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Abstract

Internal structure similarity in proteins can be observed at the domain and subdomain

levels. From an evolutionary perspective, structurally similar elements may arise

divergently by gene duplication and fusion events but may also be the product of

convergent evolution under physicochemical constraints. The characterization of pro-

teins that contain repeated structural elements has implications for many fields of

protein science including protein domain evolution, structure classification, structure

prediction, and protein engineering. FiRES (Find Repeated Elements in Structure) is

an algorithm that relies on a topology-independent structure alignment method to

identify repeating elements in protein structure. FiRES was tested against two hand

curated databases of protein repeats: MALIDUP, for very divergent duplicated

domains; and RepeatsDB for short tandem repeats. The performance of FiRES was

compared to that of lalign, RADAR, HHrepID, CE-symm, ReUPred, and Swelfe. FiRES

was the method that most accurately detected proteins either with duplicated

domains (accuracy = 0.86) or with multiple repeated units (accuracy = 0.92). FiRES is

a new methodology for the discovery of proteins containing structurally similar ele-

ments. The FiRES web server is publicly available at http://fires.ifc.unam.mx. The

scripts, results, and benchmarks from this study can be downloaded from https://

github.com/Claualvarez/fires.
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1 | INTRODUCTION

Protein repeats consist of non-overlapping copies of either subdomain

elements or entire domains located within a single protein. These cop-

ies, called repeated units, can be arranged in tandem or interspersed

throughout the sequence1-3 and may fold into similar three-

dimensional structures. Protein repeats can adopt a variety of native

conformations such as intrinsic disorder,4 globular domains and open

structures. For instance, six out of the 10 most prevailing globular

domains are formed by repeated units.5 These units have been stud-

ied as remnants of hypothetical peptide-like predecessors of the first

folded proteins.5,6 Open solenoid domains are characteristically

formed by a stack of multiple short tandem repeats.2,7,8 Solenoid

domains appear to be an evolutionary adaptation more commonly

found in eukaryotes and are usually involved in protein-ligand and
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protein-protein interactions.2,9 At the domain level, duplication, fusion

and terminal losses, have played a major role in the evolution of the

modern repertoire of protein structures and functions.10-12 Thus,

repeated units are functionally and structurally diverse, as are the evo-

lutionary mechanisms that preserve them.

Duplicated sequences accumulate point mutations as well as

insertions and deletions, which ultimately hide the trace of similarity

between them.3,6,9,13,14 Sequence divergence determines the amount

of structural variation displayed by protein repeats. However, three-

dimensional structure changes more slowly over evolutionary time

than sequence.15 For instance, distantly related domains maintain a

distinctive core of secondary structural elements even in the absence

of significant sequence similarity16 and circularly permutated proteins

frequently preserve the same overall three-dimensional disposition of

Cɑ atoms.17 In the case of tandem repeats, the disparity between

sequence divergence and structure conservation can be extreme.18

Thus, many studies have incorporated structure-based analysis to

facilitate the precise identification of very divergent polypeptide

chains. Non-sequential structure comparison algorithms, such as

CLICK,19 allow similarities between protein structures to be detected

irrespective of the topological connectivity of their secondary struc-

tural elements.

Sequence- and structure-based methods have been developed to

identify internal similarity in proteins (Table 1). Algorithms that detect

similarity at the sequence level are particularly useful for the analysis of

protein repeats because their results facilitate homology inference.

Examples of such algorithms include lalign,20 HHrepID,21 RADAR,22

TPRpred,23 and TRUST.24 On the other hand, structure-based algo-

rithms can be advantageous for the discovery of remote homologs.

Structure-based repeat-detection algorithms (reviewed by Pellegrini25)

are broadly classified in two categories: (a) inference methods, such as

ReUPred,18 RepeatsDB-Lite,26 and IRIS,27 which are based on libraries

of already well-characterized reference units; and (b) de novo identifica-

tion methods, which do not rely on previous knowledge of the features

defining a repeated unit. The main strategies employed by de novo

identification methods are self-structure comparison, and detection of

periodicities using one or more structural parameters. Examples of self-

structure comparison methods include CE-symm,28 DAVROS,29

GANGSTA+,30 and SymD.31 Examples of pattern recognition algorithms

include Swelfe,32 which employs ɑ-angles; ProSTRIP,33 which calculates

dihedral angles; ConSole,8 which relies on contact maps; and TAPO,34

which detects periodicities of atomic coordinates and other parameters.

It should be noted, however, that structure similarity may be the prod-

uct of convergent evolution under functional and structural

constraints,35-37 thus, its identification does not unambiguously imply

homology. This is especially true at the subdomain level, where struc-

tural similarity may represent energetically favorable conformations of

secondary structural elements.36,38,39 Therefore, the present study

focuses on similar structural elements, which include both homologous

and convergently evolved regions of internal structure similarity within

a protein.

Here, we present FiRES (Find Repeated Elements in Structure), a

computational protocol for the de novo identification of tandem and

non-tandem repetitive elements in protein structures. FiRES exploits a

topology-independent structure alignment method in order to detect

similar groups of elements. The performance of FiRES was assessed

TABLE 1 Algorithms for the study of protein repeats

Algorithm Type of data Description

lalign20 Sequence de novo identification of

repeats

RADAR22 Sequence de novo identification of

repeats

TRUST24 Sequence de novo identification of

repeats

TPRpred23 Sequence TPRs, PPRs, and SEL1-like

solenoid repeats

HHrepID21 Sequence de novo identification of

repeats

ARD29 Sequence de novo identification of

α-solenoid repeats

HMMER59/

Pfam51

Sequence, Pfam

database

Reference-based

identification of repeats

DAVROS29 Structure de novo identification of

repeats

GANGSTA+30 Structure de novo identification of

repeats

REPETITA60 Structure de novo identification of

solenoid repeats

SymD31 Structure Identification of internal

structure symmetry

ProSTRIP33 Structure de novo identification of

repeats

RAPHAEL61 Structure de novo identification of

solenoid repeats

CE-symm28 Structure Identification of internal

structure symmetry and

repeating units

ConSole8 Structure de novo identification of

solenoid repeats

REPRO62 Sequence de novo identification of

repeats

DeepSymmetry63 Structure de novo identification of

tandem repeats

TAPO34 Structure de novo identification of

tandem repeats

IRIS27 Sequence or

structure

Reference-based

identification of repeats

RepeatsDB-Lite26 Structure,

RepeatsDB

Reference-based

identification of short

tandem repeats

ReUPred18 Structure,

RepeatsDB

Reference-based

identification of short

tandem repeats

Swelfe32 Sequence or

structure

de novo identification of

repeats

Abbreviations: TPR, Tetratrico peptide repeat; PPR, Pentatrico peptide

repeats.
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on two types of data: proteins with short tandem repeats and proteins

with very divergent internal domain duplications. Finally, we show

that FiRES can be used for the discovery of proteins containing similar

structural elements with very low sequence identity (<20%), where

homology inference remains an open question.

2 | MATERIALS AND METHODS

The FiRES algorithm (Figure 1) searches internal structure similarity

within a protein by an iterative self-alignment process, which includes

a scoring system based on the template modeling score40 (TM-score).

2.1 | Generation of query-target pairs

FiRES generates a series of alignments between a fragment of an

input protein structure and the input protein structure itself. To avoid

alignments at the diagonal, each fragment, referred to as query qi, is

aligned to a target region ti defined as the complement of qi over the

protein P:

ti = Pnqif g ð1Þ

During the first iteration, the size of each query qi depends on the

total number N of secondary structural elements (SSEs) in the protein

P. To determine the number of SSEs, each residue in P is tagged with

a secondary structure label, namely helix, strand or loop. These tags

are assigned by the DSSP algorithm.41 Residues presenting geometri-

cal features that do not classify as helix or strand are treated as loops.

Consecutive residues with the same secondary structure label are

grouped into SSEs. The maximal number n of SSEs within each query

is calculated as follows:

n=
round

N
4

� �
,N< 28

7,N≥ 28

8><
>: ð2Þ

F IGURE 1 Flow diagram indicating the main steps of the FiRES algorithm [Color figure can be viewed at wileyonlinelibrary.com]
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Where N is the total number of SSEs in P and n is the maximum

number of SSEs in each query qi. The set of i queries is generated by

shifting the starting position of qi to the next helix or strand (Figure 1,

step 1).

2.2 | Local structure alignment

Query-target pairs are aligned using the CLICK algorithm with default

parameters.19 CLICK is a graph theory-based algorithm, which employs

the Cartesian coordinates of Cɑ atoms of the query and target structures

to form cliques. CLICK produces pairwise alignments by iteratively

matching increasingly larger cliques of points of the query and target

structures. For each query-target pair, CLICK returns pairs of Cɑ atoms

that render a low RMSD alignment. When the whole set of query-target

pairs has been aligned with CLICK, all pairs of matching residues are

stored in a single two-dimensional matrix (Figure 1, step 2).

2.3 | Identification and evaluation of self-aligned
regions

From the two-dimensional matrix containing matching states, local

alignments are determined by a dynamic programming procedure,

which uses the Smith-Waterman42 scoring system and traceback

strategy (Figure 1, step 3). The following parameters were used to

generate the scoring matrix from which the local alignments are

determined: match +2; gap-opening −1; and no gap-extensions.

Only locally aligned regions with lengths over 10 residues are

maintained. By the end of this step, the first element ek of the

aligned pair (ek, e'k) becomes a new query element, for which a new

complementary target pair is generated by:

qi = ek

ti = Pnek [e0k
� � ð3Þ

F IGURE 2 Schematic representation of the final evaluation and scoring step of FiRES. Internal structure similarity in the N-terminal TPR
domain of p67phox. A, Dot plot of the local structure alignments generated once the iterations over steps 2 and 3 converge. Orange arrowheads
indicate the terminal sites of the gap-extension process (˄ start, and ˅ end positions). B, Local structure alignment pairs that have passed the size
filter. The middle position of gapped and ungapped pairs is indicated by yellow and red squares, respectively. C, Clustering by transitivity. Two
different clusters are indicated. The first cluster includes pairs a, a', b, c, d', e', f', and g' (red arrows), the second cluster includes pairs h and h' (blue
arrows). D, Similar pairs of elements within the first cluster. The length of individual elements along the x-axis is indicated by colored stripes. E,
Visualization of the individual elements of the first cluster on the tree-dimensional model (color code as in C). F, Table of results for 1W5M_A
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New query-target pairs enter a loop over steps 2 and 3, until no

new matched residue pairs are found within a local alignment.

2.4 | Final evaluation step and scoring

Once the number and length of candidate elements remain constant

through the iteration of steps 2 and 3, a gap extension process is initial-

ized (Figure 2). The goal of this process is to retrieve pairs of elements

that fold into similar three-dimensional structures, but that may be

formed by non-sequential SSEs. A gap is extended between two fragment

pairs if these are separated by <55 residues in sequence (Figure 2A).

Gapped and ungapped pairs over 20 residues length (Figure 2B) undergo

a final structure alignment, using CLICK. The TM-score of the CLICK-

generated superimpositions is calculated to assess the similarity between

candidate pairs of elements. Finally, elements are clustered by transitivity.

Elements are considered equivalent upon transitivity if the middle posi-

tion of any of the elements in a pair is at most two positions away on its

sequence representation from the middle position of an element in any

other pair (Figure 2B, C). Similar elements grouped by transitivity are dis-

played with the same initial reference in the output (Figure 2E).

2.5 | Protein repeats datasets

Two databases were selected in order to evaluate the ability of the

methods to identify proteins with different types of repeats:

MALIDUP for proteins with duplicated domains and RepeatsDB for

proteins with multiple tandem repeats. To facilitate comparisons to

other sequence and structure-based methods, two data sets were

assembled from MALIDUP and RepeatsDB with entries fulfilling the

following requirements: (a) at least one of the reference units should be

longer than 15 AMino acids; (b) the protein should contain only one

type of repeat; and (c) repeat units should not have circular permuta-

tions. The first data set contains 137 proteins with duplicated domains

from the MALIDUP database.43 The second data set includes 3522

proteins with short-tandem repeats retrieved from RepeatsDB.44

PDB files were obtained from the PDB database using the script

get_pdb.py from Rosetta (www.rosettacommons.org). FASTA

sequences were obtained from UniProt45 using the corresponding

PDB code and chain.

2.6 | Database of no repeats

A database of proteins without internal sequence and structure similarity

was generated using three sequential filters. First, a database of non-

symmetrical protein structures was constructed. To this end, a subset of

the PDB composed of 28 337 non-redundant chains, as determined by

BLASTClust at 30% sequence identity, was evaluated by SymD.31 From a

total of 6088 structures that were considered non-symmetrical (Z-scor-

e < 4), 3300 were randomly selected to continue to the next stage. Then,

two random groups were assembled with 300 and 3000 proteins to

resemble the sizes of MALIDUP and RepeatsDB, respectively. The second

filter consisted in excluding proteins that presented repeated sequence sig-

natures according to InterPro.46 These signatures include annotations from

CATH,47 Gene3D,48 CDD,49 PANTHER,50 Pfam,51 ProDom,52 PROSITE,53

SMART,54 SUPERFAMILY,55 and TIGRFAMs.56 The remaining proteins

were evaluated by all algorithms tested in this study (see performance eval-

uation). Pairwise structure alignments of the predictions made by any of

the tested algorithms were performed with TM-align. Predicted repeat

pairs with >15 aligned residues and a TM-score higher than 0.5 were visu-

ally inspected to evaluate the content, connectivity and orientation of their

SSEs. This inspection revealed the presence of 81 proteins with internal

structure similarity, which were removed from the final control sets (Suppl.

Table S1). Finally, two control sets, integrated by 132 and 2125 proteins

with low probability of containing repeated elements, were established as

negative controls for MALIDUP and RepeatsDB, respectively.

2.7 | Performance evaluation

The ability of FiRES to identify repeated structural elements was com-

pared to that of three sequence-based and three structure-based

methods. Sequence-based algorithms consisted of lalign from FASTA ver-

sion 36,20 RADAR22 version 1.3, and HHrepID21 version 1.0.0. Structure-

based algorithms consisted of ReUPred,18 Swelfe,32 and CE-symm28 ver-

sion 2.0. In all cases, standalone versions of the software were used. To

evaluate the performance of HHrepid, lalign, and FiRES, which output mul-

tiple answers, only their best-scoring results were considered. The results

of lalign, HHrepID, and FiRES were ranked based on E-value, P-value, and

TM-score, respectively. For sequence-based methods, only predictions

made on parts of the protein for which a structural model is available were

evaluated. To confirm structural similarity, the predicted units were evalu-

ated with TM-align.23 Alignments involving at least 50% of each unit and

rendering a TM-score higher than 0.5 were considered correct.

The methods were evaluated both at the protein and at the unit

level. At the protein level, a prediction was considered true positive if

at least half of the predicted units had a correct alignment to at least

one other predicted unit. This test evaluates if the methods can differ-

entiate between proteins with and without internal similarity regardless

of whether the predicted units correspond to the database definitions

or not. At the unit level, a predicted unit was considered true positive if

it had a correct alignment with at least one of the reference units as

reported by MALIDUP or RepeatsDB. At both levels, the performance

was evaluated by their true positive rate (TPR). Additionally, at the pro-

tein level, true negative rate (TNR) and accuracy were calculated based

on the predictions of the methods in the control sets.

3 | RESULTS

3.1 | Benchmark test

The ability of FiRES, ReUPred, Swelfe, CE-symm, HHrepID, lalign, and

RADAR to detect proteins with very divergent duplicated domains
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was tested using a subset of MALIDUP. All methods obtained similar

TPRs at the protein and at the unit level (Table 2). At both levels,

FiRES obtained the highest TPR within the MALIDUP dataset. FiRES

correctly identified repeats in 102 out of 137 proteins, which is more

than twice the number of proteins identified by RADAR, HHrepID or

laling (Table 2). CE-symm, which correctly identified 64 proteins, dis-

played the second best TPR. Both FiRES and CE-symm rely on struc-

tural alignments to detect internal similarity, which, in general,

makes them better suited to identify larger repeated units.28 How-

ever, CE-symm detects similar units only when the interface

between units is conserved.28 Swelfe identified only 26 proteins in

the MALIDUP dataset and was clearly outperformed by their

sequence-based counterparts. ReUPred detected six proteins con-

taining duplicated domains. These six proteins are themselves

formed by the repetition of supersecondary structure elements,

namely ɑɑ- and ββ-hairpins, and βɑβ-elements. ReUPred is a method

that was specifically designed for the identification and classifica-

tion of solenoid proteins.18 Thus, it is not surprising that ReUPred

performs poorly on a set, which exclusively includes duplicated

domains.

Although protein structure tends to be more conserved than

sequence, structural divergence of the units and of the interface

between the units constitute a mayor challenge for structure-based

repeats identification methods. Collectively, all methods predicted

only 110 out of 137 proteins in MALIDUP. The 27 proteins that

remained undetected contain very divergent pairs of domains that

share <20% identical residues or that render an average TM-score

below 0.5 (Suppl. Table S2).

The RepeatsDB dataset tests the ability of the methods to iden-

tify proteins containing units that are repeated multiple times. Pro-

teins in RepeatsDB have on average 7.7 repeated units. All algorithms

obtained better results at the protein level on the RepeatsDB dataset

than on the MALIDUP dataset (Table 2). However, at the unit level

the TPR of FiRES (0.18), Swelfe (0.03) and lalign (0.07) was very low,

compared to their TPR at the protein level. The TPR at the unit level

indirectly evaluates the ability of the different methods to assign

boundaries to the units. At this level, CE-symm achieved the highest

TPR (0.70), followed by HHrepID (0.49) and RADAR (0.39). FiRES

tends to output units that are longer than the reference units in

RepeatsDB. ReUPred, which was designed as a classification algo-

rithm for solenoid domains, has a very similar TPR both at the protein

and at the unit levels.

At the protein level, FiRES identified 91% of proteins in this set.

The TPR of the rest of the methods at the protein level remained

below 70% (Table 2). To gain further insights on the strengths and

weaknesses of the FiRES algorithm, the results were broken down

based on the classification of protein repeats (Table 3). The set of

structures within RepeatsDB that was analyzed here included repeats

within classes II, III, IV, and V (Table 3). FiRES displayed a high TPR

(above 80%) over a broad spectrum of repeats. The most notable

exceptions to this trend were sub-categories II.2) α helical coiled coil;

III.4) β-trefoil/β hairpins; IV.3) β-trefoil; and V.3) ɑ/β-Beads. In fact,

none of the algorithms achieved adequate results for subclasses II.2) α

helical coiled coil; III.4) β Trefoil/β Hairpins; and IV.3) β-trefoil. In con-

trast, some types of repeats turned out to be relatively easy to iden-

tify. For instance, almost all methods, apart from ReUPred, achieved

TPR above 60% for IV.6) ɑ-Barrel; IV.7) ɑ/β Barrel; and IV.9) ɑ/β Tre-

foil (Table 3).

The ability of the methods to differentiate proteins with

repeated elements from proteins without internal similarity was

tested on a new database called database of no repeats. This data-

base was curated such that repeats of all types (short, long, tandem,

and non-tandem) are filtered out (see Methods). The database of no

repeats contains a total of 2257 non-redundant structures from

the PDB.

As expected, structure-based methods produced a high true neg-

ative rate (Table 4). Structure-based methods directly evaluate struc-

ture, as opposed to sequence-based methods, for which structure

similarity is a prediction. Remarkably, HHrepID, a sequence-based

method, accomplished a true negative rate of 0.98 for both control

sets (Table 4). In contrast, two thirds of the predictions made by

RADAR turned out to be false positive results. Overall, FiRES was the

method that most accurately differentiated between proteins with

and without internal structure similarity, followed by CE-symm and

TABLE 2 True positive rate of the detection methods

Structure-based methods Sequence-based methods

FIRES ReUPred Swelfe CE-symm HHrepID lalign RADAR

MALIDUP

Protein

(n = 137)

102 (0.74) 6 (0.04) 26 (0.19) 64 (0.47) 34 (0.25) 39 (0.28) 28 (0.20)

Unit

(n = 274)

185 (0.68) 7 (0.03) 55 (0.20) 136 (0.50) 80 (0.29) 65 (0.24) 55 (0.20)

RepeatsDB

Protein

(n = 3522)

3225 (0.92) 669 (0.19) 1524 (0.43) 2421 (0.69) 1704 (0.48) 1608 (0.46) 1748 (0.50)

Unit (n = 26 980) 4852

(0.18)

4960 (0.18) 906 (0.03) 18 755 (0.70) 13 189 (0.49) 1891 (0.07) 10 626 (0.39)
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HHrepID (Table 5). FiRES is a powerful method for the identification

of proteins that contain domain-size or subdomain-size similar struc-

tural elements.

3.2 | Detecting similar elements with very low
sequence identity

During the construction of the database of no repeats, the algorithms

identified a total of 81 proteins with internal structure similarity.

Internal similarity within these proteins was not documented in Inter-

Pro. More than half of these cases were identified only by FiRES,

whereas 21 were identified by FiRES and another method. Only

16 cases were identified by a method different from FiRES (Suppl.

Table S1). From the 44 results that were exclusive to FiRES, two

examples were selected to illustrate the use of FiRES to detect hidden

evolutionary relationships between structurally similar elements

(Figures 3 and 4 and Suppl. Methods). In both examples, the discrimi-

nation between homology and analogy required a combination of

structure- and sequence-based methods.

TABLE 4 True negative rate of the detection methods

Structure-based methods Sequence-based methods

FIRES ReUPred Swelfe CE-symm HHrepID lalign RADAR

Control 1

[N = 132]

TN: 129

(97.7%)

TN: 128

(99.7%)

TN: 132

(100%)

TN: 131

(99.2%)

TN: 129

(97.7%)

TN: 113

(85.6%)

TN: 48

(36.3%)

Control 2

[N = 2125]

TN: 2009

(94.5%)

TN: 2070

(97.4%)

TN: 2125

(100%)

TN: 2112

(99.4%)

TN: 2078

(97.7%)

TN: 1749

(82.3%)

TN: 867

(40%)

Note: Negative control sets for MALIDUP (control 1) and RepeatsDB (control 2).

TABLE 3 Number of correctly detected proteins with short tandem repeats in RepeatsDB

FiRES ReUPred Swelfe CE-symm HHrepID lalign RADAR

II.2 (n = 9) 4 (0.44) 3 (0.33) 0 0 0 0 0

III.1 (N = 321) 258 (0.80) 80 (0.25) 113 (0.35) 72 (0.22) 110 (0.34) 89 (0.28) 93 (0.29)

III.2 (N = 322) 308 (0.96) 83 (0.26) 247 (0.77) 231 (0.72) 190 (0.59) 254 (0.79) 212 (0.66)

III.3 (N = 863) 804 (0.93) 323 (0.37) 552 (0.64) 747 (0.87) 582 (0.67) 509 (0.59) 566 (0.66)

III.4 (N = 49) 29 (0.59) 2 (0.04) 14 (0.29) 14 (0.29) 10 (0.20) 14 (0.29) 10 (0.20)

III.5 (N = 57) 54 (0.95) 2 (0.04) 31 (0.54) 15 (0.26) 20 (0.35) 17 (0.30) 17 (0.30)

IV.1 (N = 523) 471 (0.90) 47 (0.09) 3 (0.01) 232 (0.44) 10 (0.02) 29 (0.05) 60 (0.11)

IV.2 (N = 77) 68 (0.88) 4 (0.05) 12 (0.16) 25 (0.32) 14 (0.18) 8 (0.10) 18 (0.23)

IV.3 (N = 24) 10 (0.42) 0 9 (0.38) 13 (0.54) 0 0 0

IV.4 (N = 780) 755 (0.97) 108 (0.14) 360 (0.46) 712 (0.91) 446 (0.57) 415 (0.53) 478 (0.61)

IV.5 (N = 177) 176 (0.99) 2 (0.01) 68 (0.38) 176 (0.99) 175 (0.99) 135 (0.76) 151 (0.85)

IV.6 (N = 5) 4 (0.80) 0 4 (0.80) 4 (0.80) 4 (0.80) 4 (0.80) 4 (0.80)

IV.7 (N = 5) 5 (1.00) 0 3 (0.60) 5 (1.00) 3 (0.60) 3 (0.60) 3 (0.60)

IV.8 (N = 102) 100 (0.98) 6 (0.06) 35 (0.34) 79 (0.77) 47 (0.46) 58 (0.57) 50 (0.49)

IV.9 (N = 15) 14 (0.93) 0 10 (0.67) 11 (0.73) 13 (0.87) 9 (0.60) 9 (0.60)

IV.10 (N = 45) 38 (0.84) 4 (0.09) 0 45 (1.00) 15 (0.33) 6 (0.13) 7 (0.16)

V.1 (N = 13) 13 (1.00) 2 (0.15) 9 (0.70) 10 (0.77) 8 (0.62) 9 (0.69) 7 (0.54)

V.2 (N = 37) 32 (0.87) 0 24 (0.65) 5 (0.14) 28 (0.76) 10 (0.27) 30 (0.81)

V.3 (N = 14) 6 (0.43) 0 2 (0.14) 11 (0.79) 2 (0.14) 2 (0.14) 3 (0.21)

V.4 (N = 41) 35 (0.85) 1 (0.02) 17 (0.41) 8 (0.20) 8 (0.20) 19 (0.46) 15 (0.37)

V.5 (N = 43) 41 (0.95) 2 (0.05) 11 (0.26) 6 (0.14) 19 (0.44) 18 (0.42) 15 (0.35)

Note: The highest true positive rate for each protein fold is highlighted in bold. II.1) α helical coiled coil; III.1) Solenoid; III.2) ɑ/β Solenoid; III.3) ɑ-Solenoid;
III.4) β Trefoil/β Hairpins; III.5) Anti-parallel β Layer/β Hairpins. IV.1) TIM-Barrel; IV.2) β-Barrel/β-Hairpins; IV.3) β-Trefoil; IV.4) β-Propeller; IV.5) ɑ/β Prism;

IV.6) ɑ-Barrel; IV.7) ɑ/β Barrel; IV.8) ɑ/β Propeller; IV.9) ɑ/β Trefoil; IV.10) Aligned prism. V.1) ɑ-Beads; V.2) β-Beads; V.3) ɑ/β-Beads; V.4) β Sandwich

beads; V.5) ɑ/β Sandwich.

Abbreviation: N, number of cases.
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3.2.1 | Non-ribosomal peptide synthetase
(D1GLU5)

The non-ribosomal peptide synthetase from Streptomyces lydicus is

formed by an N-terminal MbtH domain (PF03621), a central AMP-

binding domain (PF00501) and a C-terminal AMP-binding_C domain

(PF13193). FiRES identified a repeated motif within the central AMP-

binding domain, with a TM-score of 0.59 (Figure 3). However, between

these two elements there are only 14% identical residues. These ele-

ments were analyzed using sequence-based methods, which confirmed

sequence relationships between element 1 and element 2 (Supp.

Methods). Put together, these arguments suggest that the AMP-binding

domain originated from a duplicated motif.

3.2.2 | Elongation factor Tu GTP binding domain
of BipA (Q9L5X8)

FiRES detected a repeated element within the GTP-binding domain

(IPR005225) of the protein BipA from Vibrio parahaemolyticus. This

domain belongs to the P-loop NTPase superfamily. The structural

alignment of these elements produces an RMSD of 1.68 Å and a TM-

score of 0.55. The pair of similar elements within the GTP-binding

domain shares 10% identical residues, according to their structure-

based sequence alignment (Figure 4). However, sequence-based ana-

lyses showed evidence to support that these structural motifs have a

common evolutionary origin (Supp. Methods).

4 | DISCUSSION

We tested FiRES and six other repeat identification methods on two

hand-curated databases: MALIDUP, for duplicated domains, and

RepeatsDB for short tandem repeats. MALIDUP and RepeatsDB con-

tain proteins with very divergent repeated units. In both cases, FiRES

obtained outstanding results at the protein level in terms of TPR, TNR

and accuracy. Furthermore, FiRES demonstrated to provide more con-

sistent results than lalign, RADAR, CE-symm, HHrepID, ReUPred, and

Swelfe to detect proteins with different types of repeats. FiRES was

designed as a tool to detect internal structure similarity in proteins

TABLE 5 Accuracy of the detection
methods at the protein level

Structure-based methods Sequence-based methods

FIRES ReUPred Swelfe CE-symm HHrepID lalign RADAR

Benchmark 1

[N = 269]

0.86 0.50 0.59 0.72 0.61 0.57 0.28

Benchmark 2

[N = 5647]

0.93 0.49 0.65 0.80 0.67 0.59 0.46

Note: Benchmark 1: union of MALIDUP and control set 1; Benchmark 2: union of RepeatsDB and control

set 2.

F IGURE 3 Structurally similar
elements identified by FiRES in D1GLU5
from Streptomyces lydicus (PDB code:
4GR4_A). The ribbon representation of
elements 1 (blue) and 2 (cyan) is
shown. A, Element 1 found within the
central AMP-binding domain. B, Element
2 also located within the central AMP-
binding domain. C, Structural alignment of
elements 1 and 2 [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 4 Structurally similar
elements identified by FiRES in a P-loop
NTPase domain (PDB code: 3E3X_A). The
ribbon representation of elements 1 (blue)
and 2 (cyan) is shown. A, Element 1. B,
Element 2. C, Structural alignment of
elements 1 and 2 [Color figure can be
viewed at wileyonlinelibrary.com]
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where these similarities remain unnoticed. FiRES is not intended for

classification of repetitive elements. However, the self-structure com-

parison strategy employed by FiRES may lead to the development of

new methods for protein repeats classification.

Three key features were implemented on FiRES to produce highly

accurate results. First, the comparison of non-sequential structural

elements increases the sensibility of FiRES because it enables the

identification of incomplete units, as well as of units with insertions,

deletions, circular permutations and other types of fold change. Sec-

ond, the iteration of the identification process makes it possible to

detect multiple types of repeated elements within the same protein

structure. Third, the last step of the algorithm is a time-consuming

exhaustive structural comparison of each candidate pair, which ren-

ders the FiRES algorithm highly specific.

The identification of structurally similar units that lack sequence simi-

larity can help elucidate remote homologous relationships. Here, we pres-

ented two examples where FiRES, in combination with state-of-the-art

sequence similarity detection methods, provides new insights into the

evolution of protein domain structure. Besides being of interest for evolu-

tionary studies, protein repeats have been employed to construct well-

folded and stable protein chimeras.7,57 Individual elements contribute to

the functional properties of the chimera protein, making it possible to tar-

get specific biological activities throughout a design process.58 Computa-

tional tools allowing the identification of internal similarity within a

protein structure can aid the design of new protein functions by recombi-

nation of specific domains or subdomains. Consequently, FiRES may have

a positive impact on many fields of protein science.
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