
Distributed Computing with MapReduce

Lecture 2 of NoSQL Databases (PA195)

David Novak & Vlastislav Dohnal
Faculty of Informatics, Masaryk University, Brno
http://disa.fi.muni.cz/vlastislav-dohnal/teaching/nosql-databases-fall-2019/

http://disa.fi.muni.cz/vlastislav-dohnal/teaching/nosql-databases-fall-2019/


Agenda

● Distributed Data Processing

● Google MapReduce
○ Motivation and History
○ Google File System (GFS)
○ MapReduce: Schema, Example, MapReduce Framework

● Apache Hadoop
○ Hadoop Modules and Related Projects
○ Hadoop Distributed File System (HDFS)
○ Hadoop MapReduce

● MapReduce in Other Systems
2



Agenda

● Distributed Data Processing

● Google MapReduce
○ Motivation and History
○ Google File System (GFS)
○ MapReduce: Schema, Example, MapReduce Framework

● Apache Hadoop
○ Hadoop Modules and Related Projects
○ Hadoop Distributed File System (HDFS)
○ Hadoop MapReduce

● MapReduce in Other Systems
3



Distributed Data Processing

What is the best way of doing distributed processing?

Centralized (and in memory)

Don't do it, if don't have to

4



Big Data Processing

● Big Data analytics (or data mining)
○ need to process large data volumes quickly
○ want to use computing cluster instead of a super-computer

● Communication (sending data) between compute 
nodes is expensive

=> model of “moving the computing to data”

5



Big Data Processing II

● HW failures are rather rule than exception, thus
1. Files must be stored redundantly

■ over different racks to overcome also rack failures

2. Computations must be divided into independent tasks
■ that can be restarted in case of a failure

switch

racks with compute nodes

Computing cluster architecture:

source: J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets. 2014. 6



Agenda

● Distributed Data Processing

● Google MapReduce
○ Motivation and History
○ Google File System (GFS)
○ MapReduce: Schema, Example, MapReduce Framework

● Apache Hadoop
○ Hadoop Modules and Related Projects
○ Hadoop Distributed File System (HDFS)
○ Hadoop MapReduce

● MapReduce in Other Systems
7



PageRank

PageRank works by counting the number and quality of links 
to a page to determine a rough estimate of how important the 
website is. 

The underlying assumption is that 
more important websites are likely 
to receive more links from other 
websites.

https://en.wikipedia.org/wiki/PageRank 8



● Additional factors:

1. Individual data files can be enormous (terabyte or more)

2. The files were rarely updated
■ the computations were read-heavy, but not very write-heavy
■ If writes occurred, they were appended at the end of the file

MapReduce: Origins

● In 2003, Google had the following problem:

1. How to rank tens of billions of webpages by their 
“importance” (PageRank) in a “reasonable” amount of time?

2. How to compute these rankings efficiently when the data is 
scattered across thousands of computers?

9



Google Solution

● Google found the following solutions:

○ Google File System (GFS)
■ A distributed file system

○ MapReduce
■ A programming model for distributed data processing

10



Google File System (GFS)

● One machine is a master, the other chunkservers
○ The master keeps track of all file metadata 

■ mappings from files to chunks and locations of the chunks

○ To find a file chunk, client queries the master, 
and then contacts the relevant chunkservers

○ The master’s metadata files are also replicated

● Files are divided into chunks (typically 64 MB)
○ The chunks are replicated at three different machines

■ ...in an “intelligent” fashion, e.g. never all on the same computer rack

○ The chunk size and replication factor are tunable

11



GFS: Schema

source: http://dl.acm.org/citation.cfm?id=945450 12



MapReduce (1)

● MapReduce is a programming model sitting 
on the top of a Distributed File System
○ Originally: no data model – data stored directly in files

● A distributed computational task has three phases:
1. The map phase: data transformation
2. The grouping phase

■ done automatically by the MapReduce Framework

3. The reduce phase: data aggregation

● User must define only map & reduce functions
13



Map

● Map function simplifies the problem in this way:
○ Input: a single data item (e.g. line of text) from a data file
○ Output: zero or more (key, value) pairs

● The keys are not typical “keys”:
○ They do not have to be unique
○ A map task can produce several key-value pairs with the 

same key (even from a single input)

● Map phase applies the map function to all items

14



input data

map function

output data
 (color indicates key)

15



Grouping Phase

● Grouping (Shuffling): The key-value outputs from 
the map phase are grouped by key
○ Values sharing the same key are sent to the same reducer
○ These values are consolidated into a single list (key, list)

■ This is convenient for the reduce function

○ This phase is realized by the MapReduce framework

intermediate output
 (color indicates key)

shuffle (grouping) phase

16



Reduce Phase

● Reduce: combine the values for each key 
■ to achieve the final result(s) of the computational task

○ Input: (key, value-list)
■ value-list contains all values generated for given key in the Map phase

○ Output: (key, value-list)
■ zero or more output records

17



input data

map function

intermediate output
 (color indicates key)

input data

reduce function

output data

shuffle (grouping) phase

18



Example: Word Count

Task: Calculate word frequency in a set of documents

map(String key, Text value):
  // key: document name (ignored)
  // value: content of document (words)
foreach word w in value:
    emitIntermediate(w, 1);

reduce(String key, Iterator values):
  // key: a word
  // values: a list of counts
int result = 0;
foreach v in values:
    result += v;
emit(key, result); 19



Example: Word Count (2)

source: http://www.cs.uml.edu/~jlu1/doc/source/report/MapReduce.html 20



MapReduce: Combiner

● If the reduce function is commutative & associative
○ The values can be combined in any order 

and combined per partes (grouped)
■ with the same result (e.g. Word Counts)

● ...then we can do "partial reductions"
○ Apply the same reduce function right after the map phase, 

before shuffling and redistribution to reducer nodes

● This (optional) step is known as the combiner
○ Note: it’s still necessary to run the reduce phase

21



Example: Word Count, Combiner

Task: Calculate word frequency in a set of documents

combine(String key, Iterator values):
  // key: a word
  // values: a list of local counts
int result = 0;
foreach v in values:
    result += v;
emit(key, result);

22



Example: Word Count with Combiner

source: http://www.admin-magazine.com/HPC/Articles/MapReduce-and-Hadoop 23



MapReduce Framework

● MapReduce framework takes care about
○ Distribution and parallelizing of the computation
○ Monitoring of the whole distributed task
○ The grouping phase

■ putting together intermediate results

○ Recovering from any failures

● User must define only map & reduce functions
○ but can define also other additional functions (see below)

24



MapReduce Framework (2)

source: Dean, J. & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters 25



MapReduce Framework: Details

1. Input reader (function)
○ defines how to read data from underlying storage

2. Map (phase)
○ master node prepares M data splits and M idle Map tasks
○ pass individual splits to the Map tasks that run on workers
○ these map tasks are then running
○ when a task is finished, its intermediate results are stored

3. Combiner (function, optional)
○ combine local intermediate output from the Map phase

26



MapReduce Framework: Details (2)

4. Partition (function)
○ to partition intermediate results for individual Reducers

5. Comparator (function)
○ sort and group the input for each Reducer

6. Reduce (phase)
○ master node creates R idle Reduce tasks on workers
○ Partition function defines a data batch for each reducer
○ each Reduce task uses Comparator to create key-values pairs
○ function Reduce is applied on each key-values pair

7. Output writer (function)
○ defines how the output key-value pairs are written out

27



MapReduce: Example II

Task: Calculate graph of web links
● what pages reference (<a href=””>) each page (backlinks)

map(String url, Text html):
  // url: web page URL
  // html: HTML text of the page (linearized HTML tags)
foreach tag t in html:
    if t is <a> then:
        emitIntermediate(t.href, url);

reduce(String key, Iterator values):
  // key: target URLs
  // values: a list of source URLs
emit(key, values);

28



Example II: Result
Input: (page_URL, HTML_code)
("http://cnn.com", "<html>...<a href="http://cnn.com">link</a>...</html>") 
("http://ihned.cz", "<html>...<a href="http://cnn.com">link</a>...</html>")  
("http://idnes.cz", 
   "<html>...<a href="http://cnn.com">x</a>... 
       <a href="http://ihned.cz">y</a>...<a href="http://idnes.cz">z</a>
    </html>")  

Intermediate output after Map phase: 
("http://cnn.com", "http://cnn.com")
("http://cnn.com", "http://ihned.cz") 
("http://cnn.com", "http://idnes.cz") 
("http://ihned.cz", "http://idnes.cz") 
("http://idnes.cz", "http://idnes.cz") 
 

Intermediate result after shuffle phase (the same as output after Reduce phase): 
("http://cnn.com", ["http://cnn.com", "http://ihned.cz", "http://idnes.cz"] )
("http://ihned.cz", [ "http://idnes.cz" ]) 
("http://idnes.cz", [ "http://idnes.cz" ]) 
 29



MapReduce: Example III

Task: What are the lengths of words in the input text
● output = how many words are in the text for each length

map(String key, Text value):
  // key: document name (ignored)
  // value: content of document (words)
foreach word w in value:
    emitIntermediate(length(w), 1);

reduce(Integer key, Iterator values):
  // key: a length
  // values: a list of counts
int result = 0;
foreach v in values:
    result += v;
emit(key, result); 30



MapReduce: Features

● MapReduce uses a “shared nothing” architecture
○ Nodes operate independently, sharing no memory/disk
○ Common feature of many NoSQL systems

● Data partitioned and replicated over many nodes
○ Pro: Large number of read/write operations per second
○ Con: Coordination problem – which nodes have my data, 

and when?

31



Applicability of MapReduce

● MR is applicable if the problem is parallelizable 

● Two problems:
1. The programming model is limited 

(only two phases with a given schema)
2. There is no data model - it works only on “data chunks”

● Google’s answer to the 2nd problem was BigTable
○ The first column-family system (2005)
○ Subsequent systems: HBase (over Hadoop), Cassandra,...

32



Agenda

● Distributed Data Processing

● Google MapReduce
○ Motivation and History
○ Google File System (GFS)
○ MapReduce: Schema, Example, MapReduce Framework

● Apache Hadoop
○ Hadoop Modules and Related Projects
○ Hadoop Distributed File System (HDFS)
○ Hadoop MapReduce

● MapReduce in Other Systems
33



Apache Hadoop

● Open-source software framework
○ Implemented in Java

● Able to run applications on large clusters of 
commodity hardware 
○ Multi-terabyte data-sets 
○ Thousands of nodes 

● Derived from the idea of Google's 
MapReduce and Google File System

web: http://hadoop.apache.org/ 34



Hadoop: Modules

● Hadoop Common
○ Common support functions for other Hadoop modules

● Hadoop Distributed File System (HDFS)
○ Distributed file system 
○ High-throughput access to application data

● Hadoop YARN
○ Job scheduling and cluster 

resource management

● Hadoop MapReduce
○ YARN-based system for 

parallel data processing source: https://goo.gl/NPuuJr 35



HDFS (Hadoop Distributed File System)

● Free and open source
● Cross-platform (pure Java)

○ Bindings for non-Java programming languages

● Highly scalable
● Fault-tolerant

○ Idea: “failure is the norm rather than exception”
■ A HDFS instance may consist of thousands of machines and each can fail

○ Detection of faults
○ Quick, automatic recovery

● Not the best in efficiency
36



HDFS: Data Characteristics

● Assumes:
○ Streaming data access 

■ reading the files from the beginning till the end

○ Batch processing rather than interactive user access

● Large data sets and files
● Write-once / read-many

○ A file once created does not need to be changed often
○ This assumption simplifies coherency

● Optimal applications for this model: MapReduce, 
web-crawlers, data warehouses, …

37



HDFS: Basic Components

● Master/slave architecture
● HDFS exposes file system namespace

○ File is internally split into blocks

● NameNode - master server 
○ Manages the file system namespace

■ Opening/closing/renaming files and directories 
■ Regulates file accesses

○ Determines mapping of blocks to DataNodes 

● DataNode - manages file blocks
○ Block read/write/creation/deletion/replication
○ Usually one per physical node 

38



HDFS: Schema

39



HDFS: NameNode

● NameNode has a structure called FsImage
○ Entire file system namespace + mapping of blocks to files 

+ file system properties
○ Stored in a file in NameNode’s local file system
○ Designed to be compact 

■ Loaded in NameNode’s memory (4 GB of RAM is sufficient)

● NameNode uses a transaction log called EditLog 
○ to record every change to the file system’s meta data

■ E.g., creating a new file, change in replication factor of a file, ..

○ EditLog is stored in the NameNode’s local file system

40



HDFS: DataNode

● Stores data in files on its local file system
○ Each HDFS block in a separate file
○ Has no knowledge about HDFS file system

● When the DataNode starts up:
○ It generates a list of all HDFS blocks = BlockReport
○ It sends the report to NameNode

41



HDFS: Blocks & Replication

● HDFS can store very large files across a cluster
○ Each file is a sequence of blocks
○ All blocks in the file are of the same size

■ Except the last one
■ Block size is configurable per file (default 128MB)

○ Blocks are replicated for fault tolerance
■ Number of replicas is configurable per file

● NameNode receives HeartBeat and BlockReport 
from each DataNode

○ BlockReport: list of all blocks on a DataNode

42



HDFS: Block Replication

43



HDFS: Reliability

● Primary objective: to store data reliably in case of:
○ NameNode failure
○ DataNode failure 
○ Network partition

■ a subset of DataNodes can lose connectivity with NameNode

● In case of absence of a HeartBeat message
○ NameNode marks DataNodes without HeartBeat and does 

not send any I/O requests to them
○ The death of a DataNode typically results in re-replication

44



Hadoop: MapReduce

● Hadoop MapReduce requires: 
○ Distributed file system (typically HDFS)
○ Engine that can distribute, coordinate, monitor and gather 

the results (typically YARN)

● Two main components:
○ JobTracker (master) = scheduler

■ tracks the whole MapReduce job
■ communicates with HDFS NameNode to run the task close to the data

○ TaskTracker (slave on each node) – is assigned a Map or 
a Reduce task (or other operations)
■ Each task runs in its own JVM

45



Hadoop HDFS + MapReduce

source: http://bigdata.black/architecture/hadoop/what-is-hadoop/ 46



Hadoop MapReduce: Schema

47



Hadoop MR: WordCount Example (1)
public class Map 
      extends Mapper<LongWritable, Text, Text, IntWritable> {

  private final static IntWritable one = new IntWritable(1);
  private final Text word = new Text();

  @Override protected void map(LongWritable key, Text value, 
      Context context) throws ... {
    String string = value.toString()
    StringTokenizer tokenizer = new StringTokenizer(string);
    while (tokenizer.hasMoreTokens()) {
      word.set(tokenizer.nextToken());
      context.write(word, 1);
    }
  }
} 48



Hadoop MR: WordCount Example (2)
public class Reduce 
      extends Reducer<Text, IntWritable, Text, IntWritable> {

  @Override 
  public void reduce (Text key, Iterable<IntWritable> values,
      Context context) throws ... {
    int sum = 0;
    for (IntWritable val : values) {
      sum += val.get();
    }
    context.write(key, new IntWritable(sum));
  }
}

49



source: http://www.dineshonjava.com/2014/11/hadoop-architecture.html#.WLU6aBLyso8 50



Hadoop: Related Projects

● Avro: a data serialization system
● HBase: scalable distributed column-family database 
● Cassandra: scalable distributed column-family database 
● ZooKeeper: high-performance coordination service for 

distributed applications
● Hive: data warehouse: ad hoc querying & data summarization
● Pig: high-level data-flow language and execution framework 

for parallel computation
● Chukwa: a data collection system for managing large 

distributed systems
● Mahout: scalable machine learning and data mining library

51



Agenda

● Distributed Data Processing

● Google MapReduce
○ Motivation and History
○ Google File System (GFS)
○ MapReduce: Schema, Example, MapReduce Framework

● Apache Hadoop
○ Hadoop Modules and Related Projects
○ Hadoop Distributed File System (HDFS)
○ Hadoop MapReduce

● MapReduce in Other Systems
52



MapReduce: Implementation

Amazon Elastic 
MapReduce

53



Apache Spark

● Engine for distributed data processing
○ Runs over Hadoop Yarn, Apache Mesos, standalone, …
○ Can access data from HDFS, Cassandra, HBase, AWS S3

● Can do MapReduce
○ Is much faster than pure Hadoop

■ They say 10x on the disk, 100x in memory

○ The main reason: intermediate data in memory

● Different languages to write MapReduce tasks
○ Java, Scala, Python, R

homepage: http://spark.apache.org/ 54

http://spark.apache.org/


Apache Spark: Example

● Example of a MapReduce task in Spark Shell
○ The shell works with Scala language
○ Example: Word count

val textFile = sc.textFile("hdfs://...")

val counts = textFile.flatMap(line => line.split(" "))

                 .map(word => (word, 1))

                 .reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

● Comparison of Hadoop and Spark:  link
55

https://www.edureka.co/blog/apache-spark-vs-hadoop-mapreduce


MapReduce in MongoDB
collection "accesses":
{
  "user_id": <ObjectId>,
  "login_time": <time_the_user_entered_the_system>,
  "logout_time": <time_the_user_left_the_system>,
  "access_type": <type_of_the_access>
}

● How much time did each user spend logged in
○ Counting just accesses of type “regular”

db.accesses.mapReduce(
  function() { emit (this.user_id, this.logout_time - this.login_time); }, 
  function(key, values) { return Array.sum( values ); },  
  {   
    query: { access_type: "regular" }, 
    out: "access_times" 
  } 
)

56



References

● RNDr. Irena Holubova, Ph.D. MMF UK course NDBI040: 
Big Data Management and NoSQL Databases

● Dean, J. & Ghemawat, S. MapReduce: Simplified Data 
Processing on Large Clusters. In OSDI 2004 (pp 137-149)

● Firas Abuzaid, Perth Charernwattanagul (2014). Lecture 8 
“NoSQL” of Stanford course CS145. link

● J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of 
Massive Datasets. 2014.

● I. Holubová, J. Kosek, K. Minařík, D. Novák. Big Data a 
NoSQL databáze. Praha: Grada Publishing, 2015. 288 p.

57

https://web.stanford.edu/class/cs145/cgi-bin/public/static/docs/CS_145_Lecture_Notes_8.pdf

