
7.7.5 The Train Algorithm

While the generational approach is very efficient for the handling of immature
objects, it is less efficient for the mature objects, since mature objects are moved
every time there is a collection involving them, and they are quite unlikely to
be garbage. A different approach to incremental collection, called the train
algorithm, was developed to improve the handling of mature objects. It can be
used for collecting all garbage, but it is probably better to use the generational
approach for immature objects and, only after they have survived a few rounds
of collection, "promote" them to another heap, managed by the train algorithm.
Another advantage to the train algorithm is that we never have to do a complete
garbage collection, as we do occasionally for generational garbage collection.

To motivate the train algorithm, let us look at a simple example of why it is
necessary, in the generational approach, to have occasional all-inclusive rounds
of garbage collection. Figure 7.29 shows two mutually linked objects in two
partitions i and j, where j > i. Since both objects have pointers from outside
their partition, a collection of only partition i or only partition j could never
collect either of these objects. Yet they may in fact be part of a cyclic garbage
structure with no links from the outside. In general, the "links" between the
objects shown may involve many objects and long chains of references.

Partition i Partition j

Figure 7.29: A cyclic structure across partitions that may be cyclic garbage

In generational garbage collection, we eventually collect partition j, and
since i < j, we also collect i at that time. Then, the cyclic structure will be
completely contained in the portion of the heap being collected, and we can
tell if it truly is garbage. However, if we never have a round of collection that
includes both i and j, we would have a problem with cyclic garbage, just as we
did with reference counting for garbage collection.

The train algorithm uses fixed-length partitions, called cars; a car might be
a single disk block, provided there are no objects larger than disk blocks, or the
car size could be larger, but it is fixed once and for all . Cars are organized into

^ramsTThere is no limit to the number of cars in a train, and no limit to the
number of trains. There is a lexicographic order to cars: first order by train
number, and within a train, order by car number, as in Fig . 7.30. ('<•«• '• :

There are two ways that garbage is collected by the train algorithm:

® The first car in lexicographic order (that is, the first remaining car of the
first remaining train) is collected in one incremental garbage-collection
step. This step is similar to collection of the first partition in the gener
ational algorithm, since we maintain a "remembered" list of all pointers

Train 1 car 11 car 12

Train 2

Train 3

car 21 car 22 car 23 car 24

car 31 car 32 car 33

Figure 7.30: Organization of the heap for the train algorithm

from qutside_the car. Here, we identify objects with no references at all ,
as well as garbage cycles that are contained completely within this car.
Reachable objects in the car are always moved to some other car, so each
garbage-collected car becomes empty and can be removed from the train.

Sometimes, the first train has no external references. That is, there are
no pointers from the root set to any car of the train, and the remembered
sets for the cars contain only references from other cars in the train, not

"from other trains. In this situation, the train is a huge collection of cyclic
garbage, and we delete the entire train. ^-

R e me mbe red Sets

We now give the details of the train algorithm. Each car has a remembered set
consisting of all references to objects in the car from

a) Objects in higher-numbered cars of the same train, and

b) Objects in higher-numbered trains.

In addition, each train has a remembered set consisting of all references from
higher-numbered trains. That is, the remembered set for a train is the union of
the remembered sets for its cars, except for those references that are internal
to the train. It is thus possible to represent both kinds of remembered sets
by dividing the remembered sets for the cars into "internal" (same train) and
"external" (other trains) portions.

Note that references to objects can come from anywhere, not just from
lexicographically higher cars. However, the two garbage-collection processes
deal with the first car of the first train, and the entire first train, respectively.
Thus, when it is time to use the remembered sets in a garbage collection, there
is nothing earlier from which references could come, and therefore there is no
point in remembering references to higher cars at any time. We must be careful,
of course, to manage the remembered sets properly, changing them whenever
the mutator modifies references in any object.

492 CHAPTER 7. RUN-TIME iiiV VMumvicivj-a I.I. D i i U i t i - i - A U D i i UULL&UUUIV 4b*

M a n a g i n g "Trains

Our objective is to draw out of the first train all objects that are not cyclic
garbage. Then, the first train either becomes nothing but cyclic garbage and is
therefore collected at the next round of garbage collection, or if the garbage is
not cyclic, then its cars may be collected one at a time.

We therefore need to start new trains occasionally, even though there is no
limit on the number of cars in one train, and we could in principle simply add
new cars to a single train, every time we needed more space. For example, we
could start a new train after every k object creations, for some k. That is, in
general, a new object is placed in the last car of the.last train, if there is room,
or in a new car that is added to the end of the last train, if there is no room.
However, periodically, we instead start a new train with one car, and place the
new object there.

G a r b a g e C o l l e c t i n g a C a r

The heart of the train algorithm is how we process the first car of the first
train during a round of garbage collection. Initially, the reachable set is taken
to be the objects of that car with references from the root set and those with
references in the remembered set for that car. We then scan these objects as
in a mark-and-sweep collector, but we do not scan any reached objects outside
the one car being collected. After this tracing, some objects in the car may
be identified as garbage. There is no need to reclaim their space, because the
entire car is going to disappear anyway.

However, there are likely to be some reachable objects in the car, and these
must be moved somewhere else. The rules for moving an object are:

a If there is a reference in the remembered set from any other train (which
wil l be higher-numbered than the train of the car being collected), then
move the object to one of those trains. If there is room, the object can
go in some existing car of the train from which a reference emanates, or
it can go in a new, last car if there is no room.

o If there is no reference from other trains, but there are references from
the root set or from the first train, then move the object to any other car
of the same train, creating a new, last car if there is no room. If possible,
pick a car from which there is a reference, to help bring cyclic structures
to a single car.

After moving all the reachable objects from the first car, we delete that car.

P a n i c M o d e
There is one problem with the rules above. In order to be sure that all garbage
will eventually be collected, we need to be sure that every train eventually
becomes the first train, and if this train is not cyclic garbage, then eventually

all cars of that train are removed and the train disappears one car at a tim.
However, by rule (2) above, collecting the first car of the first train can produc
a new last car. It cannot produce two or more new cars, since surely all tf
objects of the first car can fit in the new, last car. However, could we be in
situation where each collection step for a train results in a new car being addec
and we never get finished with this train and move on to the other trains?

The answer is, unfortunately, that such a situation is possible. The problei
arises if we have a large, cyclic, nongarbage structure, and the mutator manag<
to change references in such a way that we never see, at the time we collet
a car, any references from higher trains in the remembered set. If even or
object is removed from the train during the collection of a car, then we are 01
since no new objects are added to the first train, and therefore the first trai
will surely run out of objects eventually. However, there may be no garbag
at all that we can collect at a stage, and we run the risk of a loop where w
perpetually garbage collect only the current first train.

To avoid this problem, we need to behave differently whenever we encount*
a futile garbage collection, that is, a car from which not even one object can t
deleted as garbage or moved to another train. In this "panic mode," we mal
two changes:

1. When a reference to an object in the first train is rewritten, we maintai
the reference as a new member of the root set.

2. When garbage collecting, if an object in the first car has a reference froi
the root set, including dummy references set up by point (1), then \s
move that object to another train, even if it has no references from oth<
trains. It is not important which train we move it to, as long as it is nc
the first train.

In this way, if there are any references from outside the first train to objeci
in the first train, these references are considered as we collect every car, an
eventually some object will be removed from that train. We can then leave pan:
mode and proceed normally, sure that the current first train is now smaller tha
it was.

7.7.6 Exercises for Section 7.7

Exercise 7 .7 .1 : Suppose that the network of objects from Fig. 7.20 is manage
| by an incremental algorithm that uses the four lists Unreached, Unscanna
! Scanned, and Free, as in Baker's algorithm. To be specific, the Unscanned lis
I is managed as a queue, and when more than one object is to be placed on this lis
[due to the scanning of one object, we do so in alphabetical order. Suppose als
I that we use write barriers to assure that no reachable object is made garbag
| Starting with A and B on the Unscanned list, suppose the following evem
I occur:
f
\ i. A is scanned.

if. The pointer .4 -> D is rewritten to be .4 -»• i J .

i i i . B is scanned.

£> is scanned.

v. The pointer B -> C is rewritten to be i? -» J .

Simulate the entire incremental garbage collection, assuming no more pointers
are rewritten. Which objects are garbage? Which objects are placed on the
Free list?

E x e r c i s e 7 .7 .2: Repeat Exercise 7.7.1 on the assumption that

a) Events (ii) and (v) are interchanged in order.

b) Events (ii) and (v) occur before (i), (Hi), and (iv).

E x e r c i s e 7 .7 .3 : Suppose the heap consists of exactly the nine cars on three
trains shown in Fig . 7.30 (i.e., ignore the ellipses). Object o in car 11 has
references from cars 12, 23, and 32. When we garbage collect car 11, where
might o wind up?

E x e r c i s e 7.7.4: Repeat Exercise 7.7.3 for the cases that o has

a) Only references from cars 22 and 31.

b) No references other than from car 11.

E x e r c i s e 7 .7 .5 : Suppose the heap consists of exactly the nine cars on three
trains shown in Fig . 7.30 (i.e., ignore the ellipses). We are currently in panic
mode. Object ox in car 11 has only one reference, from object 02 in car 12. That
reference is rewritten. When we garbage collect car 11, what could happen to
01?

7.8 Advaeced Topics in Garbage Collection
We close our investigation of garbage collection with brief treatments of four
additional topics:

1. Garbage collection in parallel environments.

2. Partial relocations of objects.

3. Garbage collection for languages that are not type-safe.

4. The interaction between programmer-controlled and automatic garbage
collection.

7.8.1 Parallel and Concurrent Garbage Collection
Garbage collection becomes even more challenging when applied to applications
running in parallel on a multiprocessor machine. It is not uncommon for server
applications to have thousands of threads running at the same time; each of
these threads is a mutator. Typically, the heap will consist of gigabytes of
memory.

Scalable garbage-collection algorithms must take advantage of the presence
of multiple processors. We say a garbage collector is parallel if it uses multiple
threads; it is concurrent if it runs simultaneously with the mutator.

We shall describe a parallel, and mostly concurrent, collector that uses a
concurrent and parallel phase that does most of the tracing work, and then a
stop-the-world phase that guarantees all the reachable objects are found and re
claims the storage. This algorithm introduces no new basic concepts in garbage
collection per se; it shows how we can combine the ideas described so far to
create a full solution to the parallel-and-concurrent collection problem. How
ever, there are some new implementation issues that arise due to the nature
of parallel execution. We shall discuss how this algorithm coordinates multiple
threads in a parallel computation using a rather common work-queue model.

To understand the design of the algorithm we must keep in mind the scale
of the problem. Even the root set of a parallel application is much larger,
consisting of every thread's stack, register set and globally accessible variables.
The amount of heap storage can be very large, and so is the amount of reachable
data. The rate at which mutations take place is also much greater.

To reduce the pause time, we can adapt the basic ideas developed for in
cremental analysis to overlap garbage collection with mutation. Recall that an
incremental analysis, as discussed in Section 7.7, performs the following three
steps:

1. F ind the root set. This step is normally performed atomically, that is,
with the mutator(s) stopped.

2. Interleave the tracing of the reachable objects with the execution of the
mutator(s). In this period, every time a mutator writes a reference that
points from a Scanned object to an Unreached object, we remember that
reference. As discussed in Section 7.7.2, we have options regarding the
granularity with which these references are remembered. In this section,
we shall assume the card-based scheme, where we divide the heap into
sections called "cards" and maintain a bit map indicating which cards are
dirty (have had one or more references within them rewritten).

3. Stop the mutator(s) again to rescan all the cards that may hold references
to unreached objects.

For a large multithreaded application, the set of objects reached by the root
set can be very large. It is infeasible to take the time and space to visit all such
objects while all mutations cease. Also, due to the large heap and the large

1.6. AJJVAlMjaU TUriUS iiV UAtWAUti UULLtiUTlUN 4y/

number of mutation threads, many cards may need to be rescanned after all
objects have been scanned once. It is thus advisable to scan some of these cards
in parallel, while the mutators are allowed to continue to execute concurrently.

To implement the tracing of step (2) above, in parallel, we shall use multiple
garbage-collecting threads concurrently with the mutator threads to trace most
of the reachable objects. Then, to implement step (3), we stop the mutators
and use parallel threads to ensure that all reachable objects are found.

The tracing of step (2) is carried out by having each mutator thread per
form part of the garbage collection, along with its own work. In addition, we
use threads that are dedicated purely to collecting garbage. Once garbage col
lection has been initiated, whenever a mutator thread performs some memory-
allocation operation, it also performs some tracing computation. The pure
garbage-collecting threads are put to use only when a machine has idle cycles.
As in incremental analysis, whenever a mutator writes a reference that points
from a Scanned object to an Unreached object, the card that holds this reference
is marked dirty and needs to be rescanned.

Here is an outline of the parallel, concurrent garbage-collection algorithm.

1. Scan the root set for each mutator thread, and put all objects directly
reachable from that thread into the Unscanned state. The simplest incre
mental approach to this step is to wait until a mutator thread calls the
memory manager, and have it scan its own root set if that has not already
been done. If some mutator thread has not called a memory allocation

•function, but all the rest of tracing is done, then this thread must be
interrupted to have its root set scanned.

2. Scan objects that are in the Unscanned state. To support parallel com
putation, we use a work queue of fixed-size work packets, each of which
holds a number of Unscanned objects. Unscanned objects are placed in
work packets as they are discovered. Threads looking for work will de
queue these work packets and trace the Unscanned objects therein. This
strategy allows the work to be spread evenly among workers in the tracing
process. If the system runs out of space, and we cannot find the space to
create these work packets, we simply mark the cards holding the objects
to force them to be scanned. The latter is always possible because the bit
array holding the marks for the cards has already been allocated.

3. Scan the objects in dirty cards. When there are no more Unscanned ob
jects left in the work queue, and all threads' root sets have been scanned,
the cards are rescanned for reachable objects. As long as the mutators
continue to execute, dirty cards continue to be produced. Thus, we need
to stop the tracing process using some criterion, such as allowing cards to
be rescanned only once or a fixed number of times, or when the number
of outstanding cards is reduced to some threshold. As a result, this paral
lel and concurrent step normally terminates before completing the trace,
which is finished by the final step, below.

4. The final step guarantees that all reachable objects are marked as reached.
W i t h all the mutators stopped, the root sets for all the threads can now
be found quickly using all the processors in the system. Because the
reachability of most objects has been traced, only a small number of
objects are expected to be placed in the Unscanned state. A l l the threads
then participate in tracing the rest of the reachable objects and rescanning
all the cards.

It is important that we control the rate at which tracing takes place. The
tracing phase is like a race. The mutators create new objects and new references
that must be scanned, and the tracing tries to scan all the reachable objects and
rescan the dirty cards generated in the meanwhile. It is not desirable to start
the tracing too much before a garbage collection is needed, because that will
increase the amount of floating garbage. On the other hand, we cannot wait
until the memory is exhausted before the tracing starts, because then mutators
will not be able to make forward progress and the situation degenerates to that
of a stop-the-world collector. Thus, the algorithm must choose the time to
commence the collection and the rate of tracing appropriately. A n estimate
of the mutation rate from previous cycles of collection can be used to help in
the decision. The tracing rate is dynamically adjusted to account for the work
performed by the pure garbage-collecting threads.

7.8.2 Partial Object Relocation
As discussed starting in Section 7.6.4, copying or compacting collectors are ad
vantageous because they eliminate fragmentation. However, these collectors
have nontrivial overheads. A compacting collector requires moving all objects
and updating all the references at the end of garbage collection. A copying
collector figures out where the reachable objects go as tracing proceeds; if trac
ing is performed incrementally, we need either to translate a mutator's every
reference, or to move all the objects and update their references at the end.
Both options are very expensive, especially for a large heap.

We can instead use a copying generational garbage collector. It is effective in
collecting immature- objects and reducing fragmentation, but can be expensive
when collecting mature objects. We can use the train algorithm to limit the
amount of mature data analyzed each time. However, the overhead of the train
algorithm is sensitive to the size of the remembered set for each partition.

There is a hybrid collection scheme that uses concurrent tracing to reclaim
all the unreachable objects and at the same time moves only a part of the
objects. This method reduces fragmentation without incurring the full cost of
relocation in each collection cycle.

1. Before tracing begins, choose a part of the heap that will be evacuated.

2. As the reachable objects are marked, also remember all the references
pointing to objects in the designated area.

3. When tracing is complete, sweep the storage in parallel to reclaim the
space occupied by unreachable objects.

4. Finally, evacuate the reachable objects occupying the designated area and
fix up the references to the evacuated objects.

7.8.3 Conservative Collection for Unsafe Languages
As discussed in Section 7.5.1, it is impossible to build a garbage collector that is
guaranteed to work for all C and C + + programs. Since we can always compute
an address with arithmetic operations, no memory locations in C and C++ can
ever be shown to be unreachable. However, many C or C + + programs never
fabricate addresses in this way. It has been demonstrated that' a conservative
garbage collector — one that does not necessarily discard all garbage — can be
built to work well in practice for this class of programs.

A conservative garbage collector assumes that we cannot fabricate an ad
dress, or derive the address of an allocated chunk of memory without an ad
dress pointing somewhere in the same chunk. We can find all the garbage in
programs satisfying such an assumption by treating as a valid address any bit
pattern found anywhere in reachable memory, as long as that bit pattern may
be construed as a memory location. This scheme may classify some data erro
neously as addresses. It is correct, however, since it only causes the collector to
be conservative and keep more data than necessary.

Object relocation, requiring all references to the old locations be updated to
point to the new locations, is incompatible with conservative garbage collection.
Since a conservative garbage collector does not know if a particular bit pattern
refers to an actual address, it cannot change these patterns to point to new
addresses.

Here is how a conservative garbage collector works. First, the memory
manager is modified to keep a data map of all the allocated chunks of memory.
This map allows us to find easily the starting and ending boundary of the chunk
of memory that spans a certain address. The tracing starts by scanning the
program's root set to find any bit pattern that looks like a memory location,
without worrying about its type. By looking up these potential addresses in the
data map, we can find the starting addresses of those chunks of memory that
might be reached, and place them in the Unscanned state. We then scan all the
unscanned chunks, find more (presumably) reachable chunks of memory, and
place them on the work list until the work list becomes empty. After tracing
is done, we sweep through the heap storage using the data map to locate and
free all the unreachable chunks of memory.

7.8.4 Weak References

Sometimes, programmers use a language with garbage collection, but also wish
to manage memory, or parts of memory, themselves. That is, a programmer
may know that certain objects are never going to be accessed again, even though

references to the objects remain. A n example from compiling will suggest the
problem.

E x a m p l e 7 .17: We have seen that the lexical analyzer often manages a sym
bol table by creating an object for each identifier it sees. These objects may
appear as lexical values attached to leaves of the parse tree representing those
identifiers, for instance. However, it is also useful to create a hash table, keyed
by the identifier's string, to locate these objects. That table makes it easier for
the lexical analyzer to find the object when it encounters a lexeme that is an
identifier.

When the compiler passes the scope of an identifier I, its symbol-table
object no longer has any references from the parse tree, or probably any other
intermediate structure used by the compiler. However, a reference to the object
is still sitting in the hash table. Since the hash table is part of the root set of the
compiler, the object cannot be garbage collected. If another identifier with the
same lexeme as / is encountered, then it wil l be discovered that I is out of scope,
and the reference to its object wil l be deleted. However, if no other identifier
with this lexeme is encountered, then I's object may remain as uncollectable,
yet useless, throughout compilation. •

If the problem suggested by Example 7.17 is important, then the compiler
writer could arrange to delete from the hash table all references to objects as
soon as their scope ends. However, a technique known as weak references allows
the programmer to rely on automatic garbage collection, and yet not have the
heap burdened with reachable, yet truly unused, objects. Such a system allows
certain references to be declared "weak." A n example would be all the references
in the hash table we have been discussing. When the garbage collector scans
an object, it does not follow weak references within that object, and does not
make the objects they point to reachable. Of course, such an object may still
be reachable if there is another reference to it that is not weak.

7.8.5 Exercises for Section 7.8
! Exerc i se 7 .8 .1 : In Section 7.8.3 we suggested that it was possible to garbage

collect for C programs that do not fabricate expressions that point to a place
within a chunk unless there is an address that points somewhere within that
same chunk. Thus, we rule out code like

p = 12345;
x = * p ;

because, while p might point to some chunk accidentally, there could be no other
pointer to that chunk. On the other hand, with the code above, it is more likely
that p points nowhere, and executing that code will result in a segmentation
fault. However, in C it is possible to write code such that a variable like p is
guaranteed to point to some chunk, and yet there is no pointer to that chunk.
Write such a program.

