
R E S E A R CH A R T I C L E

cnnAlpha: Protein disordered regions prediction by reduced
amino acid alphabets and convolutional neural networks

Mauricio Oberti1,2 | Iosif I. Vaisman1

1School of Systems Biology, George Mason

University, Manassas, Virginia

2Novartis Institutes for BioMedical Research,

Cambridge, Massachussets

Correspondence

Iosif I. Vaisman, School of Systems Biology,

George Mason University, 10900 University

Blvd, MS 5B3, Manassas, VA 20110.

Email: ivaisman@gmu.edu

Abstract

Intrinsically disordered regions (IDR) play an important role in key biological pro-

cesses and are closely related to human diseases. IDRs have great potential to serve

as targets for drug discovery, most notably in disordered binding regions. Accurate

prediction of IDRs is challenging because their genome wide occurrence and a low

ratio of disordered residues make them difficult targets for traditional classification

techniques. Existing computational methods mostly rely on sequence profiles to

improve accuracy which is time consuming and computationally expensive. This arti-

cle describes an ab initio sequence-only prediction method—which tries to overcome

the challenge of accurate prediction posed by IDRs—based on reduced amino acid

alphabets and convolutional neural networks (CNNs). We experiment with six differ-

ent 3-letter reduced alphabets. We argue that the dimensional reduction in the input

alphabet facilitates the detection of complex patterns within the sequence by the

convolutional step. Experimental results show that our proposed IDR predictor per-

forms at the same level or outperforms other state-of-the-art methods in the same

class, achieving accuracy levels of 0.76 and AUC of 0.85 on the publicly available

Critical Assessment of protein Structure Prediction dataset (CASP10). Therefore, our

method is suitable for proteome-wide disorder prediction yielding similar or better

accuracy than existing approaches at a faster speed.
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1 | INTRODUCTION

Intrinsically disordered proteins (IDP) or intrinsically disordered regions

(IDR) are segments within a protein chain lacking a stable three-

dimensional structure under normal physiological conditions. They have

been known to scientists for over 50 years and since then, linked to key

biological processes including regulation of transcription, signal transduc-

tion, cell cycle control, post-translational modifications, ligand binding,

protein interaction, and alternative splicing.1,2 Disorder regions exist in

up to half of the amino acids in eukaryotic proteins.3 At least 6% of all

residues in SwissProt are believed to be within disordered regions.4

Experimental structure resolution of IDP/IDRs is complex, lengthy

and expensive. DisProt database,5 a community resource annotating

protein sequences for intrinsically disordered regions, currently con-

tains just over 800 proteins. A large number of computational predic-

tion methods have been developed6,7 because of this inherent

complexity. Existing methods can be classified in one of the following

categories8: (i) Ab initio or sequence based. They rely almost exclu-

sively on amino acid sequence information to make a prediction. Fea-

tures extracted from the primary sequence, alignment profiles or

scoring matrices are used as input for statistical models which then

make predictions of disorder regions. Generally, methods that do not

rely on complex external sources of information fall into this category

and are referenced as sequence-only. (ii) Clustering. This approach

generates tertiary structure models from the primary sequence. It

then superimposes the different models onto each other with the
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assumption that positions in ordered regions will be conserved across

models. (iii) Template based. Similar to clustering, template based

method predicts disordered regions of proteins by aligning the input

sequence to homologous proteins with a known structure. Homolo-

gous proteins are found by doing a database search or by fold recog-

nition methods. (iv) Meta or consensus. They combine the output of

several disordered predictors into a single average, which tends to

have a moderate increase in accuracy. Evolutionary information con-

tained in sequence profiles helps ab initio methods to improve predic-

tion accuracy. However, generating sequence profiles is time

consuming and methods relying on them for predictions may not be

suitable for large proteome-wide analysis.

This article presents a sequence-only ab initio method for

predicting protein disorder based on reduced amino acid alphabets

and convolutional neural networks (cnnAlpha). Our method relies

solely on the amino acid sequence for determining disorder positions

and is aimed to proteome-wide applications where speed and low

false positive rate are prioritized over maximum accuracy.9

Among the main challenges with sequence based prediction methods

are (a) the highly class imbalance nature of the datasets and (b) the difficulty

in accurately capturing the interdependency of adjacent residues in deter-

mining the transitions between disorder and order states. If not addressed,

a class imbalance can severely bias predictions toward the majority class

(order state). To solve the imbalance problem, we choose an undersampling

technique where we randomly remove examples from the majority class

until we have a balanced dataset. Undersampling has been proven to be

highly successful yielding a positive performance within the context of con-

volutional networks and extreme ratio imbalance datasets.10 In order to

capture local sequence context, we use a sliding window approach which

feeds into a convolutional neural network that is tasked with learning rich

higher-order sequence features.

Convolutional neural networks proved to be very efficient and

well performing in the field of computer vision, excelling in tasks such

as object detection and image classification.11 The adaptation of con-

volutional neural networks architectures for biological problems has

been successful in the context of DNA-protein binding prediction12

and DNA function modeling.10 Reducing the amino acid alphabet from

20 to 3 letters enables a seamless adaptation of convolutional neural

networks for protein models. Instead of analyzing 2-D images with

three color channels (R, G, B), fixed length protein sequence windows

are mapped to 1-D input vectors with three channels. This translation

allows mapping the protein disorder prediction problem to the 2-class

image classification problem in the computer vision domain.

2 | METHODS AND MATERIALS

2.1 | Disorder definition and feature extraction

There is no universal agreement on how to define disorder residues from

PDB files.13 In the context of this work, we consider a residue to be in a

disorder position if it appears in the sequence records, but its coordinates

are missing from the electron density map. We annotated our PDB

training and CAMEO validation sets using this definition. The annotation

provided by the CASP experiments14 was created using a similar defini-

tion. This is not a perfect definition since there are other reasons why a

residue can have missing coordinates (i.e., crystallization artifacts). How-

ever, it allows us to use a large number of proteins from PDB without

further experimental validation.

The primary sequences from our training set had to be translated

to numerical features to be fed into the convolutional network. For

that purpose, we implemented a 101-residue length sliding window

centered on the target residue. The window length was set after

experimenting with different sizes, finding that larger windows were

more consistent in capturing disorder information. For each window,

residues are represented by letters from the reduced amino acid

alphabet and encoded using a one-bit hot encoding scheme. This gen-

erates a 3-D input feature matrix per target residue of size [3 × 101].

This process is illustrated in Figure 1.

2.2 | Reduced alphabets

Reduced alphabets cluster residues in ways that prevent the loss of key

biochemical information. The 20-letter amino acid alphabet was reduced

to a 3-letter alphabet in order to simplify and quicken the network learn-

ing process, reducing the number of possible encodings and size of the

input feature vectors. The reduced alphabets were selected from the lit-

erature (Table 1), where each was designed with a specific structural pro-

tein task in mind. In each alphabet, residues are clustered based on

various properties, including chemical and genetic properties.

We found that 3-letter alphabets provide a reasonable balance

between limiting the complexity of the sequence space and maintaining

the model's ability to efficiently predict disordered residues. Higher-order

alphabets (in particular between 4 and 10 letters) better characterize the

complexity in proteins.16 In our case, their usage increases the number of

trainable parameters, complexity of the network model, and require

larger training sets to converge. This is in part supported by the results in

Table 4, where the performance of the model without alphabet reduc-

tion is consistently below the models using a reduction step. A compre-

hensive search of published alphabets and groupings is beyond the

scope of this work and might be addressed in future studies.

Alphabets 1, 2, and 6 performed better in our specific classification

task. Alphabet 1 achieves the reduction by mismatch minimization

between the reduced interaction matrix and the Miyazawa and Jernigan

(MJ) matrix. Alphabet 2 identifies the reduced alphabet which simplified

sequence performs best in the context of protein fold recognition using

global sequence alignments with the parent sequence. Alphabet 6 imple-

ments an automated reduction protocol using information theory metrics

tailored to the prediction of solvent accessibility.

2.3 | Convolutional neural network architectures

The convolutional neural network architectures used in our models

are variations of Figure 2. The input is a 3 × L matrix where L is the
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length of the sequence window (101 residues). Each symbol of the

3-letter reduced alphabet is mapped to one of the three one-hot bit

encoded vectors (B = [0,0,1], J = [0,1,0], U = [1,0,0]).

The first layer of our network is a convolutional layer, step size

1 and window size of 32. The output of each neuron on a convolutional

layer is the convolution of the kernel matrix. The second layer is a max-

pooling layer, one for each convolutional layer. Each of these max-

pooling layers only outputs the maximum value (global or local) of its

respective convolutional layer outputs. The third layer is a fully con-

nected layer of size 256 where each of its neurons is connected to all of

the neurons in the max-pooling layer. We use a dropout layer21 after the

fully connected layer to avoid overfitting. The final output layer consists

of two neurons corresponding to the two classification results. These

two neurons are fully connected to the previous layer. Table 2 highlights

the differences among each of the tested models.

2.4 | Network training details

We train our models using stochastic gradient descent (SGD) with

mini batches of size 128. SGD works by utilizing chain ruling which

takes the partial derivative of the loss function with respect to each

weight vector in the network, and uses the derivative to update the

weights. We use a version of SGD with support for momentum and

learning rate decay with default parameters and a learning rate set to

1e-3. All models are trained using the same setup and configuration

the only difference being the seeds for initializing weights. We use

early stopping, based on the validation set in order to pick the optimal

set of weights. We train all our neural network models on AWS using

G3 instances (NVIDIA Tesla M60 GPU) using python Keras libraries22

running on top of TensorFlow library to assure model portability.

3 | RESULTS

3.1 | Training, validation, and evaluation datasets

Publicly available datasets are used to train, validate and evaluate the

performance of our method. High resolution X-ray crystal structures

from the Protein Data Bank (PDB)23 are used to construct the training

and validation data sets while CASP14 and CAMEO24 (http://www.

cameo3d.org) are used for further validation. Figure 3 and Table 3 show

the protein length distribution for training, testing and validation sets.

We use the Pisces protein sequence culling server (http://

dunbrack.fccc.edu)25 to extract sequences from PDB, filter for high

TABLE 1 Six reduced alphabets and their sources

Alphabet reference Letter 1 (B) Letter 2 (J) Letter 3 (U)

a115 CFILMVWY AGHPRT DEKNQS

a216 CFILMVWY AGPST DEHKNQR

a317 AFGILMPV DEKR CHNQSTWY

a418 DHIMNVY EFKLQ ACGPRSTW

a519 ACGILMPSTV EKRDNQH FYW

a620 CFILMVWY AGHST DEKNPQR

Note: Each letter contains a cluster of amino acid residues (one-letter

abbreviations). The residue clusters were denoted by the letters “B”, “J”,
and “U”.

F IGURE 1 Sequence encoding, window generation, and feature extraction steps using sliding window approach
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resolution and reduce redundancy. Parameters selected for culling are

(i) proteins sharing less than 25% sequence identity (ii) resolution bet-

ter than 1.8 Angstroms (iii) R value up to 0.30. In total, 7119 proteins

are retrieved from PDB with an average length of 349 residues. The

original dataset is then undersampled to create a 50/50 class balanced

set, containing 181 060 examples. The effect of class imbalance is

very detrimental to classification performance. In cases of an extreme

ratio of imbalance, undersampling has been shown to perform on a par

with oversampling without the risk of overfitting.26 Undersampling has

the additional advantage of reducing training times given that the train-

ing set is smaller in size.

The balanced dataset was randomly partitioned into ten equally

sized subsets and a ten-fold cross-validation was performed to deter-

mine the optimal parameters for (a) convolutional network architec-

ture and (b) encoding reduced protein alphabet (Section 3.4). At each

step of the cross validation, one subset is selected and used as

validation set while the remaining nine are used as training set. This

process is repeated until all subsets are validated, results for each of

the parameters tested are shown in Tables 4 and 5.

CASP10 is the latest dataset available from the series experi-

ments, which released specific targets for protein disorder prediction.

The 94 available targets are used for initial validation and as an inde-

pendent benchmark set. Finally, to further assess and compare our

method, we tested it against CAMEO 6 months targets released from

August 26, 2017 to February 18th, 2018 (504 targets, categorized in

three groups). Since CAMEO targets were released after the construc-

tion of our PDB training set, there is no sequence overlap between

the two set. However, CASP10 targets were already present in PDB

at the time of extraction. To prevent any redundancy between sets,

we use BLASTClust27 to filter and remove sequences from the PDB

training set sharing at least 25% identity with sequences in the

CASP10 set.

3.2 | Metrics and evaluation criteria

Disorder data is characterized by high class imbalance, disordered res-

idues account for less than 5% of the data in the PDB set (training

and test). Since disordered residues are relatively rare compared to

ordered ones, they are harder to predict. Performance metrics should

account for this imbalance and reward correct prediction of disor-

dered residues higher than correct prediction of ordered ones.28 We

selected a subset of the metrics commonly used for the assessment of

disorder data14,29,30 that take into account the nature of the

F IGURE 2 Basic 1-layer CNN
architecture shared among all
models [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 2 Description of the CNN architectures tested

Method Architecture description

64-ker-local 1-convolutional layer, 64 kernels, local max pooling

128-ker-local 1-convolutional layer, 128 kernels, local max pooling

64-ker-global 1-convolutional layer, 64 kernels, global max pooling

128-ker-

global

1-convolutional layer, 128 kernels, global max

pooling

2-conv-local 2-convolutional layers, [64, 32] kernels, local max

pooling
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imbalanced data: (i) specificity (ii) sensitivity (iii) balanced accuracy

(iv) Matthews correlation coefficient and (v) AUC.

3.3 | Binary metrics

Specificity =
TN

TN+FP
ð1Þ

Sensitivity =
TP

TP+FN
ð2Þ

BalanceAcc =
TP

TP+FN
+

TN
TN+FP

ð3Þ

MCC=
TP×TN−FP×FN

TP+FPð Þ TP+FNð Þ TN+FPð Þ TN+FNð Þ ð4Þ

True positives (TP) and true negatives (TN) are the numbers of

correctly predicted disordered and ordered residues. False positives

(FP) and false negatives (FN) are the numbers of incorrectly predicted

disordered and ordered residues.

3.4 | Statistical metrics

The Receiver Operating Characteristic (ROC) curve is a plot that

compares the true positive rate against the false positive rate under

various threshold values for a binary classifier. ROC curve repre-

sents a monotonic function describing the balance between the

true positive and false positive rates of a predictor.31 For a set of

probability thresholds (from 0 to 1), a residue is considered as a

positive example (disordered) if its predicted probability is equal to

or greater than the threshold value. The area under the curve

(AUC) is used as an aggregate measure of the overall quality of a

prediction method. AUC has a minimum value 0, a random value

0.5 and a perfect value 1.

3.5 | Comparison with other methods

To benchmark our method we selected the following methods:

Espritz,32 Disopred3,33 IUPred,34 and ngramsAlpha.35 Given that

our predictor is sequence-based, we compared our results with

similar methods and we leave out clustering, template and meta

based approaches. Espritz is an ensemble of sequence-only and

multiple sequence alignments disorder prediction methods. The

sequence-only method has three different versions, depending on

F IGURE 3 Protein length
distribution in training, test and
validation sets [Color figure can
be viewed at
wileyonlinelibrary.com]

TABLE 3 Distribution of disordered regions by length on the
three main datasets used

Dataset

Number of fragments

1-5 6-15 16-25 >25

CASP10 21 41 11 3

CAMEO 143 114 27 11

PDB 768 657 127 37

1476 OBERTI AND VAISMAN

http://wileyonlinelibrary.com


the initial set used for training (X-ray, NMR, Disprot). We used

X-ray trained version since it is the one that performs best among

the three. Disopred3 runs a PSI-BLAST search for each of the

residues in a 15-residue window. The profile is then used as input

to a neural network classifier which outputs a probability estimate

of the residue being disordered.

IUPred method is based on estimating the capacity of polypep-

tides to form stabilizing contacts. It has two prediction modes: IUPred

(Long) and IUPred (Short). Each mode optimizes predictions for either

long or short disordered regions. Finally, ngramsAlpha is our previ-

ously published predictor based on n-grams frequencies and reduced

protein alphabets.

3.6 | Parameter and model selection

In order to select the best performing model, we experimented with

two of the components of our method while leaving the remaining

parameters constant. In particular, we tested several network archi-

tectures and reduced amino acid alphabets and analyzed their

effect on the model predictive value. We performed a ten-fold

cross-validation, using the mean AUC across validation batches as

the primary metric to compare performance. Values for parameters

such as dropout and learning rate, optimizer, and window size have

been selected after performing a hyperparameter search across a

reduced size training set and are left constant.

3.7 | Alphabet selection

Using reduced alphabets has two main advantages: (i) cluster residues

with similar biochemical properties providing additional information to

the original sequence and (ii) reduce the amino acid space from 20 to

3 residues, reducing, in turn, the model complexity and amount of

data required for training. We tested six different alphabets from the

literature and analyzed which performed better in the context of our

classification problem. We used the (2-conv-local) network architec-

ture across all runs. A modified version of the network using the full

amino acid alphabet as input (no alphabet reduction step) is included

for comparison. The effect of alphabet selection is shown in Table 4.

Across the ten validation batches, we found that alphabets 1, 2, and

6 achieved better overall performance than alphabets 3, 4, and

5. Results also show that all six alphabets outperformed the model

where no alphabet reduction was applied. We selected alphabet 6 for

our final model implementation based on the results shown in

Table 4.

Disordered regions are characterized by a high content of polar

and charged amino acids (disorder-promoting residues) and low con-

tent of hydrophobic residues (order-promoting residues).36 Despite

being created with different objectives, alphabets (1, 2, 6) cluster most

disorder-promoting residues within the same group (Table 1). Alpha-

bets differ in the composition of the other two groups, which contain

a mix of order-promoting and ambiguous residues. The relationship

between net charge and hydrophobicity has been explored by other

TABLE 5 Model cross validation

Model

AUC value of 10 cross validation batch datasets

1 2 3 4 5 6 7 8 9 10 Mean

64-ker-local 88.18% 89.59% 87.64% 89.63% 88.42% 87.48% 87.96% 88.02% 88.29% 87.98% 88.32%

128-ker-local 88.37% 89.56% 87.78% 89.60% 88.44% 87.67% 87.83% 88.25% 88.40% 87.97% 88.39%

64-ker-global 87.51% 88.24% 85.83% 89.00% 87.47% 86.38% 86.61% 87.02% 87.34% 86.80% 87.22%

128-ker-global 87.40% 88.52% 86.42% 89.13% 87.67% 85.89% 86.75% 87.61% 87.02% 86.82% 87.32%

2-conv-local 87.93% 89.11% 87.33% 89.28% 88.47% 87.40% 87.86% 87.80% 87.89% 87.76% 88.08%

Note: Bold value highlights the best performant run/method within the column or row.

TABLE 4 Alphabet cross validation

Alphabet

AUC value of 10 cross validation batch datasets

1 2 3 4 5 6 7 8 9 10 Mean

Alphabet 1 87.55% 89.26% 86.47% 88.55% 88.85% 87.23% 87.44% 87.53% 87.54% 87.71 87.84%

Alphabet 2 87.79% 88.86% 87.62% 89.31% 88.50% 87.17% 87.49% 88.01% 88.01% 87.83% 88.09%

Alphabet 3 83.00% 86.32% 82.87% 86.63% 83.92% 82.89% 83.59% 84.39% 84.54% 84.69% 84.43%

Alphabet 4 81.87% 86.08% 83.93% 86.22% 85.07% 81.42% 84.18% 83.84% 83.87% 85.12% 84.41%

Alphabet 5 85.29% 87.10% 84.07% 87.44% 85.12% 83.85% 86.00% 84.84% 85.32% 85.73% 85.50%

Alphabet 6 87.39% 89.51% 87.48% 89.02% 88.92% 87.54% 87.55% 87.66% 87.66% 87.99% 88.15%

No alphabet 82.15% 85.52% 82.96% 86.01% 83.09% 81.70% 82.94% 82.69% 83.60% 83.54% 83.42%

Note: Bold value highlights the best performant run/method within the column or row.
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IDP predictors before.37 It is the patterns and high-order relationships

between residues groups uncovered by the convolutional step that

enables our method to achieve its high accuracy.

It may be possible for a neural network to learn the optimal resi-

due groups given sufficient training data. Given our limited training

set and network architecture, this wasn't possible to achieve. The

adapted model that takes as input the original 20-letter alphabet, did

not converge and underperformed when compared to the models

using the reduction step (Table 4). These results highlight the benefit

of the dimensionality reduction step before training our models.

3.8 | Convolutional network architecture

To test the relationship between network architecture and perfor-

mance, we trained five different networks models and evaluated their

predictive value. We adapted models successfully used in the DNA

space to predict DNA-protein binding and function10,12 hoping they

would also perform well in the 3-letter reduced amino acid space. Our

models differ in the number of kernels (50, 64, 128), the number of

convolutional layers (1, 2) and max-pooling layer implementation

(global vs local). We found that the number of convolutional layers

does not seem to have a great impact on performance. Models with a

higher number of convolution kernels and local pooling implementa-

tion achieved better overall classification performance. Based on the

results shown in Table 5, we selected 128-ker-local model.

3.9 | Method performance

Figures 4, 5 and Tables 6, 7 compare the performance of our

method against Disopred3, Espritz, IUPred, and ngramAlpha. It is

worthwhile to mention that—of the listed methods—Disopred is

the only to make use of additional evolutionary information

through sequence profiles (performing PSI-BLAST38 searches for

each input protein). This added evolutionary information gives the

method an extra advantage in performance but comes at the cost

of execution time. The other three methods are similar in nature to

ours, using sequence-only information to make disorder/order pre-

dictions. All methods were downloaded and ran locally in a Linux

server using default parameters.

In terms of balanced accuracy (B.Acc), our method outperforms

all others on the two independent validation datasets. With respect to

area under the ROC curve (AUC) and MCC, our method performs

much better than the predictors not using sequence profiles (such as

IUpred and Espritz) and nears the performance of Disopred3 for AUC

on both validation sets.

The performance of the method was also evaluated on disor-

dered regions of various lengths for the CASP10 dataset and com-

pared with the other top performance methods. The percentage of

residues correctly predicted to be disordered is reported in Table 8.

While Espritz performs better on short length disorder regions,

Disopred3 and cnnAlpha achieve better results on mid and long dis-

ordered regions.

F IGURE 4 ROC curves for the evaluation set
targets comparing the performance of the top
four models (CASP targets) [Color figure can be
viewed at wileyonlinelibrary.com]
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3.10 | Large-scale predictions

Finally, we evaluate the speed at which our method performs predic-

tions on a large scale. We compared our method's execution time with

Disopred3 since they both ranked on top of our evaluation.

The two applications were installed locally on a standard Linux

server (Amazon EC2 m5.xlarge, 4 CPUs/16GB memory). To make pre-

dictions, Disopred3 uses PSSM values obtained after three search itera-

tions of PSI-BLAST.33 BLAST tool and UniRef90 database were installed

locally for that purpose. We created a script that takes as input

F IGURE 5 ROC curves for the evaluation set
targets comparing the performance of the top
four models (CAMEO hard targets) [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE 6 Performance of predictors
on CASP10 dataset

Method Sequence profile B.Acc Sens Spec MCC AUC

Disopred3 Yes 0.64 0.32 0.97 0.32 0.86

cnnAlpha No 0.75 0.64 0.85 0.31 0.85

Espritz No 0.72 0.54 0.89 0.30 0.82

ngramAlpha No 0.72 0.61 0.83 0.26 0.79

IUPred (short) No 0.63 0.31 0.95 0.26 0.66

IUPred (long) No 0.57 0.17 0.96 0.15 0.60

Note: Metrics shown: balanced accuracy (B.Acc), sensitivity (Sens), specificity (Spec) Mattehews correla-

tion coefficient (MCC), and area under the ROC curve (AUC).

TABLE 7 Performance of predictors
on CAMEO dataset

Method Sequence profile B.Acc Sens Spec MCC AUC

Disopred3 Yes 0.72 0.48 0.96 0.43 0.86

cnnAlpha No 0.75 0.61 0.88 0.36 0.83

Espritz No 0.75 0.64 0.88 0.35 0.81

ngramAlpha No 0.73 0.56 0.89 0.33 0.79

IUPred (short) No 0.71 0.47 0.94 0.36 0.80

IUPred (long) No 0.64 0.35 0.93 0.27 0.73

Note: Metrics shown: balanced accuracy (B.Acc), sensitivity (Sens), specificity (Spec) Mattehews correla-

tion coefficient (MCC), and area under the ROC curve (AUC).
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parameters the method name and a list of target proteins FASTA files,

performs predictions, and saves the results to an output file. We timed

the execution of each script run via the Linux time command.

The execution time needed to perform predictions on the

CASP10 dataset (94 proteins, 25 370 residues) is reported in Table 9.

The large difference in execution time is explained by the fact that

extracting features and performing a forward pass in a previously

trained neural network is extremely fast when compared to running

multiple PSI-Blast searches. That makes our method several orders of

magnitude faster than Disopred3 and still capable of achieving similar

accuracy.

4 | DISCUSSION

This paper presents cnnAlpha, a new convolutional neural network-

based method for protein disorder prediction using sequence informa-

tion. We demonstrated that our combination of amino acid alphabet

reduction strategy and convolutional neural networks leads to an

approach which can successfully compete with more elaborated and

computationally expensive sequence based algorithms. The source

code for an R/Shiny application with the model implementation of our

predictor can be found at https://github.com/mauricioob/shiny-pred.

CNNs are good at learning rich higher-order sequence features,

such as secondary motifs and local sequence context. We believe that

the reduction in dimension from 20 to 3 letter amino acid alphabet

helped the convolutional layer to better detect these relationships

and patterns. The reduction in dimensionality and our under sampling

approach to the class imbalance problem have the additional advan-

tage of reducing the amount of data required by the training sets.

This, in turn, made our models faster to train and allow us further

experimentation in parameter setting.

Overall, our method outperforms similar sequence-only algo-

rithms across both evaluation data sets and nears the performance of

sequence based methods using additional evolutionary information

(sequence profiles). Being several orders of magnitude faster than

sequence profile based approaches, our method is suitable for high-

throughput predictions at the proteomic scale. The high specificity of

cnnAlpha also ensures a low false positive rate on high-throughput

contexts, making it even more suitable for this task.
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