 5 Example demonstrating semantically meaningful vector algebra. In A, four terms are placed in the vector space. If we subtract the
Man vector from King (graph B), we move to an undefined point in the vector space. Adding the Woman vector C, moves to the Queen vector
[Color figure can be viewed at wileyonlinelibrary.com]

(A) (B) (C) (D)

F IGURE 6 Comparing translation vector from one binary Gene Ontology property to another. A, Putative vector embedding of intracellular
(blue dots) and extracellular (orange crosses) labeled domains. B, Vectors which translate each intracellular domain to its closest extracellular
labeled domain. C, Vectors are extracted and pooled D, angle between each vector is compared to find vectors that point in the same direction
[Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 7 Histogram of transformation vector angles. For
intracellular to extracellular
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The BP, MF, and CC ontologies have maximum depths of 16, 16, and

11, respectively. This indicates that the typical term assignments are

somewhat general, closer to generic terms such as “protein binding”

rather than terms which indicate explicit functional roles, such as cata-

lytic mechanisms. In Figure 9, the distribution of terms indicates that

the majority of DUFs receive only a handful of putative GO assign-

ments. We suggest that such assignments could be used as general

starting points for Pfam domain annotations and with relatively fewer

terms to confirm in most these should not make such annotation tasks

more onerous or obfuscated. We make these annotations available

(see Appendix S1) and note they could make a starting point for future

annotation of these domains in Pfam.

4 | DISCUSSION

Applying Word2vec to protein domains, making the assumption that

multi-domain proteins are sentence-like, reveals that domains display

some manner of semantic or lexical structure. Given this, it should be

possible in future to elucidate statistical or semantic rules for domain

placement in multi-domain proteins using grammatical inference

methods. This would have applications in protein design and

modeling.

The Word2vec algorithm was designed to work over very large

corpuses of human language, and while the 9 million eukaryotic Inter-

Pro sequences used in this study is a relatively large corpus, the cor-

pus of “sentences” currently has too sparse a level of GO annotation

to allow us to develop a high-quality embedding of word-tokens

which maps well to GO term defined function. A further limitation lies

in the amount of domain coverage. Nearly, 70% of the proteins

remain unassigned to domains and without greater domain coverage a

truly robust domain embedding may not be possible. Additionally,

multi-domain proteins typically have fewer than six domains, and

often just two or three, whereas human sentences comprise longer

sequences. This may mean sequential sets of domains are unlikely to

provide sufficient contextual information to produce an informative

vector embedding. All these issues might be addressed by retuning

the Word2vec model to make it more appropriate for domain data.

Word2vec offers several trainable parameters which may allow the

method to be adapted for better performance with protein domains,

however, it may be the case that an entirely different architecture will

be needed.

Using GO annotations to annotate domains is necessarily noisy. It

is not clear that they are the best way to encode the lexical “meaning”

of an isolated domain in its multi-domain context. In future, a finer

grained annotation of domains' sub-functional roles will be necessary

F IGURE 8 Diagram of intra/extra-cellular domain swaps. Both proteins share Pfam domain PF00179. In protein I3L0A0 domain PF10520 has
been assigned the Gene Ontology (GO) extracellular GO term (GO:0005615). In protein G7Y5H3 the substituted domains, PF014699 and
PF14701, are both labeled with the intracellular GO term (GO:0005622) [Color figure can be viewed at wileyonlinelibrary.com]
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to correctly interpret the lexical meaning of arithmetic transforma-

tions of vectors in the embedding space. Nevertheless, this work does

open up the tantalizing possibility that protein domains have contex-

tual lexical meaning that could be learned and in turn could be used to

derive rules for multidomain protein evolution. However, even in light

of these limitations the vector embedding allows us to suggest prelim-

inary function roles for many, as yet, unannotated Pfam domains, and

combined with other sources of functional information, this could help

improve our overall ability to assign functions to proteins and the

genes which encode them.

4.1 | Code and data

All code is available on GitHub and the domain assignments, genism

model, token distance matrix and DUF assignments are available via

our webserver:

https://github.com/psipred/domain_word2vec_scripts

https://bioinfadmin.cs.ucl.ac.uk/downloads/word2vec/.

ORCID

Daniel W. A. Buchan https://orcid.org/0000-0001-7391-4696

REFERENCES

1. Mikolov, T., Chen, K., Corrado, G. Dean, J. Efficient Estimation of Word

Representations in Vector Space. arXiv: 1301.3781v1, 2013.

2. Goldberg, Y. & Levy, O., word2vec Explained: Deriving Mikolov Et al's

Negative-Sampling Word-Embedding Method. arXiv: abs/1402.3722 2014.

3. Asgari E, Mofrad MR. Continuous distributed representation of bio-

logical sequences for deep proteomics and genomics. PLoS One.

2015;10(11):e0141287.

4. Yang KK, Wu Z, Bedbrook CN, Arnold FH. Learned protein embed-

dings for machine learning. Bioinformatics. 2018;34(15):2642-2648.

5. Viehweger A, Krautwurst S, Parks DH, König B, Marz M. An encoding

of genome content for machine learning. Biorxiv. 2019. https://doi.

org/10.1101/524280.

6. Finn RD, Coggill P, Eberhardt RY, et al. The Pfam protein families

database: towards a more sustainable future. Nucleic Acids Res. 2016;

44(D1):D279-D285.

7. Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG. SCOP2

prototype: a new approach to protein structure mining. Nucleic Acids

Res. 2014;42(Database issue):D310-D314.

8. Cheng H, Schaeffer RD, Liao Y, et al. ECOD: an evolutionary classifi-

cation of protein domains. PLoS Comput Biol. 2014;10(12):e1003926.

9. Dawson NL, Lewis TE, Das S, et al. CATH: an expanded resource to

predict protein function through structure and sequence. Nucleic

Acids Res. 2017;45(D1):D289-d295.

10. Das S, Oregngo CA. Protein function annotation using protein domain

family resources. Methods. 2016;93:24-34.

11. Nepomnyachiy S, Ben-Tal N, Kolodny R. Complex evolutionary foot-

prints revealed in an analysis of reused protein segments of diverse

lengths. Proc Natl Acad Sci U S A. 2017;114(44):11703-11708.

12. Friedberg I. Automated protein function prediction—the genomic

challenge. Brief Bioinform. 2006;7(3):225-242.

13. Watson JD, Laskowski RA, Thornton JM. Predicting protein function from

sequence and structural data. Curr Opin Struct Biol. 2005;15(3):275-284.

14. Loewenstein Y, Raimondo D, Redfern OC, et al. Protein function

annotation by homology-based inference. Genome Biol. 2009;10

(2):207.

15. Radivojac P, Clark WT, Oron TR, et al. A large-scale evaluation of

computational protein function prediction. Nat Methods. 2013;10(3):

221-227.

16. Consortium GO. Expansion of the gene ontology knowledgebase and

resources. Nucleic Acids Res. 2017;45(D1):D331-d338.

17. Cozzetto D, Buchan DWA, Bryson K, Jones DT. Protein function pre-

diction by massive integration of evolutionary analyses and multiple

data sources. BMC Bioinformatics. 2013;14(Suppl 3):S1.

18. Lan L et al. MS-kNN: protein function prediction by integrating multi-

ple data sources. BMC Bioinformatics. 2013;14(Suppl 3):S8.

19. Goldberg T, Hecht M, Hamp T, et al. LocTree3 prediction of localiza-

tion. Nucleic Acids Res. 2014;42(Web Server issue):W350-W355.

20. Khan IK, Wei Q, Chapman S, KC DB, Kihara D. The PFP and ESG pro-

tein function prediction methods in 2014: effect of database updates

and ensemble approaches. Gigascience. 2015;4:43.

21. Almeida-e-Silva DC, Vencio RZ. SIFTER-T: a scalable and optimized

framework for the SIFTER phylogenomic method of probabilistic pro-

tein domain annotation. Biotechniques. 2015;58(3):140-142.

22. Van Landeghem S et al. Exploring biomolecular literature with EVEX:

connecting genes through events, homology, and indirect associa-

tions. Adv Bioinformatics. 2012;2012:582765.

23. Falda M et al. Argot2: a large scale function prediction tool relying on

semantic similarity of weighted Gene Ontology terms. BMC Bioinfor-

matics. 2012;13(Suppl 4):S14.

24. Das S, Lee D, Sillitoe I, Dawson NL, Lees JG, Orengo CA. Functional

classification of CATH superfamilies: a domain-based approach for

protein function annotation. Bioinformatics. 2016;32(18):2889.

25. Fang H, Gough J. A domain-centric solution to functional genomics

via dcGO predictor. BMC Bioinformatics. 2013;14(Suppl 3):S9.

26. Finn RD, Attwood TK, Babbitt PC, et al. InterPro in 2017-beyond pro-

tein family and domain annotations. Nucleic Acids Res. 2017;45(D1):

D190-d199.

27. Walsh I, Giollo M, di Domenico T, Ferrari C, Zimmermann O,

Tosatto SCE. Comprehensive large-scale assessment of intrinsic pro-

tein disorder. Bioinformatics. 2015;31(2):201-208.

28. Jones DT. Protein secondary structure prediction based on position-

specific scoring matrices. J Mol Biol. 1999;292(2):195-202.

How to cite this article: Buchan DWA, Jones DT. Learning a

functional grammar of protein domains using natural language

word embedding techniques. Proteins. 2020;88:616–624.

https://doi.org/10.1002/prot.25842

624 BUCHAN AND JONES

https://github.com/psipred/domain_word2vec_scripts
https://bioinfadmin.cs.ucl.ac.uk/downloads/word2vec/
https://orcid.org/0000-0001-7391-4696
https://orcid.org/0000-0001-7391-4696
https://doi.org/10.1101/524280
https://doi.org/10.1101/524280
https://doi.org/10.1002/prot.25842

	Learning a functional grammar of protein domains using natural language word embedding techniques
	1  INTRODUCTION
	2  METHOD
	2.1  Datasets
	2.2  Unassigned sequence region assignments
	2.3  Building the word embedding
	2.4  Benchmark

	3  RESULTS
	3.1  Nearest-neighbor performance
	3.2  Per ontology results
	3.3  Comparison to first-order Markov representation
	3.4  Vector arithmetic on the domain embeddings
	3.5  Domains of unknown function

	4  DISCUSSION
	4.1  Code and data

	REFERENCES


