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The human reference genome is part of the foundation of modern human biology and a monumental scientific achieve-

ment. However, because it excludes a great deal of common human variation, it introduces a pervasive reference bias

into the field of human genomics. To reduce this bias, it makes sense to draw on representative collections of human ge-

nomes, brought together into reference cohorts. There are a number of techniques to represent and organize data gleaned

from these cohorts, many using ideas implicitly or explicitly borrowed from graph-based models. Here, we survey various

projects underway to build and apply these graph-based structures—which we collectively refer to as genome graphs—and

discuss the improvements in read mapping, variant calling, and haplotype determination that genome graphs are expected

to produce.

The triumph of the human reference genome

The sequencing of a human genomewas truly a landmark achieve-
ment (International Human Genome Sequencing Consortium
2001). Over a number of years, the genome assembly has
steadily improved (International Human Genome Sequencing
Consortium2004; Church et al. 2011) to the point that the current
Genome Reference Consortium (GRC) human genome assembly,
GRCh38 (Schneider et al. 2017), is arguably the best assembled
mammalian genome in existence, with just 875 remaining assem-
bly gaps and fewer than 160 million unspecified “N” nucleotides
(as of GRCh38.p8).

Perhaps one reason the reference genome has been so effec-
tive as an organizing system is that the average human is remark-
ably similar to it. From short read–based assays, it is estimated
that the average diploid human has between 4.1 and 5 million
point mutations, either single nucleotide variants (SNVs), multi-
nucleotide variants (MNVs), or short indels, which is only around
1 point variant every 1200–1450 bases of haploid sequence (The
1000Genomes Project Consortium2015). Such an average human
would also have about 20 million bases (∼0.3% of the genome) af-
fected by around 2100–2500 larger structural variants (The 1000
Genomes Project Consortium 2015). Both these estimates are like-
ly somewhat conservative as some regions of the genome are not
accurately surveyed by the short-read technology used. Indeed,
long-read sequencing demonstrates an excess of structural varia-
tion not found by earlier short-read technology (Chaisson et al.
2015; Seo et al. 2016).

Reference allele bias

Despite the relative effectiveness of the reference as a coordinate
system for the majority of the genome, there is increasing concern
that using the human reference as a lens to study all other human
genomes introduces a pervasive reference allele bias. Reference al-
lele bias is the tendency to underreport data whose underlying

DNA does not match a reference allele (Degner et al. 2009;
Brandt et al. 2015). This bias arises chiefly during the readmapping
step in resequencing experiments. In order to map correctly, reads
must derive fromgenomic sequence that is both represented in the
reference and similar enough to the reference sequence to be iden-
tified as the same genomic element. When these conditions are
not met, mapping errors introduce a systematic blindness to the
true sequence.

In the context of genetic variant detection, this problem is
most acute for structural variation. Entirely different classes of al-
gorithm are required to discover larger structural variation simply
because these alleles are not part of the reference (Sudmant et al.
2015). Furthermore, the numerous large subsequences entirely
missing from the reference in turn surely contain population var-
iation (Sudmant et al. 2015). Describing these variants and their re-
lationships is simply not possible with the current reference
model. Reference allele bias also has the potential to affect some
genetic subpopulations and some regions of the genome more
than others, depending on the ancestral history of the reference
genome at each locus.

We believe reference allele bias is driving the field of genome
inference in two directions. First, with improvements in sequenc-
ing technology, the field is beginning to use unbiased de novo as-
sembly tomake inferences on individual samples. (For a glossary of
terms used in this review, see Table 1.) Second, the field is develop-
ing richer reference structures that more completely represent the
variation present within the population. As a substrate for variant
detection, these reference structures shouldmitigate reference bias
by permitting a fuller complement of read mappings (see
“Genome inference with genome graphs”). These directions are
notmutually exclusive; hybrid approaches will ultimately be desir-
able. However, this perspective focuses on reference structures,
particularly for human genomics. In particular, we show how hu-
man reference-assisted variant calling is naturally progressing to-
ward graph-based reference structures.
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Richer reference structures

The original reference human genome assembly was essentially a
monoploid representation (International Human Genome
Sequencing Consortium 2001). The primary goal was to produce
a single representative sequence albeit with regions of uncertain-
ty—that is, a single “scaffold”—for each physical chromosome. It
also included a handful of alternate scaffolds representing allelic
variation, but they had no formalized relationship to the main
scaffold. Recognizing that some highly polymorphic regions of
the genome were particularly poorly represented by a single refer-
ence sequence, a formal model to introduce representative alter-
nate versions of highly variable regions was added starting with
GRCh37 (Church et al. 2011). Sequences in the form of kilobase
to multi-megabase “alternate locus scaffolds” were described rela-
tive to the “primary” (monoploid) assembly, anchored to locations
along the primary scaffolds. In the current assembly (GRCh38.p9),
these cover 178 regions and total 261 sequences.

To better represent human diversity, wemight imagine creat-
ing a “reference cohort”—that is, in place of a single reference ge-
nome, a set of sequences that includes all common variation.
However, representing such a cohort in the existing alternative lo-
cus scaffold system would present significant challenges. To in-
clude all alleles down to a frequency of 1% would require
alternative locus scaffolds covering the entire primary reference ge-
nome, with hundreds of such sequences overlapping each geno-
mic location.

Although such a reference cohort is already achievable and, to
some extent, derivable from public data sets like the 1000
Genomes Project (The 1000 Genomes Project Consortium 2015),
representing it as a collection of alternative locus scaffolds appears
impractical. First, the existing primary reference genome is a poor
coordinate space with which to describe the other genomes.Much

large structural variation is not adequately described by the coordi-
nates provided by the primary reference. Indeed, this is already a
problem with existing alternative loci scaffolds. Second, the alter-
native loci model fails to capture the fine-grained homology rela-
tionships between all the sequences (Fig. 1A). For example, when
mapping a new sample into a cohort, a typical sequencing read
maymap equally well to many equivalent subsequences in the co-
hort, but this ambiguity would be illusory. Rather, this multimap-
ping is indicative of the extensive latent structure within any
nontrivial reference cohort. Each subsequence actually represents
the same underlying allele. We submit that, although other mod-
els can approach it to varying degrees, this latent structure is natu-
rally represented as a mathematical graph.

Genome graphs

Graphs have a longstanding place in biological sequence analysis,
in which they have often been used to compactly represent an en-
semble of possible sequences. As a rule, the sequences themselves
are implicitly encoded as walks in the graph. This makes graphs a
natural fit for representing reference cohorts, which are by their
nature ensembles of related sequences (Fig. 1B).

Perhaps the simplest common graph representation is the di-
rected graph, in which directed walks encode a nucleotide se-
quence. In the context of genome assembly, de Bruijn graphs (de
Bruijn 1946; Pevzner et al. 2001; Zerbino andBirney 2008) are pop-
ular directed graph representations in which each node represents
a k-mer (a unique string of length k), and each directed edge repre-
sents an overlap of k− 1 bases between the suffix of the “from”

node and the prefix of the “to” node (Fig. 2A). De Bruijn graphs
are a restricted class of vertex-labeled directed graphs, which are
graphs whose nodes are labeled such that a directed walk can be

Table 1. A glossary of terms used in this perspective

Pangenome A collection of genomic sequences that are analyzed together or used as a reference (Computational Pan-Genomics Consortium
2016).

Repeatome The repetitive portion of a genome or pangenome.
Scaffold A sequence where some of the characters are uncertain or unknown.
Homomorphism An embedding of one graph into another graph.
Monoallelic A conceptual model of genomic variation that highlights the presence or absence of pieces of sequence, or of connections

between those pieces.
Directed graph A graph, made up of a set of nodes and a set of edges, where the edges are ordered pairs of a from node and a to node.
Bidirected graph A graph, made up of a set of nodes and a set of edges, where the edges are unordered pairs of (node, orientation) tuples.
Biedged graph A graph, made up of a set of nodes and a set of edges, where the edges come in two types. Black edges are directed and labeled

with a sequence, while gray edges are undirected.
Genome graph A graph used to represent a pangenome.
Sequence graph A genome graph in which the nodes are labeled with nucleotide sequences. Generally bidirected, but with an equivalent biedged

representation.
Collapsed graph A genome graph in which sequences that were represented by different nodes in a previous graph are now represented by a

single node.
Tip A side of a node in a bidirected graph that has no edges connected to it.
Ultrabubble As shown in Figure 3, a minimal directed acyclic subgraph within a sequence graph that has no tips and is connected to the rest

of the graph through two nodes: a source on the left and a sink on the right (Paten et al. 2017).
Walk A sequence of oriented visits to nodes in a graph, describing a traversal that is consistent with the structure of the graph.
Path A walk in which no node is visited more than once; sometimes used in the literature to mean just “walk” (Garrison et al., in prep.).
HMM A Hidden Markov Model, which is a directed graph where the nodes are states, which emit symbols from a distribution, and the

edges are transitions between states, which are chosen probabilistically.
PRG A Population Reference Graph, which is a type of HMM-based pangenome (Dilthey et al. 2015).
Variant discovery The process of finding novel genomic variants that may be present in an individual but which are not present in a database of

known variation.
Variant decision The process of determining the genotype of an individual, drawing from a predetermined set of possible states.
Genome

inference
The process of estimating the genome of an individual or set of individuals from a combination of observed sequencing data for

the individual(s) in question and prior information about the population(s) that produced the individual(s).
De novo

assembly
Creating a set of scaffolds describing a genome from a set of input reads or other information, by combining observed sequences

together, without using a previous set of scaffolds or genomic reference. Often uses graph-based intermediates, such as de
Bruijn graphs.
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interpreted as a DNA sequence, defined by the sequence of node
labels along the walk (Fig. 2B). Alternatively, edge-labeled directed
graphs are possible, in which case the nodes, rather than the edges,
can be viewed as representing the intersection points between con-
nected subsequences (Dilthey et al. 2015).

In either edge- or vertex-labeled representations, directed
graphs do not fully express the concept of strand. That is, they do
not distinguish between reading a DNA molecule in its forward
and reverse complement orientations. To express strandedness, di-
rected graphs can be generalized to bidirected graphs (Edmonds
and Johnson 2003; Medvedev and Brudno 2009), in which each
edge endpoint has an independent orientation, indicating wheth-
er the forward or the reverse complement strand of the attached
node is tobe visitedwhenentering thenode through that endpoint
of the edge (Fig. 2C). Inversions, reverse tandem duplications, and
arbitrarily complex rearrangements are expressible in the bidir-
ected representation. Such complex variation cannot be expressed
in the directed graph version without creating independent for-
ward and reverse complement nodes and storing additional infor-
mation to describe this complementarity. The edge-labeled version
of bidirected graphs,whichwecall biedgedgraphs (Fig. 2D), givean
equivalent representation.

We call a bidirected graph in which each node is labeled with
a nucleotide string a “sequence graph” (Novak et al. 2017; E
Garrison, J Sirén, AM Novak, G Hickey, JM Eizenga, ET Dawson,
W Jones, OJ Buske, MF Lin, B Paten, et al., in prep.). In a sequence
graph, a DNA sequence is read out by concatenating the node-ori-
ented labels of a walk that always enters and exits each node
through edge endpoints with opposite orientations. Labels are ori-
ented such that entering through one endpoint orientation en-
codes the reverse complement of entering the node through the
opposite endpoint orientation.

Graphs as spatial frameworks

Although sequence graphs are an effectiveway to compactly repre-
sent a cohort of genomes, they introduce some complications.
One of these is that it is no longer trivial to define a locus on the
reference. For a linear reference, it is sufficient to refer to a genetic
element by its coordinate and extent along the reference sequence,
but graphs admit multiple paths that may have complex relation-
ships to each other (Paten et al. 2014). To overcome this issue we
need to define a correspondence between structures in the graph
and elements in the genome. In doing so, the genome graph be-
comes a spatial framework for organizing and comparing a popu-
lation of genomes. Developing an effective spatial framework

requires attending to several considerations regarding coordinates,
alleles, ordering in graphs, and genome embedding, which we ex-
plore below.

Coordinate systems

Genome graphs need a system to refer to specific positions on the
sequences they contain. Ideally, such a coordinate system should
convey relevant information. The Computational Pan-Genomics
Consortium (2016) has identified desirable properties of the linear
reference genome model that more general spatial frameworks
should attempt to preserve. These include the notions that the ge-
nome graph coordinates of successive bases within a genome
should be increasing, that coordinates should be compact and hu-
man interpretable, and that bases physically close together within
a genome should have similar coordinates. On top of these proper-
ties of “monotonicity,” “readability,” and “spatiality,” Rand et al.
(2016) add a further distinction between “vertical spatiality” of
bases that are allelic variants of one another and “horizontal spa-
tiality” of bases that can appear together within a single molecule.
They compare two coordinate systems based on paths through a
graph: one that fulfills spatiality, and another that does not fulfill
spatiality but is stable under edits to the graph.

Allelism in graphs

Many genome inference tasks involve calling alleles at sites, so ge-
nome graphs must have an operational definition of a site. Some
proposals seek to derive sites from a coordinate system.One option
is to fall back on the linear reference’s coordinate systemandmain-
tain a strict correspondence between positions in the graph and
reference coordinates (Dilthey et al. 2015). However, this is some-
what restrictive, possibly nullifying some of the benefits that we
are seeking from genome graphs in the first place. Another propos-
al uses a hierarchical, recursive approach to bolt on alternative al-
leles to the existing reference genome system (Rand et al. 2016),
which is potentially a great improvement but still has an arbitrary
dependence on the existing linear coordinates.

A more graph-centered approach is to define sites based on
motifs in the genome graph. In particular, it has been proposed
that sites could be described with a motif called a “superbubble”
(in a directed graph) (Onodera et al. 2013) or “ultrabubble” (a

A

B

Figure 1. Schematic representation of two population-level reference
structures. (A) A reference cohort, in which there is no attempt to identify
homologies between the genome sequences. (B) A genome graph, in
which homologies are collapsed and included as alternate paths in the
graph.

A

B

C

D

Figure 2. Four types of genome graphs, all constructed from the pair of
sequences ATCCCCTA and ATGTCTA. (A) De Bruijn graph. (B) Directed acy-
clic graph. (C ) Bidirected graph (a.k.a., sequence graph). (D) Biedged
graph (a.k.a., biedged sequence graph).
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generalization to bidirected graphs) (Paten et al. 2017). In brief,
ultrabubbles and superbubbles are directed acyclic subgraphs
that connect to the rest of the graph through one source node
and one sink node (Fig. 3). This motif tends to be created when
new variants are added to a graph. Both superbubbles and ultra-
bubbles can also identify nesting and overlapping relationships in-
volving structural variants, which makes them a more expressive
definition of a site than the reference coordinate. Paten et al.
(2017) show how this site nesting is naturally described by a cactus
graph, a structure that globally organizes the sites without the
need for any existing reference genome. However, this approach
is incomplete—not all variation is nicely partitioned into these
bubbles. Moreover, it lacks the appealing simplicity of linear refer-
ence coordinates.

Pangenome ordering

Although genome graphs do not in general provide a natural, sim-
ple coordinate system, it is possible to impose a linear coordinate
system by constructing a comprehensive linear ordering of the
nodes (Fig. 4; Nguyen et al. 2015). Such a structure has been de-
scribed as a pangenome (Herbig et al. 2012; Nguyen et al. 2015).
For any chromosome, such a complete ordering is potentially far
more inclusive than any individual extant haplotype, in that it
can include all the elements present in the population. As an actual
nucleotide sequence (typically after collapsing substitutions into
their major allele) this sort of linearized sequence can also poten-
tially be closer to being a median of the genomes it represents.
Nguyen et al. (2015) demonstrated useful properties of such an or-
dering for common bioinformatics tasks such as read mapping.
They also illustrated how a linear pangenome can be used to
more inclusively visualize a set of genomes. In addition, linear or-
deringsofgenomegraphspotentiallyhaveutility for creatingacces-
sible storage (ensuring good data colocalization for adjacent graph
elements) (Haussler et al. 2017) and for algorithms that need to ef-
ficiently address contiguous subgraphs of a larger genome graph.

The repeatome

A significant fraction of a typical human genome is composed of
highly repetitive satellite arrays (Manuelidis and Wu 1978;
Willard and Waye 1987). Highly repetitive sequences are particu-
larly prevalent in biologically important centromeric regions
(Levy et al. 2007;Miga 2015), and one of themost fundamental bi-
ological structures, the ribosome, is encoded in repetitive sequence
(Levy et al. 2007; Miga 2015). We need effective tools to deal with
these repetitive regions—collectively, the “repeatome”—if we are
to gain a full understanding of human genomics (Miga 2015).

Genome graphs can potentially allow the repeatome, not cur-
rently meaningfully accessible with short-read sequencing ap-
proaches, to be analyzed in some fashion by collapsing repeats
together in the graph (Paten et al. 2014). Rather than representing

a repetitive region directly, the graph reference would represent
the space of instances of a type of repeat across regions and individ-
uals. In such a graph the presence of a specific repeat and its copy
number can be identified by unique readmappings, but not neces-
sarily the identity and locations of individual instances of the re-
peat—frequently a much more difficult problem.

Such a graph could be part of a larger graph reference, or it
could serve as a special-purpose structure for repeat-specific stud-
ies. The technique could be applied to tandem repeat arrays as
well as to more accessible isolated instances of repetitive elements.
In the pioneering work of Miga et al. (2014), for example, probabi-
listic, condensed graphs for the X and Y centromeric repeat arrays
were constructed, in which similar instances of a repeat were com-
binedwithin the same graph node (Fig. 5). These graphs were then
used to generate linear reference sequences for the two arrays
(Miga et al. 2014), using a Markovian traversal, and have subse-
quently been used to define linear representations of the centro-
meres that are included in GRCh38 (Schneider et al. 2017).

Hierarchy

Extending the idea of collapsing repetitive sequences, the work of
Paten et al. (2014) showed that it is not necessary to pick a single
genome graph to act as a reference. Rather, they argued that a hi-
erarchy of graphs related by graph homomorphisms (a projection
function from the nodes of one graph to the nodes of a more col-
lapsed representation of that graph) could be constructed inwhich
progressively more collapsed versions of the same underlying set
of genomes could be constructed and related (Fig. 6). In the most
collapsed graph in the hierarchy, repetitive sequences might be
fully collapsed, whereas the least collapsed graph in the hierarchy
might represent the input set of haplotypes as disjoint sequences.
Intermediates in this hierarchy could represent a more typical
monoallelic representation of the genomes. The constructed hier-
archy would have the property that mapping a subsequence to an
element in a graph in the hierarchy automatically implies themap-
ping of the subsequence to all the more collapsed versions of that
element in themore collapsed graphs in the hierarchy. In this way,
mapping a sequence to a specific repeat instance would also iden-
tify the sequence as mapping to the canonical copy, classifying it
as an instance of the repeat type.

Haplotype embedding

The number of paths through a genome graph increases combina-
torially with the number of alternate alleles it includes. However,
many of these sites are in tight linkage disequilibrium, so the num-
ber of paths that actually occur in the population increases much
more slowly (Fig. 7). It can be useful for read mapping and variant
calling to distinguish between paths that have actually been ob-
served and others that are likely rare or absent in the population.
One solution is to store allele frequency and linkage information
in the genome graph by embedding a population cohort as a set

Figure 3. Ultrabubble sites in a biedged sequence graph. Each arrow
shows the terminal node of a site. The color of the arrows indicates the
node pairing. Note that the ultrabubble denoted by the gray pair of arrows
is nested within the ultrabubble denoted by the purple arrows. (Reprinted
from Paten et al. 2017, with permission from the author.)

Figure 4. A pangenome ordering on a graph constructed from two ge-
nomes. The red edges indicate the path of the pangenome through the
graph. The solid and dotted edges indicate the adjacencies between nodes
in the two source genomes. (Adapted from Nguyen et al. 2015, with per-
mission from the author.)
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of walks through the graph, each of which represents a haplotype.
Such a sequence graph with embedded walks is known as a “vari-
ation graph.” This is also an instance of the graph hierarchies de-
scribed above in which there is homomorphism from the
population cohort onto a constructed genome graph.

A major challenge to implementing embedded haplotypes is
making the data structure for storing the cohort compact enough
to fit in memory while also keeping the data available for compu-
tation. In linear references, the Positional Burrows-Wheeler
Transform (PBWT) was developed in response to this challenge.
The PBWT is a transform of a matrix of binary haplotypes that is
highly compressible and supports efficient haplotype search que-
ries even when compressed (Durbin 2014). Building on this idea,
the recently developed graph-PBWT (gPBWT) is a similar succinct
data structure that supports simultaneous compression and effi-
cient haplotype queries on haplotypes embedded as walks within
a variation graph (Novak et al. 2016). It appears practical to store
entire population cohorts for thousands of genomes in such an
auxiliary structure, which is already implemented within the xg
software (https://github.com/vgteam/xg).

Read mapping in genome graphs

One of themost important use cases for a genomic reference is as a
target for read mapping.

Read mapping tools usually rely on one of two indexing ap-
proaches, in order to quickly find the best mapping locations for
a read in a reference. Some tools, like MOSAIK, use k-mer-based in-
dexing, in which short k-mer sequences from the reference are re-
lated to their locations using a hash table or other traditional key-

value data structure (Lee et al. 2014).
Other tools, such as BWA-MEM, use
Burrows-Wheeler Transform–based ap-
proaches, inwhich the reference is stored
in a succinct self-indexed data structure
optimized for substring search (Li
2013). However, these approaches have
traditionally been implemented against
monoploid, linear reference genomes, re-
sulting in a mapping task in which each
read is placed at one or more linear coor-
dinates. Mapping against more complex,
nonlinearized pangenomes presents
unique challenges.

Several notable read mapping tools
(or more integrated tools that internally
map or process reads) are described in
Table 2. Both linear reference–based
and graph-based tools are represented.

Alt-aware mapping

The current human genome assembly,
GRCh38 (Schneider et al. 2017), contains
alternative loci that provide different ver-
sions of sequences already represented in
the primary assembly (see the section
“Richer reference structures”). Mappers
which canmake sense of these additional
representations, either as special linear
sequences or as components of a graph,
are marked as “alt-aware” in Table 2.

Although alt-awareness naturally
falls out of many graph-based pangenome representations, it is
also possible to achieve in a linear framework. BWA-MEM is one
example of a linear reference–based, alt-aware mapping tool (Li
2013; Church et al. 2015). Although not formally described in
the literature, the alt-aware feature of BWA-MEM uses a two-step
process (https://github.com/lh3/bwa/blob/1f99921b73237203e
5772bee5a8c7a254c6bcbce/README-alt.md). In the first step,
reads are mapped to the primary and alt sequences, as normal,
but with special rules for mapping quality calculation and prima-
ry secondary supplementary status assignment. In the second
step, alignments between alt and primary sequences are used to
project alignments into the primary sequence space and to up-
date mapping qualities in light of how the primary and alt se-
quences fit together. This approach produces alignments to
GRCh38, in the traditionally used primary sequence coordinate
space, but making some use of the alt loci; there is some prelim-
inary evidence to suggest that the resulting alignments may be
better than those obtained using BWA-MEM on only the primary
sequences.

If one of a person’s two haplotypes in a region is much closer
to an alt sequence than the primary sequence, the projection onto
the primary sequence’s coordinate space will at best lose informa-
tion and at worst interfere with variant calling. One feature of
BWA-MEM’s alt-aware mode is that it also outputs alignments in
the coordinate spaces of the alts, to allow variant calling in alt co-
ordinates. However, how to use these alt-coordinate-space align-
ments to produce a combined set of variant calls across the
linear coordinate spaces most appropriate for an individual is still
an open question (see Dilthey et al. 2015).

Figure 5. A schematic example of an “Array Sequence Graph” of the type used to construct a linear-
ization of the DXZ1 repeat array in the X Chromosome centromere (Miga et al. 2014). A collection of
reads (top) shown in the context of a consensus higher-order repeat are converted into a graph represen-
tation (bottom). A cycle around the graph represents a higher-order repeat, and the individual repeat
units (oblongs) are represented within each node (circles). Edges between individual repeat units repre-
sent phasing information from input reads. Transitions between nodes are annotated with probabilities.
(Adapted from Miga et al. 2014, with permission from the author.)
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Extending mapping to genome graphs

Some graph-based approaches, like Gramtools (Maciuca et al.
2016), admit only certain highly structured graphs. This allows
them to be “variant-aware”—to account for small-scale variants
when computing read alignments—with a controlled amount of
additional complexity over linear reference–based approaches.
Other approaches canhandlemore general directed acyclic graphs,
or even bidirected, cyclic sequence graphs. Extending local align-
ment, indexing, and distance measurement to graphs—and espe-
cially to complex graphs—has proven to be a challenge, and the
tools in Table 2 have approached these problems in various ways.

Local alignment

Although extending fully ordered dynamic programming algo-
rithms to partially ordered directed acyclic graphs is relatively sim-
ple (Lee et al. 2002), sequence graphs are not restricted to directed
acyclic structures. Some biological structures, such as inversions,
duplications, or highly variable copy number,mightmost natural-
ly be represented using the bidirectedness of the sequence graph
formulation, or by adding cycles to the reference. In vg, one of
the tools that supports thesemore complex structures, cyclic bidir-
ected graphs are “unrolled” and “unfolded” to make directed acy-
clic graphs that are amenable to partial-order alignment, with the

Figure 6. A reference genome graph hierarchy (most collapsed graph at the top, less collapsed lower), with an input graph (bottom) mapped to it. All the
graphs in the reference hierarchy are de Bruijn graphs. Dotted red lines show projections between graphs in the hierarchy, whereas solid red lines show
mapping of the input sequence graph into the hierarchy. Here, each node has a unique ID, and the L and R strings represent flanking contexts mapping
strings required for unique identification. (Reprinted from Paten et al. 2014, with permission from the author.)

Paten et al.

670 Genome Research
www.genome.org



results transformed back into the original graph’s coordinates (Fig.
8; EGarrison, J Sirén,AMNovak,GHickey, JMEizenga, ETDawson,
W Jones, OJ Buske, MF Lin, B Paten, et al., in prep.). In deBGA, an-
other such tool, complex structures in thedeBruijngraph index are
flattened out when alignments are articulated against individual
linear haploid assemblies (Liu et al. 2016).

Indexing

When working at the scale of whole genomes, the problem of ex-
tending indexing strategies to graphs becomes very important.
Read mapping tools need to narrow down the reference genome
when mapping a read, usually to one or a few regions containing
candidate hits. As with tools for mapping to linear genomes, se-
quence graph mapping tools can be divided into those that use
succinct self-index approaches and those that use k-mer lookup ta-
ble approaches. On the succinct self-index side, one notable exam-

ple is Gramtools’s vBWT, inwhich the graph itself is represented as
a modified BWT (Maciuca et al. 2016). This approach is quite
elegant, but it limits the structure of the graph to one that merely
represents successive sets of alternatives. On the other end of
the spectrum, vg, which uses the GCSA2 graph indexing library,
is able to represent arbitrary sequence graphs in its index, although
index size grows combinatorially with local graph complexity
(Sirén 2017; E Garrison, J Sirén, AM Novak, G Hickey, JM Eizenga,
ET Dawson, W Jones, OJ Buske, MF Lin, B Paten, et al., in prep.).
One interesting approach to controlling index size is illustrated
in HISAT 2 (Pertea et al. 2016); although its approach is not yet de-
scribed in the literature, the tool is built around a collection of
small graph self-indexes, rather than a single large index.

One of the most interesting graph-based tools using a k-mer-
based index is the “population reference graph” (PRG) method of
Dilthey et al. (2015). This tool uses a hidden Markov model
(HMM), with emission distributions over sets of k-mers. The k-
mers found in the reads are used to infer a pair of representative lin-
ear haploid genomes for a sample, denoted as paths through the
HMM. These sequences are then used for realignment with the
succinct self-index-based BWA backtrack, in order to produce a fi-
nal set of read alignments. More broadly, de Bruijn graph–based
tools, such as deBGA, are marked as using k-mer-based indexes,
because the nodes in a de Bruijn graph are identified and looked
up by k-mers (Liu et al. 2016).

Distance measurement

Finally, there is also the question of distance measurement in
graphs, for the purposes of paired-end resolution. A serious con-
tender in the read aligner space must deal with paired-end reads

Figure 7. Distinct 1000 Genomes Project haplotypes embedded within
a variation subgraph. Haplotypes are shown as colored ribbons with width
proportional to the log of their frequency. The number of possible paths
traversing left to right is 16, but only five are observed in the 1000
Genomes Project because of linkage disequilibrium. (Figure based on pro-
totype by W Beyer, pers. comm.)

Table 2. A comparison of various read mapping and processing tools

Tool Type Index
Genome-

scale
Graph-
based

Variant-
aware

Alt-
aware References

BGREAT Mapper k-mer • • • • Limasset et al. (2016)
BlastGraph Mapper k-mer • • • Holley and Peterlongo (2012)
Bowtie 2 Mapper BWT • Langmead and Salzberg (2012)
BWA-MEM Mapper BWT • • Li (2013)
BWBBLE Mapper BWT • • Huang et al. (2013)
deBGA Mapper k-mer • • • • Liu et al. (2016)
GenomeMapper Mapper k-mer • • • Schneeberger et al. (2009)
Glia Mapper None • • • https://github.com/ekg/glia
Gramtools Mapper, caller BWT • • • Maciuca et al. (2016)
Graphite Inference None ?a • • https://github.com/dillonl/graphite
GSNAP Mapper k-mer • •b • Wu and Nacu (2010)
HISAT 2 Mapper BWT • Pertea et al. (2016); https://github.

com/infphilo/hisat2
iBWA Mapper BWT • • http://gmt.genome.wustl.edu/

packages/ibwa/
MOSAIK Mapper k-mer • Lee et al. (2014)
mrsFAST-Ultra Mapper k-mer • • Hach et al. (2014)
PRG Inference k-mer • • • Dilthey et al. (2015)
SRPRISM Mapper Undocumented • • ftp://ftp.ncbi.nlm.nih.gov/pub/

agarwala/srprism
vg Mapper, caller BWT • • • • Garrison et al. (in prep.)

Tools come in several types, noted in the “Type” column. “Mapper” tools perform read mapping; “Caller” tools also perform variant calling;
“Inference” tools take in reads and perform specialized or integrated genome inference tasks. The “Index” column notes the indexing technology used
by each tool. Tools are also graded on the presence or absence of several traits. “Genome-scale” tools have been demonstrated on or are marketed as
suitable for the analysis of entire human genomes. “Graph-based” tools make use of an internal graph representation of variation or support adjacency
information. “Variant-aware” tools are capable of accounting for point or small-scale variation in a reference. “Alt-aware” tools are capable of account-
ing for larger-scale replacements or for the presence of complete secondary contigs in a reference. Note that, among the tools described here, graph-
based tools are always variant-aware, and only graph-based tools are both variant-aware and alt-aware.
aNo concrete usage examples are provided.
bSupports a splice site database.
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in a reasonable way, which is challenging in a genome graph
because calculating the distances between mappings, or even the
relative orientations of mappings, is no longer trivial.

There are two major approaches described in the literature:
doing paired-end resolution in the space of some (potentially in-
ferred) linear sequence, and doing paired-end resolution using a
graph-based distance metric. The PRG system and deBGA do
paired-end resolution in the space of individual sequences: the
generated pair of sequences used for BWA realignment in PRG,
and the linear reference sequences embedded in the de Bruijn
graph in deBGA (Dilthey et al. 2015; Liu et al. 2016). A graph dis-
tance metric is used for paired-end resolution in vg, which can
serve as an example of that approach, although the implementa-
tion does not currently consider the relative orientations of paired
reads (E Garrison, J Sirén, AM Novak, G Hickey, JM Eizenga, ET
Dawson, W Jones, OJ Buske, MF Lin, B Paten, et al., in prep.).
Some projects, like HISAT 2, have not yet documented how their
paired-end distance calculations are performed in a graph, whereas
other projects, like Gramtools, do not yet implement paired-end
alignment (Maciuca et al. 2016). Overall, paired-end resolution
in graph reference structures is a relatively open problem.

Context mapping

In addition to graph-basedmappingmethods based on traditional
dynamic-programming alignment, there has also been interest in
alternative notions of mapping, building on the notion that a po-
sition in a sequence graph reference can have different semantics
than a position in a linear reference. Precedent for this idea is
found in the notion of flanking sequences for SNPs in dbSNP
(Sherry et al. 2001). Originating before the first release of the hu-
man genome assembly, dbSNP was not designed around a linear
reference sequence. Rather than requiring variation to be submit-
ted by coordinate in a reference genome, variation originally in-
stead had to be submitted along with flanking sequence,
describing the context in which the variation was observed by
the submitting laboratory (Sherry et al. 2001). These observed
flanking sequences (perhaps obtained by Sanger sequencing),
rather than a VCF position, defined the variant (Sherry et al. 2001).

In a sequence graph, the sort of offset-based coordinates that
are commonly used in linear references can become unwieldy. It
may be convenient to instead think of graph position as not de-

fined by a coordinate but rather by a context. Instead of finding
the coordinates at which a read maps and then considering a
string-to-string alignment, one can assign each position in a read
to a position in a sequence graph, based on correspondences be-
tween their contexts. One particular formulation of this idea,
“context schemes,” defines a mathematical formalism of nonre-
dundant context assignment that ensures unambiguous mapping
of individual positions and demonstrates a heuristic, potentially
practicable algorithm on linear references (Novak et al. 2015).
Work dealing with nontrivial graphs includes the “fuzzy con-
text–based search” approach of Leonardsen (2016) and the small
sequence graph reference structure examples of Paten et al.
(2014) (for an example, see Fig. 6). It is anticipated that further re-
search in this area could yield useful practical implementations,
because the correspondence between context and position identi-
ty in a graph is quite natural. However, sensitivity challenges re-
main: Concepts of spatial closeness, even between adjacent
positions, are difficult to translate into a context-based framework,
so reads that must be placed by integrating information across the
read sequence present a particular challenge.

Genome inference with genome graphs

The primary advantage of resequencing with a reference genome
as opposed to de novo assembly is that it greatly simplifies the pro-
cess of genome inference. While assembly needs to discover the
entire genomic sequence, reference-based resequencing only
needs to discover a sample’s differences from the reference.
Intuitively, genome graphs should provide even further advantag-
es of the same kind. The graph contains not only the sample’s ap-
proximate sequence, but also many of its specific variants. This
simplifies much of the genome inference process from discovery
to decision.

Despite these theoretical advantages, research on variant call-
ing using genome graphs is still relatively nascent. In contrast,
many successful methodologies have been published for calling
variants using the linear reference genome (Nielsen et al. 2011).
In order to be useful in practice, genome graphs must be able to
translate their promised reduction in reference bias into measur-
able improvements in variant calling over established methodolo-
gies. Accordingly, developing variant calling algorithms for
genome graphs is an important research frontier.

The leading linear reference–based variant calling tools in use
today are all based on probabilistic models of sequencing data
(Nielsen et al. 2011). This approach has several advantages.
Modern sequencing technologies all attempt to quantify the un-
certainty in their base calls. Probability models provide a natural
framework to incorporate this uncertainty into genotype calls,
and they allow algorithms to estimate uncertainty about genotype
calls for downstream analyses.

The actual probability models used in these tools vary, but
they share a common Bayesian structure. For a genotype G and a
set of read data D, the posterior likelihood of a genotype call is
P(G|D)∝ P(D|G)P(G). The first factor, P(D|G), is based on a genera-
tive model of the read data. The second factor, P(G), is the prior
probability of a genotype,which canbe flat or based onpopulation
information.

Genotype likelihoods in genome graphs

In genome graphs, genotyping consists of two distinct tasks: deci-
sion between the variants present in the graph structure a priori
and discovery of novel variation. These tasks require different

Figure 8. Bidirected sequence graph (A) being unfolded into a directed
acyclic graph (B), in preparation for partial-order alignment. Node 6 is a
reversed view of node 1, node 7 is a reversed view of node 2, and node
8 is a reversed view of node 5. (Reprinted from Garrison et al. [in prep],
with permission from the author.)

Paten et al.

672 Genome Research
www.genome.org



inference processes, so it is not surprising that every technique we
are aware of uses a different strategy for each.

Of these tasks, the genotype decision process is more novel to
genome graphs. Recall that genome graphs are constructed so that
a haplotype can be represented as a walk through the graph, mod-
ulo a few rare or private variants that are in the haplotype but not
in the graph. Thus, for a diploid sample, we can essentially frame
the genotype decision process as choosing two walks through
the graph that contain the sample’s variants, possibly phasing ar-
bitrarily in the process (Fig. 7). This naturally leads to a path-based
methodology for variant calling.

Several path-based variant callingmethods have already been
developed. PRG uses an HMM to compute the maximum likeli-
hood pair of paths through its graph (Dilthey et al. 2015).
BayesTyper generates local paths through nearby variants. In
both cases, the genotype likelihood is based on the k-mer content
of the reads. Both k-mer methods forgo read mapping, which
makes them computationally efficient and avoids some conceptu-
al ambiguities with aligning to graphs. However, k-mer models are
also inherently susceptible to sequencing errors. The PRG group
has also developed a specialized genotyping algorithm for the
HLA locus that is based on read alignments, called HLA∗PRG
(Dilthey et al. 2016). This algorithm has high accuracy, but its
computational demands are too high to scale the approach ge-
nome-wide. Finally, the vg suite includes a nascent variant calling
tool that is primarily site based instead of path based. It defines
sites with ultrabubbles and then defines the alleles as the set of
paths through the ultrabubble. vg calls variants from read align-
ments with a count-based heuristic, which takes advantage of
vg’s flexible aligning capabilities but currently lacks a sophisticat-
ed error model.

Compared to genotype decision, the variant discovery pro-
cess in graphs more closely resembles traditional genome infer-
ence. In fact, PRG and BayesTyper both use existing variant
calling tools to discover variants. BayesTyper adds the discovered
variants to the graph as candidates for the path-based inference,
whereas PRG converts its maximum likelihood paths into candi-
date linear reference sequences upon which to discover novel var-
iants; vg uses read pileups from its alignments to augment the
graph so it can then use the same model for genotype discovery
as decision.

In all cases, these tools sidestep some of the difficulties in
generalizing the read mapping–based models that have been suc-
cessful with linear reference genomes. PRG and BayesTyper both
avoid mapping reads to a graph reference by using k-mers.
HLA∗PRG restricts its focus to a small section of the HLA locus.
The current version of vg uses heuristics in place of a true proba-
bility model for its mapped reads. We expect that true generaliza-
tions of traditional models will be a significant advancement for
the field, particularly for segregating structural variants. The fact
that sequence graphs make it possible to align and model known
structural variants in the same manner as other types of variation
may obviate the need for separate algorithms from SNV callers
(Medvedev et al. 2009).

Haplotype priors on genome graphs

As graph-based genome inference matures, it will be necessary to
develop effective population priors. This need is perhaps more ur-
gent with graphs than with linear references, because as described
above (see “Haplotype embedding”), graphs can admit many
paths that are not biologically meaningful. However, the novel

path-based methodologies described above also represent a clear
opportunity. Since the paths already combine information across
sites, they provide a natural setting for incorporating linkage dise-
quilibrium information into the prior, which is then a prior over
haplotypes rather than genotypes. Doing so could mitigate the ef-
fect of the nonbiological paths and perhaps even improve the ac-
curacy of genome inference. Basic research in this vein is already
emerging. A graph generalization of the Li and Stevens population
model using the gPBWT described above has been developed (Li
and Stephens 2013; Rosen et al. 2017). These or similar techniques
could provide the infrastructure for efficient computation of pop-
ulation haplotype priors.

Future opportunities and challenges

We foresee reference cohorts replacing linear references, and
that graphical models of reference cohorts will replace linear se-
quence assemblies as the space in which genomics is done. In
the short term, some of the benefits of a more comprehensive
reference cohort can be gained by resequencing against the
full GRCh38 assembly, using software like BWA-MEM that prop-
erly handles alternative loci. We believe that extending existing
software to fully support the alternative locus sequences of
GRCh38 will lay the groundwork for full sequence graph sup-
port in the future.

Over the long term, we anticipate the development of an of-
ficial reference cohort and graph-based reference that embeds
this cohort. We imagine regular releases that progressively add
to this structure, and that this will be overseen by an indepen-
dent group, like the Genome Reference Consortium. Such an of-
ficial graph could provide a truly universal coordinate system
encompassing not only a single linear assembly but also the glob-
al stock of variant information from projects like the 1000
Genomes Project. Although there are benefits to having tailored
approaches for specific applications, we believe that, on balance,
a greater degree of standardization would be a boon in this area.
Currently, too much effort is duplicated in having each group
build their own partial graph-based compendia of human varia-
tion. We believe strongly in the benefits of having a concrete,
comprehensive genomic data structure upon which to base
our discourse. Accordingly, there is a need to generate some con-
sensus about the best method for constructing genome graph
references.

Moreover, we expect and hope for community convergence
on a universally applicable graph formalism and exchange format.
We anticipate that fully bidirected sequence graphs will be the ul-
timate winner, because of their ability to represent inversions, du-
plications, and translocations in a way that is natural and that
accounts for gene flow in and out of such structures (Navarro
et al. 1997). However, we anticipate that, in an official human se-
quence graph reference, thesemore general features would be used
sparingly, for describing large-scale rearrangement events, because
it is often convenient to work with graphs that are locally directed
and acyclic. Moreover, a large fraction of variation is amenable to a
directed acyclic representation. Standardizing on an exchange for-
mat for graphs, meanwhile, would allow hard-won insights about
how to store, retrieve, and process graph data at species scale to
make their way into new software from the reference interface
inwards.

Perhaps the biggest challenge in migration to genome graph
references, beyond the development of the necessary data science
and technology, is the inertia that has developed around the
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current human reference assembly. As such a linchpin data struc-
ture, a tremendous amount of tooling and data rely upon the cur-
rent reference. We advocate the development of production
quality toolkits for genome graphs, that much like HTSlib and
SAMtools (Li et al. 2009) for working with the current reference,
make it easy to work with genome graph technology. We hope
vg will become such a toolkit.

Toolkits will facilitate the transition, and coupled with a
progressive, incremental approach, make adoption significantly
more likely. We recognize that just as previous reference genome
assemblies tend to hang around, so will the current reference hu-
man genome assembly, even in a future where a significant frac-
tion of work has switched over to using reference genome graphs.
We anticipate the need to maintain translation between linear
reference assemblies and genome graphs, particularly the need
for tools to lift over annotations between existing assemblies
and genome graphs, just as we do today between updated assem-
bly releases.

In the area of genome resequencing, the trend is, as always,
toward longer read sizes (Jain et al. 2015), cheaper sequencing
(Jain 2015), and larger read separations (Coombe et al. 2016;
Putnam et al. 2016). We anticipate that these advances will allow
de novo assembly to become a more practical resequencing anal-
ysis approach, and overall will increase the accessibility of large-
scale structural variants. Although the importance of a reference
for ordering and orienting short reads may wane as long-read
technology improves, the importance of a reference compendi-
um of structural variation will increase as such variation becomes
more detectable. Furthermore, the importance of a reference that
provides information on known variable bases will increase as
higher read-error-rate sequencing methods become more widely
used.

In the area of read alignment, we recommend more research
into alternative problem formulations, rather than just straightfor-
ward extensions of read mapping to graphs. Instead of finding a
single best alignment of a read to a graph, for example, it would
be useful to be able to obtain a collection or distribution of such
alignments, which would account for different possible paths in
the graph from which the read may have been generated. When
there are multiple decision points in an alignment, and especially
when reads are long, a single “mapping quality” valuemay no lon-
ger be a sufficient description of alignment confidence. Carrying
more detailed uncertainty information about read mapping
through to the variant calling or genome inference step of a rese-
quencing pipeline should improve overall performance. It would
also be useful to explore the idea of context-based mapping
more thoroughly; we anticipate that effort spent developing
more practical and efficient implementations of the basic idea
would not be wasted.

Future genome inference methodologies must capitalize on
these developments and translate them into improved accuracy.
We have already suggested some directions for this research.
Inference models that have already proven successful on linear ge-
nomes should be generalized to graphs, and future models should
take advantage of newpath-based variant callingmethodologies to
incorporate linkage disequilibrium into the population prior.
Ultimately this will result in the combining of phase imputation
and variant inference into onemodel and optimization process, al-
lowing sampling from the posterior of genomes rather than simply
genotypes. When these techniques mature, we expect that they
will outperform existing genome inference tools, especially in cas-
es involving structural variation and high polymorphism.

Moreover, the transition from discovery to decision processes
will require less from the data to infer common variants. Thus,
these methods will also serve the economic imperative of main-
taining accuracy while reducing coverage requirements. This will
in turn enable projects at larger scales. Conversely, we believe
that there is more useful information to be extracted from existing
sequencing samples, and that existing short-read technologies
may yet be used to generate significantly more comprehensive ge-
nome inferencewhen compared against a comprehensive genome
graph. In making a cost-benefit analysis of sequencing technolo-
gies, we believe the development of reference genome graphs
and large population cohorts, essentially as a better prior for infer-
ence, may significantly alter the calculation.

In this perspective, we have focused on genome graphs and
their likely impact on genome inference and genetic discourse.
However, it is important to recognize that genome graphs could
have a similarly dramatic impact on transcriptomics and epigenet-
ics. Although beyond the scope of this discussion, the natural ex-
tension of the reference genome to incorporate a more complete
map of variation opens the possibility of directly linking transcript
expression and epigeneticmarks with specific alleles, thus creating
an integrated structure for relating these other omics types to un-
derlying genomic variation.

The developments described in this review indicate a rapidly
growing ecosystem of tools andmethods for genome inference us-
ing graph-based reference structures. As a whole, graph-based ge-
nome inference promises to mitigate the problem of pervasive
reference bias, through effective incorporation of reference cohort
information. This will have an impact throughout genomics, as
previously intractable forms of genetic variation become assayable
with the efficiency of routine resequencing experiments. For some
time, researchers and ethicists have warned against the healthcare
disparities that basing genomic studies on European populations
could cause (Need and Goldstein 2009). Now evidence is accumu-
lating that such disparities are already occurring in personalized
medicine (Petrovski and Goldstein 2016). Reducing reference
bias is an important step toward remedying this problem, and
graph genomes are the most promising proposal to do so.
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