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Abstract

The infinitesimally small sequence space naturally scouted in the millions of years

of evolution suggests that the natural proteins are constrained by some functional

prerequisites and should differ from randomly generated sequences. We have devel-

oped a protein sequence fitness scoring function that implements sequence and

corresponding secondary structural information at tripeptide levels to differentiate

natural and nonnatural proteins. The proposed fitness function is extensively vali-

dated on a dataset of about 210 000 natural and nonnatural protein sequences and

benchmarked with existing methods for differentiating natural and nonnatural pro-

teins. The high sensitivity, specificity, and percentage accuracy (0.81%, 0.95%, and

91% respectively) of the fitness function demonstrates its potential application for

sampling the protein sequences with higher probability of mimicking natural proteins.

Moreover, the four major classes of proteins (α proteins, β proteins, α/β proteins, and

α + β proteins) are separately analyzed and β proteins are found to score slightly

lower as compared to other classes. Further, an analysis of about 250 designed pro-

teins (adopted from previously reported cases) helped to define the boundaries for

sampling the ideal protein sequences. The protein sequence characterization aided

by the proposed fitness function could facilitate the exploration of new perspectives

in the design of novel functional proteins.
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1 | INTRODUCTION

Delineating the connection between protein sequence and its struc-

ture is one of the most persuasive, debatable, and unresolved affairs

in the field of computational structure biology.1-3 In the last two

decades, the concepts of delicate contribution of natural selection

and the modest alteration by evolution in random copolymers in

emergence of known proteins is extensively discussed and argued for

its significance in origin of Life.4-8 The specificity of existent natural

proteins to encrypt unique protein structures is restricted within a lim-

ited number of folds (1457 protein folds) which poses another scien-

tific challenge of quantifying the protein designability of sampled

sequences into the existing folds. Creating a protein to perform a

predefined or novel biological function(s) is often considered as pro-

tein design. In general, protein design is formulated as composing an

amino acid sequence which should ideally fold into a stable structure,

meant to perform some biological function(s).9-13 The goals of protein

design include either desired optimization of certain characteristics

such as stability, solubility, and binding affinity or designing entirely

novel sequences resulting into novel structures or attaining remedial

or industrial utilities.14-17 A primary and a very crucial step of novel

protein design involves the computational identification or generation

of potential protein sequences having a considerably high probability

of mimicking the naturally occurring proteins and eventually folding
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into a compact structure.18,19 Some of the earlier studies measured

the degree of randomness in the known protein sequences to explore

the logical explanations with conflicting inferences for constrained

available sequence space.5,7,8,19-22 Some of the previous computa-

tional studies of random sequence proteins argued over the extent of

variability among natural protein sequences and random protein

sequences.23-25 In protein design regimes, folding into a distinct con-

formation is foremost requirement. It is believed that the randomly

generated and de-novo evolved protein sequences tend to form a mol-

ten globule state with marginal secondary structural elements.18,26,27

However, most of the recent approaches fortified with deep learning

and artificial intelligence have contributed significantly in classifying

the dataset6,7,19,28,29 but without exploring the underlying science.

For the 100 residue long protein sequences, the theoretical

sequences space of astronomically staggering �10130 proteins (20100

combinations) in contrast to the infinitesimal fraction of naturally

existing proteins. For instance, when a nonredundant dataset of all

available protein sequences in the UniProt database (�22 million

sequences, excluding predicted, and uncertain proteins) is analyzed,

only �109 unique stretches of 100 residues could be extracted. This

huge decline in the number of available compact structures and

unique 100 residues polypeptides substantiate the possibility of some

underlying protein signatures at sequence level that lend the protein

with potential of imitating the natural proteins and fold into stable

structure. Some of the previous studies have utilized the concept of

neighboring effect of amino acid residues in dictating protein second-

ary and tertiary structures.30-33

Here, we describe a sequence and secondary structure-based fit-

ness scoring function to identify potentially foldable/designable protein

sequences by differentiating them from nonnatural protein sequences.

The presented fitness function implements the competency scores

derived from sequences and corresponding secondary structures of

well-characterized known protein domains (natural proteins, NP) and

computationally generated nonnatural protein sequences with natural

amino acid compositions (NNP-NC) and with uniform amino acid com-

positions (NNP-UC). The scoring function classifies a query protein

sequence into foldable (natural protein) or non-foldable (nonnatural

and/or random protein) depending on its competency scores compared

with natural and nonnatural protein sequences.

2 | MATERIALS AND METHODS

For the development of the scoring function, the datasets of natural

protein (NP) sequences (adopted from known protein domains) and

computationally generated nonnatural protein (NNP-NC and NNP-

UC) sequences are compiled.

2.1 | Dataset compilation

The protein sequences and corresponding secondary structures of all

known protein domains in the latest stable release of the SCOPe

database,34 SCOPe 2.07 are extracted which comprises 274 230 pro-

tein domains. These domains are subjected to clustering at 100%

sequence identity level using CD-HIT35 to filter out the redundant

proteins in the dataset. Post-clustering, resulting 77 280 domains are

further screened for the presence of non-standard amino acid resi-

dues, missing residues (except for N and C terminals), domains having

less than 50 residues, domains having more than 700 residues, or

membrane protein domains. These filters resulted in a dataset of

58 758 globular protein domains as depicted in the Figure S1. The

100% sequence identity level filter is used to ensure the inclusion of a

maximum number of possible triplets of amino acid residues and

corresponding secondary structural elements. However, sequence

identity filters at 80%, 60%, and 40% sequence identity levels are also

used to explore the possibilities. A significant decline in the available

number of combinations of triplets of amino acid residues and

corresponding secondary structure is observed. The statistics related

to availability of combinations of triplets is shown in Figure S2 and

Supplementary Note I. The dataset corresponding to these protein

sequences is referred as natural proteins (NP) dataset hereafter, as it

is derived from naturally existing known proteins.

Similarly, a dataset of 65 000 proteins having sequence length vary-

ing from 50 to 700 residues is generated computationally restraining

the amino acid compositions adopted from UniProtKB.36 Since the

dataset of computationally generated protein sequences is constrained

to the same amino acid composition as naturally existing proteins,

it is referred to as nonnatural protein dataset with natural distribution

of amino acid compositions (NNP-NC). The “makeprotseq” module

of EMBOSS37 is used for computationally generating these protein

sequences. As a cautionary measure, the NNP-NC dataset is also sub-

jected to clustering at 100% sequence identity level to avoid the

sequence redundancy. However, it is observed that these computation-

ally generated sequences did not have any redundancy at 100%

sequence identity.

2.2 | Extraction of secondary structural
information

For the selected natural protein (NP) dataset, the secondary structural

information at an individual residue level for each protein is extracted

using the standalone version of STRIDE secondary structure assign-

ment program.38 The 8-class secondary structure assignment of

STRIDE is converted into 3-class secondary structure assignment for

further processing. In this conversion, the 310 helices (G), π-helices (I),

and 4-turn helices (H) are grouped as helices, the extended strands in

β-sheet conformations (E) and isolated β-bridges (B) are pooled

together as strands (E), and the hydrogen bonded turns (T), coils

(C) and bends (S) are bundled as loops (C). For secondary structural

information corresponding to nonnatural proteins with natural AA

compositions (NNP-NC) dataset, secondary structure prediction using

standalone version PSIPRED (PSIPRED 4.02) is performed.39 Consid-

ering the current state of the art for protein secondary structure pre-

diction, PSIPRED is reported to deliver a reasonably high accuracy
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and thus used in present study. It is worth noting that the PSIPRED

failed to predict any secondary structure for 3862 proteins. These

proteins are discarded from any further processing. A sub-dataset of

58 758 proteins is selected from the nonnatural proteins (NNP-NC)

dataset (out of 61 138 proteins with predicted secondary structure).

This led into a total of 117 516 proteins sequences, comprising

58 758 proteins each in natural proteins (NP) and nonnatural proteins

with natural AA compositions (NNP-NC) datasets. To examine the dif-

ferences in amino acid neighbor preferences in different secondary

structures for computationally generated sequences NNP-NC, we

derived the conditional probabilities of triplets using natural protein

and nonnatural protein (NNP-NC) sequences and corresponding sec-

ondary structures.

2.3 | Classifying into reference and test datasets

The natural proteins (NP) and nonnatural proteins (NNP-NC) datasets

are randomly separated into two parts each as reference dataset of

41 132 proteins and test dataset of 17 626 proteins (reference = 70%

and test = 30% of 58 758 proteins). This resulted into four sub-

datasets, viz. natural proteins reference dataset (comprising 41 132

proteins), natural proteins test dataset (comprising 17 626 proteins),

nonnatural proteins (NNP-NC) reference dataset (comprising 41 132

proteins) and nonnatural proteins (NNP-NC) test dataset (comprising

17 626 proteins). The reference datasets are used for deriving a con-

ditional probability-based statistical model, leading to competency

scores of tripeptides and the test datasets are used for testing the

efficiency of competency scores in distinguishing the natural protein

(NP) and nonnatural protein (NNP-NC) sequences.

2.4 | Compiling sequence-based scoring libraries

For all the protein sequences in the natural proteins reference dataset,

tripeptides frequencies are calculated for all possible 8000 combina-

tions. Also, individual amino acid residues occurrence frequencies are

calculated from natural proteins reference dataset. It may be noted

that the natural protein reference dataset represents all the possible

combinations at tripeptides level sufficiently, encompassing more than

8 million tripeptides (depicted in Figure S3). The residue occurrence

frequencies and tripeptide frequencies are further used for calculating

tripeptide conditional probabilities using Equation (1). Notably, the

conditional probability calculated in Equation (1) considers forward

(C-terminal) and backward (N-terminal residue) neighborhoods of the

central residue. Also, this consideration takes care of directionality in

the tripeptides as P(YM|XNZC) is not same as P(YM|ZNXC). So, it may be

considered that the conditional probabilities of tripeptides calculated

in Equation (1) is inclusive of their residue-based adjacency and direc-

tionality statistics.

P YMjXNZCð Þ= P XYZð Þ
P Yð Þ , ð1Þ

where X, Y, and Z belong to any of the standard amino acid residues;

P(YM|XNZC) is the conditional probability of residue “Y”, given a residue

“X” on its N-terminal and a residue “Z” on its C-terminal; P(XYZ) is the

probability of tripeptide “XYZ”; and P(Y) is the probability of resi-

due “Y”.

The conditional probabilities of all tripeptides as calculated using

Equation (1) are further used to compute a percentage sequence com-

petency score (CS-Score) at individual residue level by normalizing the

conditional probabilities with the maximum conditional probability in

all combinations of tripeptides. The CS-Score is calculated for the mid-

dle residue in a tripeptide considering one adjacent residue on its

either side (one toward N-terminal and one toward C-terminal) using

Equation (2).

CS−score XNYMZCð Þ=100 P YMjXNZCð Þ
Pmax AAMjAANAACð Þ

� �
, ð2Þ

where CS-score (XNYM ZC) is the competency score of middle residue

“Y” given residues X and Z at its N-terminal and C-terminal, respec-

tively; P(YM|XNZC) is the conditional probability of residue “Y”, given a

residue “X” on its N-terminal and a residue “Z” on its C-terminal

(as computed in Equation (1)); and Pmax (AAM|AANAAC) is the maxi-

mum conditional probability in all 8000 tripeptides.

The CS-Scores derived from Equation (2) resulted in 400 values

for an individual residue, accounting for the occurrence of any of the

20 amino acid residues on either side. The overall flow of computation

of CS-Scores is depicted in Figure 1A,B, with an example tripeptide,

Lys-Ala-Met. These scores are used to evaluate the overall compe-

tence of protein sequences as discussed in results section.

2.5 | Compiling sequence and secondary structure
based scoring libraries

As mentioned above, the secondary structural information at 3-class

levels is compiled from natural proteins dataset. The tripeptide fre-

quencies along with corresponding secondary structure assignments

(Helix (H), Strand (E), and Coils (C)) are derived from the natural pro-

teins reference datasets for all possible combinations, that is, 216 000

combinations (203 × 33). It may be noted that all the possible combi-

nations could not be observed in the natural protein reference dataset

as seven out of 27 secondary structure combinations are practically

not possible, viz. HEH, HEC, EHE, EHC, CHC, CHC, CEH. The second-

ary structure directed tripeptide frequencies are used to derive the

probability of each available combination. Also, for all the individual

residues with their secondary structure assignment (20 × 3 combina-

tions), probabilities are calculated. The tripeptide and individual resi-

due probabilities are further used for calculating secondary structure

directed tripeptides conditional probabilities using Equation (3).

P YSy
M jYSx

N Y
Sz
C

� �
=
P XSxYSy ZSz
� �

P YSy
� � , ð3Þ
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where X, Y, and Z belong to any of the standard amino acid residues;

Sx, Sy, and Sz belong to any of the three secondary structure assign-

ments (H or E or C); P YSy
M jYSx

N Y
Sz
C

� �
is the conditional probability of the

middle residue “Y” having secondary structure “Sy”, given a residue

“X” having secondary structure “Sx” toward N-terminal and a residue

“Z” having secondary structure “Sz” toward C-terminal; P XSxYSy ZSz
� �

is the probability of a tripeptide “XYZ” having secondary structure

“SxSySz”; and P YSy
� �

is the probability of middle residue “Y” having

secondary structure “Sy”. It may be noted that “S” can assume any of

the three secondary structure assignments (H, E, and C) but should be

exactly the same for corresponding middle, N-terminal, and C-terminal

residues to maintain the forward and backward neighborhood, and

directionality of secondary structural triplets.

The conditional probabilities calculated in Equation (3) are further

used for calculating sequence and secondary structure-based percent-

age competency score (CSS-Score) at an individual residue level by

normalizing the conditional probabilities with the maximum condi-

tional probability in all available combinations of the tripeptides hav-

ing exactly same secondary structure assignment. The CSS-Score is

calculated for the middle residue in a tripeptide with its secondary

structure considering one adjacent residue of either side having spe-

cific secondary structure assignments as shown in Equation (4).

CSS−score XSx
N Y

Sy
MZ

Sz

C

� �
=100

P YSy
M jXSx

N Z
Sz
C

� �

Pmax AASy
M jAASx

N AA
Sz
C

� �
0
@

1
A, ð4Þ

where CSS−score XSx
N Y

Sy
MZ

Sz

C

� �
is the sequence and secondary

structure-based competency score of the middle residue “Y” having a

secondary structure “Sy”, given a residue “X” having a secondary struc-

ture “Sx” toward N-terminal and a residue “Z” having a secondary

structure “Sz” toward C-terminal; P YSy
M jXSx

N Z
Sz
C

� �
is the conditional

probability of the middle residue “Y” having a secondary structure

“Sy”, given a residue “X” having a secondary structure “Sx” toward

N-terminal and a residue “Z” having a secondary structure “Sz” toward

C-terminal; and Pmax AASy
M jAASx

N AA
Sz
C

� �
is the maximum conditional

probability observed for any of the tripeptides with exactly the same

secondary structure for middle, N-terminal, and C-terminal residues.

The overall flow of computation of CSS-Scores is depicted in Figure 1C,

D with an example tripeptide, Lys-Ala-Met with helices as secondary

structure assignment for all the three residues. These scores are used

to evaluate the overall competence of natural and nonnatural protein

sequences. It is worth mentioning that the CS-Scores and CSS-Scores

are nonzero and positive values which may be maximum up to 100.

The presently used 100% sequence identity filter ensured inclusion

of the maximum number of possible triplets of amino acid residues and

corresponding secondary structural elements. The normalization used in

the Equations (2) and (4) calculates the score as a ratio of probabilities

and removes the statistical bias due to closely related sequences. To

investigate it further, all the natural protein sequences are clustered at

lower sequence identity filters viz. 80%, 60%, and 40% and CSS-Scores

libraries are compiled using Equations (3) and (4). A very high correlation

is observed among the CSS-Scores of the triplets derived from the

F IGURE 1 The overall flow of
compiling scoring libraries. (A) A
stepwise outline for calculating
sequence-based competency score
(CS-Score) of a residue by
considering its adjacent residues
toward N- and C-terminals. (B) A
stepwise depiction for calculation
of sequence-based competency

score of an example tripeptide
(Lys-Ala-Met is considered here).
(C) A stepwise outline for
calculating sequence and secondary
structure-based competency score
(CSS-Score) of a residue with a
specific secondary structure by
considering its adjacent residues
toward N- and C-terminals with
specific secondary structure
assignment. (D) A stepwise
depiction for calculation of
sequence and secondary structure-
based competency score of an
example tripeptide (Lys(H)-Ala(H)-
Met(H) is considered here)
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natural protein sequences at different sequence identity filters (40% and

100% = 0.95, 60% and 100% = 0.96%, 80% and 100% = 0.96) as shown

in Figure S2. Considering the high similarity in CSS-Score libraries and

the decline in triplet combinations at different sequence identity filters,

it may be posited that the filtering at 100% sequence identity should

not impart any bias to the statistics while ensuring the maximum utiliza-

tion of available information at triplet level.

2.6 | Calculation of competency score for a protein
sequence

For calculation of overall competency scores of a given protein

sequence, the CS- and CSS-Scores of individual residues are used. It

may be noted that the first residue (N-terminal residue) and the last

residue (C-terminal residue) do not have their individual CS- and CSS-

Scores. The overall CS- and CSS-Scores for a given protein may be

calculated as shown in Equations (5) and (6).

Overall CS−ScoreProtein =

Pi= N−1ð Þ
i=2 CS−Score ið Þ

N−2ð Þ , ð5Þ

where N is sequence length of the protein for which the overall CS-

Score is to be calculated, CS-Score(i) is CS-Score of individual residues

as calculated in Equation (2).

Overall CSS−ScoreProtein =

Pi= N−1ð Þ
i=2 CSS−Score ið Þ

N−2ð Þ , ð6Þ

where N is sequence length of the protein for which the overall CSS-

Score is to be calculated, CSS-Score(i) is CSS-Score of individual resi-

dues as calculated in Equation (4).

2.7 | Competency scores for natural proteins

The sequence and sequence and secondary structure scoring libraries

(CS-scores and CSS-Scores) are used to calculate overall competency

scores for individual sequences in natural proteins reference dataset

of 41 132 proteins. The distribution curves for average competency

scores in terms of CS-Scores and CSS-Scores are shown in Figure 2

(colored in green). Additionally, the scatter plots of average compe-

tency scores are shown in the Figure S4 for better insight. It is

observed that the sequence-based competency scores (CS-Scores)

averaged at 33.2 ± 3.14 and the sequence and secondary structure-

based competency scores (CSS-Scores) averaged at 18.0 ± 3.61 for

the reference dataset of natural protein sequences.

2.8 | Competency scores for nonnatural proteins
(NNP-NC)

For all the computationally generated protein sequences in nonnatural

protein (NNP-NC) reference dataset, the overall competency scores

for individual sequences are calculated by using tripeptide-based CS-

Scores and CSS-Scores. The distribution curves of CS-Scores and

CSS-Scores for nonnatural protein (NNP-NC) sequences are shown in

F IGURE 2 The distribution curves of
competency scores. (A) Distribution
curves for sequence-based competency
scores of natural (in green color) and
nonnatural (in red color) (CS-Scores).
(B) Distribution curve for sequence and
secondary structure-based competency
scores (CSS-Scores) for natural (in green
color) and nonnatural (in red color)
proteins in corresponding reference
datasets. The CSS-Scores are reflecting a
better differentiation of natural and
nonnatural proteins as compared to CS-
Scores
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Figure 2 (colored in red). Also, the scatter plots of competency scores

of individual proteins in nonnatural proteins (NNP-NC) reference

dataset are depicted in the Figure S5. In case of reference dataset

of nonnatural protein (NNP-NC) sequences, the observed sequence-

based competency scores averaged at 31.7 ± 1.78 and the sequence

and secondary structure-based competency scores averaged at

14.6 ± 1.45.

In the present study, the secondary structure prediction is used

to estimate the likelihood of secondary structure for the nonnatural

proteins which is further utilized in performing overall scoring of non-

natural proteins. Further, the method used here for the secondary

structure prediction is not exclusively dependent on amino acid sub-

stitution matrix (viz. BLOSUM62), it also implements three different

neural network weights which are expected to improve the prediction

accuracy.

2.9 | Differences in competency scores of natural
proteins (NP) and nonnatural proteins (NNP-NC)

It is very difficult to conclude directly from the average competency

scores for natural proteins (NP) and nonnatural protein sequences

(NNP-NC) if these deviates meaningfully. For testing the significance

of differences in the average competency scores for natural (NP) and

nonnatural protein (NNP-NC) sequences in the reference datasets,

z-test of two samples for means is conducted on competency scores

of 41 132 natural protein sequences and 41 132 nonnatural protein

sequences (41 132 observations each). Based on the outcome of

z-test, in case of sequence-based competency scores (CS-Scores), the

natural protein sequences (μ = 33.2, σ = 3.14, n = 41 132) and non-

natural protein (NNP-NC) sequences (μ = 31.7, σ = 1.78, n = 41 132)

are hypothesized to be different. The difference is very significant,

z = 96.73, P = .00 (two-tail). Also, in case of sequence and secondary

structure-based competency scores (CSS-Scores), the natural protein

sequences (μ = 18.0, σ = 3.61, n = 41 132) and nonnatural protein

(NNP-NC) sequences (μ = 14.6, σ = 1.45, n = 41 132) are hypothe-

sized to be different. The difference is very significant, z = 210.75,

P = .00 (two-tail). Further details of z-test statistics are provided in the

Table S1.

To investigate the differences in amino acid neighbor preferences

in different secondary structures for computationally generated non-

natural protein sequences (NNP-NC), we derived the conditional prob-

ability of triplets using these sequences and corresponding predicted

secondary structures. The conditional probabilities of triplets in natural

proteins and computationally generated nonnatural proteins showed a

correlation of 0.73, which supports the assumption that the computa-

tionally generated protein sequences have differences in amino acid

neighbor preferences in different secondary structures. These differ-

ences in the neighboring preferences may help in computational

sampling of protein sequences with higher potential of mimicking the

natural proteins. Further, to investigate the possibility of computa-

tional bias, instead of their original secondary structures, the predicted

secondary structures for the natural proteins are used to recalculate

the CSS-Score libraries. It is observed that the CSS-Score libraries

computed using predicted secondary structures showed a significant

similarity (r = 0.94) with the CSS-Score libraries computed using

the experimental secondary structures. Additionally, a z-test is per-

formed to further analyze the differences in the CSS-Score libraries as

reported in the supplementary materials (Table S2). The CSS-Score

library derived from experimental secondary structures of natural pro-

tein (μ = 5.68, σ = 8.00, n = 91 222) and the CSS-Score library derived

from predicted secondary structure of natural proteins (μ = 5.69,

σ = 8.29, n = 91 222) are hypothesized to be significantly similar

(z = −0.39, P = .69 (two-tail)). As the difference is not significant, it may

be assumed that in case of sampling and scoring novel proteins, the

performance of the proposed scoring function may not change signifi-

cantly upon using the predicted secondary structures.

2.10 | Efficacy of competency scores

The receiver operating characteristic curve (ROC Curve) is one of the

most prevalent and extensively instigated statistical tools for assessing

the discriminatory efficacy of a given classifier. Here, the average com-

petency scores of the individual proteins at sequence (CS-Score) and

sequence and secondary structural (CSS-Score) levels are assessed for

their potential to differentiate natural (NP) and nonnatural protein

(NNP-NC) sequences. Under the assumption that the higher CS-Score

and CSS-Score for a protein are indicative of its imitating behavior as

natural proteins and lower CS-Score and CSS-Score for a protein are

suggestive of imitating behavior as nonnatural proteins (NNP-NC). At

different threshold values of competency scores, different pairs of sen-

sitivity and specificity are derived from reference dataset of natural

and nonnatural proteins using Equation (7) as follows.

ROC tð Þ= FPR tð Þ,TPR tð Þð Þ,t� Range of Competency Scoreð Þf g, ð7Þ

where FPR(t) is the false positive rate at a threshold value “t”; TPR(t) is

the true positive rate at a threshold value “t”.

The ROC curves are plotted with two underlying assumption,

(a) the potential of competency scores to identify the natural proteins

(NP) and (b) potential of competency scores to identify the nonnatural

proteins (NNP-NC). At different thresholds of CS-Scores, ROC(t)Natural,

and ROC(t)Nonnatural are calculated and plotted in Figure 3A. Similarly, at

different thresholds of CSS-Scores, ROC(t)Natural, and ROC(t)Nonnatural

are calculated and plotted in Figure 3B. The threshold values at point

of intersection ROC curves of natural and nonnatural proteins are

observed to be the optimum cutoff for differentiating natural and non-

natural proteins.

The ROC curves of CS-Score for natural proteins (NP) and non-

natural protein (NNP-NC) sequences are intersecting at a threshold

value of 32.15. At intersection point, the sensitivity and specificity in

identifying natural (NP) and nonnatural proteins (NNP-NC) is 0.62 and

0.63, respectively. However, the Mathews Correlation Coefficient

(MCC) at CS-Score cutoff value of 32.15 is 0.26 which indicates weak

prediction model for binary classification. The low value of MCC is
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suggestive of inability of CS-Score in discriminating natural and non-

natural proteins. The ROC curves of CSS-Score for natural (NP) and

nonnatural proteins (NNP-NC) showed a considerably improved sensi-

tivity and specificity at their intersection threshold value. The CSS-

Score based ROC curves intersected at 15.5 where the sensitivity

is 0.76 and specificity is 0.77. Notably, the Mathews Correlation

Coefficient (MCC) at CSS-Score cutoff value of 15.5 is 0.54 which is

suggestive of strong prediction model for binary classification. The

calculation of sensitivity, specificity, and Mathews Correlation Coeffi-

cient is explained in supplementary information (Supplementary Note

II). From ROC curves, sensitivity, specificity, and MCC values, it may

be interpreted that the only sequence-based competence score (CS-

Score) is not very efficient in discriminating natural (NP) and non-

natural proteins (NNP-NC). However, the sequence and secondary

structure-based competency score (CSS-Score) reflects a promising

potential of discriminating natural (NP) and nonnatural proteins (NNP-

NC). The performances of CS- and CSS-Score are further evaluated

on different datasets and discussed in results section.

2.11 | Competency score analysis at residue level
in individual sequences

The efficacy of competency scores in discriminating natural proteins

(NP) and nonnatural protein (NNP-NC) sequences does not elucidate

the extent of its prediction reliability. To explore this further, a residue

level analysis of competency scores of individual proteins of natural

and nonnatural reference datasets is performed. In case of CS-Scores,

if a protein sequence is classified as natural protein (NP) on the basis of

its overall competency score (CS-Score ≥ 32.15) and more than 59% of

its residues are scoring above the threshold, then it is scoring better

than 80% of the natural proteins in reference dataset and may be con-

sidered as natural protein with 80% confidence value. The required

number of percentage residues scoring above the threshold in a protein

increases to 69% for it to score better than 95% of the natural proteins

in reference dataset. Likewise, if a protein is classified as nonnatural

protein on the basis of competency score (CS-Score < 32.15), and more

than 61% of its residues are scoring below the threshold, then it is

scoring better than 80% of the nonnatural proteins and qualifies as

nonnatural protein with 80% confidence value. The required number of

percentage residues scoring below the threshold in a protein increases

to 67% for it to be classified as nonnatural protein with 95% possibility.

In case of CSS-Scores, for classifying a protein as natural protein,

having scored better than 80% of natural proteins in reference dataset,

it needs to have more than 62% of its residues scoring above the

threshold (CSS-Score ≥ 15.50). The required percentage number of

residues scoring above the threshold increases to 72% for classifying a

protein as natural with score better than 95% natural proteins. For

identifying a protein as nonnatural protein having outscored 80% of

nonnatural proteins, 64% of its residues must be scoring below the

threshold (CSS-Score < 15.50). The percentage number of residues

scoring below the threshold increases to 70% for identifying a protein

as nonnatural with outscoring 95% of nonnatural proteins. Figure 4A

shows the distribution of percentage number of proteins in natural and

nonnatural proteins reference datasets (on y-axis) against different cut-

offs of percentage residues scoring below the threshold values of CS-

Scores. Similarly, Figure 4B shows the distribution of percentage num-

ber of proteins in natural and nonnatural proteins reference datasets

against different cutoffs of percentage residues scoring below the

threshold values of CSS-Scores. It is worth mentioning that in case of

natural proteins, the percentage of residues above threshold is consid-

ered while in case of nonnatural proteins, the percentage of residues

scoring below the threshold is accounted. Thus, in case of natural pro-

tein while referring to Figure 4, the percentage number of proteins at

different values of percentage number of residues scoring above the

threshold can be calculated by subtracting the corresponding value

from 100. Additionally, the different values of percentage residues

scoring above and below the threshold for natural and nonnatural pro-

teins in reference datasets are furnished in supplementary Table S3. It

may be noted that the extent of overlap in percentage number of resi-

dues cutoffs is relatively less in case of CSS-Scores which is indicative

of its better discriminating potential of natural and nonnatural proteins.

The same is demonstrated on the different datasets and discussed in

results section.

F IGURE 3 The ROC curves for
identifying natural and nonnatural
proteins. (A) CS-Scores threshold-
based ROC curves for natural and
nonnatural proteins. (B) CSS-Scores
threshold-based ROC curves for
natural and nonnatural proteins [Color
figure can be viewed at
wileyonlinelibrary.com]
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2.12 | Competency score based prediction of
example protein

For a given target protein, the sequence-based competency scores

(CS-Score) for each residue (except for first and last residues) are cal-

culated using precompiled CS-Scores libraries (explained in Section 2.4).

The overall competency score is calculated from the scores of individ-

ual residues as shown in Equation (5). Based on the average CS-Score,

the protein is predicted as natural (CS-Score ≥ 32.15) or nonnatural

protein (CS-Score < 32.15). Also, the percentage of residues scoring

below or above the threshold are calculated and employed for deriving

the possibility of the predictions accuracy by comparing it with the

values to the distribution of natural and nonnatural proteins. The over-

all flow of carrying out CS-Score based prediction of a target protein is

demonstrated in Figure 5A. Further, the secondary structure prediction

of a target protein (if not known) is performed using the standalone

version of PSIPRED. The sequence and secondary structure informa-

tion is applied for calculating sequence and secondary structure-based

competency scores (CSS-Scores) for each residue (except for first and

last residues) by utilizing the precompiled CSS-Scores libraries. The

overall CSS-Score for the target protein is calculated and used for clas-

sifying it as natural (CSS-Score ≥ 15.50) or nonnatural (CSS-Scor-

e < 15.50). The percentage of residues scoring above or below the

threshold is used for deriving the possibility of prediction accuracy via

a comparison to the distribution of natural and nonnatural proteins in

reference datasets. The overall flow of performing CSS-Score based

prediction of a target protein is demonstrated in Figure 5B. In case of

CS-Score based prediction (Figure 5A), the example target protein is

identified as natural protein (CS-Score ≥ 32.15), having about 39% res-

idues scoring below threshold (61.2% residues scoring above thresh-

old). Referring to Table S3 (column 1 and 2, row 39), the example

target protein is scoring better than 85% natural proteins. Likewise, in

case of CSS-Score based prediction (Figure 5B), the example target

protein is identified as natural protein (CSS-Score ≥ 15.50), having

about 30% residues scoring below threshold (69.9% residues scoring

above threshold). Referring to Table S3 (column 1 and 4, row 30), the

example target protein is scoring better than 93% natural proteins.

Since the competency score libraries and threshold values are

precomputed from reference datasets of natural and nonnatural pro-

teins, the batch calculation of CS-Score and CSS-Score is very time

and computationally efficient.

3 | RESULTS AND DISCUSSION

The performance of CS- and CSS-Scores is evaluated on a test dataset

of natural proteins (NP) and nonnatural proteins (NNP-NC) (17 626

proteins each, as mentioned in Section 2.3). Additionally, a dataset of

F IGURE 4 Distribution of natural
(in green) and nonnatural (in red)
proteins at different values of their
percentage residues scoring below the
derived cutoffs from ROC curves. (A) CS-
Score based distribution, highlighting
percentage residues scoring below
threshold for 80% of natural and
nonnatural proteins. (B) CSS-Score based

distribution, highlighting percentage
residues scoring below threshold for
80% of natural and nonnatural proteins
[Color figure can be viewed at
wileyonlinelibrary.com]

1278 KAUSHIK AND ZHANG

http://wileyonlinelibrary.com


�57 000 unique natural proteins (clustered at 40% sequence identity)

of sequence length varying from 50 to 700 residues from UniProtKB

is selected after excluding all the natural proteins of SCOPe database

(58 758 proteins). Further, two more datasets of �57 000 computa-

tionally generated proteins, one with natural AA compositions and

another with uniform amino acid compositions constraint (NNP-NC

and NNP-UC) are considered for quantifying the ability of compe-

tency scores in differentiating natural proteins from nonnatural

proteins.

3.1 | Evaluation on natural and nonnatural proteins
in test datasets

The test datasets of natural proteins (NP) and nonnatural proteins

(NNP-NC) are subjected to calculation of competency scores. For

CSS-Score calculation, the secondary structure of individual natural

protein is extracted from the corresponding structure, while the

secondary structure of individual nonnatural protein (NNP-NC) is

predicted using PSIPRED. The overall CS- and CSS-Scores of proteins

in test datasets are calculated and further used for categorizing them

into natural and nonnatural based on the threshold values (Natural

Proteins ≥ CS-Score 32.15 > Nonnatural Proteins; (Natural Proteins ≥

CSS-Score 15.50 > Nonnatural Proteins). The evaluation statistics of

CS- and CS-Scores are reported in Table 1. The distribution of CS-

and CSS-Scores for all the proteins in the Test Dataset is shown in

Figure S6. Here, it may be noted that the CSS-Score based categoriza-

tion of natural and nonnatural proteins outperformed CS-Score based

categorization. It reflects the gain in prediction accuracy with the

addition of secondary structure information.

3.2 | Evaluation on external dataset of natural and
nonnatural sequences

For assessing the performance of the proposed competency scores,

an independent dataset of reviewed proteins from UniProtKB is

extracted by filtering out all the natural proteins considered in refer-

ence and test datasets of natural proteins. The filtered reviewed pro-

teins are further clustered to 40% sequence identity to eliminate the

closely related proteins which resulted into 56 637 proteins. This

dataset of unique reviewed proteins from UniProtKB is referred to as

external dataset of natural proteins. For all the proteins in external

dataset of natural proteins, the CS- and CSS-Scores are calculated and

compared to threshold values identified in methods section, that is,

Natural Proteins (CS-Score ≥ 32.15; CSS-Score ≥ 15.50). Based on

CS-Score threshold, it is observed that only 33 729 (59%) proteins

could be identified as natural proteins. However, CSS-Score based

evaluation performed much better by identifying 45 876 (81%) pro-

teins as natural proteins.

In the nonnatural proteins dataset of 58 758 proteins, the amino

acid compositions were constrained to corresponding amino acid

compositions of natural proteins. Similarly, another dataset of non-

natural proteins comprising 60 000 proteins is computationally gener-

ated and clustered at 40% sequence identity to ensure the absence of

similar proteins. Further, the clustered proteins are screened against

the previously considered nonnatural proteins dataset to filter out the

similar proteins. The clustering and filtering resulted in a new dataset

of nonnatural proteins comprising 56 873 unique proteins, entirely

independent of the nonnatural proteins used in deriving thresholds

for CS- and CSS-Scores. This new dataset of 56 836 nonnatural pro-

teins is referred to as external dataset of nonnatural proteins (NNP-

NC). The CS- and CSS-Scores for the external dataset of nonnatural

proteins are calculated and classified using the previously derived

thresholds for nonnatural proteins (CS-Score < 32.15; CSS-Scor-

e < 15.50). The CS-Score based identification of nonnatural proteins

categorized 48 324 (85%) proteins as nonnatural while CSS-Score

could identify 51 153 (90%) proteins as nonnatural.

So far in this study, we have used natural proteins, adopted from

SCOPe and UniProtKB databases, and nonnatural proteins, computa-

tionally generated with the same amino acid composition as the

F IGURE 5 Demonstration for prediction of a target protein as
natural or nonnatural protein. (A) Prediction for target protein derived
from average CS-Score and the percentage of residues scoring above
the threshold. (B) Prediction for a target protein derived from average
CSS-Score and the percentage of residues scoring above the
threshold [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Assessment of CS- and CSS-scores on test datasets of
35 252 proteins for identifying natural and nonnatural proteins

Statistics CS-score CSS-scores

Sensitivity 0.62 0.76

Specificity 0.62 0.75

Accuracy 0.62 0.74

Mathews correlation coefficient 0.25 0.53
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natural proteins in UniProt database. Further, in this study, a dataset

of computationally generated 60 000 random proteins, with all amino

acid residues having equal probability of occurrence, is used for evalu-

ating the potential of the competency scores in discriminating natural

proteins from randomly generated proteins. This dataset of non-

natural proteins with uniform composition of amino acid residues

(NNP-UC) is clustered at 40% sequence identity which resulted in

57 374 unique nonnatural proteins. All these proteins scored within

the threshold derived for nonnatural proteins (CS-Score < 32.15; CSS-

Score < 15.50). A distribution of CS- and CSS-Scores of the proteins

in the external dataset of nonnatural proteins is shown in Figure 6. It

is worth mentioning that the CSS-Score based categorization of the

natural, nonnatural, and the random proteins performed consistently

on a considerably higher side. Clearly, the CSS-Score emerges as a

far better measure than CS-Score for identifying natural proteins

from nonnatural and random proteins. A summary of performance of

CS- and CSS-Score in identifying natural and nonnatural protein

sequences in external dataset of proteins is provided in Table 2.

For further statistical evaluation, the external datasets are com-

bined where the natural proteins are tagged as positives, and non-

natural and random proteins are tagged as negatives. For CS-Score

identification, the sensitivity, specificity, and Mathews correlation

coefficient are observed to be 0.60, 0.92, and 0.57, respectively.

Likewise, for CSS-Score based identification, the sensitivity, specific-

ity, and Mathews correlation coefficient are 0.81, 0.95, and 0.79,

respectively.

3.3 | Benchmarking with existing methods

The CS- and CSS-Score based identification of natural and nonnatural

proteins is further benchmarked with existing methods. It is worth not-

ing that there are not many methods available for directly scoring the

protein sequences to classify them as natural and nonnatural proteins.

Here, we benchmarked the present scoring method with FoldIndex40

and FOLD.20,41 The FoldIndex method implements average residue

hydrophobicity and net charge to derive the foldability or unfoldability

of a given protein sequence where the positive score represents fold-

able and the negative score represents unfoldable. Some of the pro-

teins scored very close to zero (−0.005 ≤ SCORE ≤ 0.005) which are

accounted as unreliable prediction. A very recently proposed method,

named FOLD, utilizes the precomputed triplet (FOLD3) and quadruplet

(FOLD4) frequencies in natural and random protein sequences to clas-

sify a given protein sequence into any of the four classes, viz. sure

F IGURE 6 A comparison of CS- and CSS-Scores across external datasets of natural, computationally generated nonnatural (NNP-NC and
NNP-UC). A downward trend is observed from natural proteins to nonnatural proteins [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 A summary of CS- and CSS-score identification on different external datasets

External dataset Total number of proteins CS-score natural CS-score nonnatural CSS-score natural CSS-score nonnatural

Natural 56 637 33 729 22 908 45 876 10 761

Nonnatural (NNP-NC) 56 873 8549 48 324 5720 51 153

Nonnatural (NNP-UC) 57 374 0 57 374 0 57 374
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folded, sure random, guessed folded, and guessed random. While

benchmarking our method, we combined the sure folded and guessed

folded as the natural proteins, and the sure random and guessed ran-

dom as the nonnatural proteins. The summary of the predictions using

FoldIndex, FOLD, CS-Score, and CSS-Score for external datasets of

natural, nonnatural, and random proteins is shown in Table 3 and

Figure S8. For calculating sensitivity and specificity, the protein scored

as unreliable prediction are not considered.

Some other methods developed for characterization of protein

sequences into natural and random proteins,4-6,29,42 could not be

independently validated on the dataset of 170 884 proteins due

to unavailability of standalone versions. For such methods, the evalua-

tion statistics reported in respective research article is compiled and

provided in Table 4.

The benchmarking of CS- and CSS-Score with previously reported

methods in Table 3 demonstrates a reasonably better performance in

terms of sensitivity, specificity, and accuracy. Despite the fact that the

accuracy of the methods accounted in Table 4 is adopted from

respective research article, which is only restricted to a small dataset

of natural and random proteins in most cases, the accuracy of CSS-

Score clearly outperformed most of these methods except Lucrezia

et al4 which is validated on a dataset of 1500 small proteins of �70

TABLE 3 The summary of benchmarking of CS-score and CSS-score with FoldIndex and FOLD on the dataset of 170 884 proteins,
comprising 56 637 natural and 114 247 nonnatural proteins

Method Predicted natural Predicted nonnatural Unreliable prediction Sensitivity Specificity Percentage accuracy (%)

FoldIndex 140 767 16 815 13 302 0.86 0.10 35

FOLD3* 63 941 105 924 1019 0.61 0.74 69

FOLD4* 49 443 107 508 13 933 0.63 0.84 77

FOLD5* 40 719 121 801 8364 0.41 0.82 69

CS-Score 42 278 128 606 0 0.60 0.92 82

CSS-Score 51 596 119 288 0 0.81 0.95 91

TABLE 4 Summary of articles reporting characterization of natural and random proteins by implementing various approaches

Method/reference Parameters/approach
Dataset
(N + R)

Accuracy
(%) Remark

Munteanu et al, 2008 Star network

topological indices

N = 1046

R = 1046

90 Bias for random

Santoni et al, 2016 ML on proximity measure between pair of amino

acids

N = 1047

R = 10 470

75 Small dataset for natural

Garbuzynskiy et al,

2004

Hydrophobicity and

contact number

N = 80

R = 90

83 Small dataset for natural

De Lucrezia et al, 2012 Evolutionary neural network on small protein

(�70 aa)

N = 762

R = 762

94 Only small proteins accounted

Tsygvintsev, 2019 Neural network based on time series analysis N = 3502

R = 3502

85 24D vector used in complex

training

Present study

CS-score

Competency Scores derived from sequences N = 56 636

R = 114 247

82 Relatively lower accuracy

Present study

CSS-score

Scores derived from sequences and 2� structures N = 56 636

R = 114 247

91

F IGURE 7 A boxplot
representation of (A) CS- and (B) CSS-
Scores for four classes of proteins (α, β,
α/β, and α + β)
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amino acid residues length. Also, the methods reported by Munteanu

et. al (26) was cross validated by Santoni et al6 to report an accuracy

of 79% with a very low true positive rate.

3.4 | Distribution for different protein classes

The competency scores are calculated for the unique protein

sequences of all alpha (α), all beta (β), alpha and beta (α/β), and alpha

plus beta (α + β) proteins representing 289, 178, 148, and 388 protein

folds. The average CS-Scores are observed to be 33.9 (±3.40), 32.7

(±3.00), 34.4 (±2.67), and 33.1 (±3.06) for all alpha (α), all beta (β),

alpha and beta (α/β), and alpha plus beta (α + β) proteins, respectively.

Likewise, the average CSS-Scores are found to be 19.5 (±3.20), 16.5

(±4.25), 18.4 (±2.27), and 16.9 (±2.50) for all alpha (α), all beta (β),

alpha and beta (α/β), and alpha plus beta (α + β) proteins, respectively.

A boxplot representation of CS- and CSS-Scores is shown in Figure 7

and the additional statistics are provided in Table S4.

TABLE 5 Summary of compiled designed proteins from previous research articles

Research article Designed proteins Expressed in E. coli Reported soluble Monomeric proteins Solved structures

Koga et al, 2012 54 49 45 19 16

Lin et al, 2015 49 49 45 31 10

Koepnick et al, 2019 144 119 99 65 55

Total 247 217 189 115 81

F IGURE 8 Competency score-based analysis of successful (green) designed and failed (red) proteins at (A) expression level, (B) solubility level,
(C) oligo-state level, and (D) structural level [Color figure can be viewed at wileyonlinelibrary.com]
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It is worth noting that in case of all protein classes the average

CS- and CSS-Scores are beyond the minimum threshold for natural

proteins that is, CS-Score ≥ 32.15 and CSS-Score ≥ 15.50, respec-

tively. However, a further investigation is required to find out if the

scores are significantly deviating among different classes of proteins.

3.5 | Performance on reported designed proteins

A set of 247 designed protein sequences, reported in some previous

research articles43-45 is compiled for calculating the sequence and sec-

ondary structure-based competency scores. The experimental results

of these designed proteins sequences are available for their expres-

sion, solubility, monomeric state, and structure. According to their

respective articles, these sequences are selected for experimental vali-

dation after screening through some comprehensive scoring functions

from more than 100 folds sampled sequences. Since only top ranked

protein sequences (less than 0.1% of sampled sequences) are consid-

ered for experimental characterization, these are likely to score much

higher than the expected competency scores of natural proteins. The

details of the designed protein dataset are provided in Table S5 and a

summary is provided in Table 5.

In total, 81 designed proteins could be solved as well character-

ized protein tertiary structures using X-ray crystallography and/or

NMR methods. The rationale of screening the designed protein

sequences using the CS- and CSS-Scores is to quantify the ability of

these scores at expression, solubility, oligo-state, and structural level.

In Figure 8, the CS- and CSS-Scores of designed proteins accounted

in Table 5 are plotted as success (green circles) and failure (red circles)

cases at expression, solubility, oligo-state, and structural levels.

It is observed that most of the proteins except one scored beyond

the minimum threshold of natural proteins for CSS-Score (above

15.50). However, the same is not true for CS-Score as several proteins

scored below the minimum threshold (below 32.15). It may also be

noted that as we move from expression to solubility to oligo-state to

structure, the upper-right quadrant (with CS-Score > 35 AND CSS-

Score > 25) of the plots remains occupied by successful cases at all

four levels. This observation may help in designing novel protein

sequences with a higher potential of being successful at experimental

validation.

4 | CONCLUSION

The infinitesimally small sequence space naturally scouted in the mil-

lions of years of evolution suggests that the natural proteins are

impeded by some specific prerequisites and should diverge from com-

putationally generated nonnatural protein sequences. Considering

this, here we studied natural and computationally generated non-

natural proteins to develop a protein sequence fitness scoring func-

tion. The scoring function implements sequence and corresponding

secondary structural information at tripeptide levels to differentiate

natural and nonnatural proteins. The proposed scoring function is

extensively validated on a dataset of about 210 000 natural and non-

natural protein sequences and benchmarked with existing methods

for differentiating natural and nonnatural proteins. The high sensitiv-

ity, specificity, and percentage accuracy (0.81%, 0.95%, and 91%

respectively) of the scoring function demonstrates its potential appli-

cation for sampling the protein sequences with higher probability

of mimicking natural proteins. Also, the four major classes of proteins

(α proteins, β proteins, α/β proteins, and α + β proteins) are separately

analyzed and β proteins are observed to scoring slightly on the lower

side as compared to other classes. Further, an analysis of about

250 designed proteins (adopted from previously reported cases) hel-

ped in defining the boundaries for sampling the ideal protein

sequences which may prove advantageous in computational protein

design regimes.
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