data ’
COﬂSIStenCU%?er e §

updateaess Bs 2 CAP.32% te
§ proo D Eventualm ﬁ °Wer Scalablllt l N SQ

N,
dlstrlbuted g e O
g ik repllcatlonsr‘;'z‘i%s@p%w =

KeU rrrrrrrrrrrrr Master-slave
e Time single ()= e
- | ea(j strong peer
SUStEI n eoremg S

da'gaba

Principles of NoSQL Databases

Data Model, Distribution & Consistency

Lecture 3 of NoSQL Databases (PA195)

David Novak & Vlastislav Dohnal
Faculty of Informatics, Masaryk University, Brno

http://disa.fi.muni.cz/vlastislav-dohnal/teaching/nosqgl-databases-fall-2019/

http://disa.fi.muni.cz/vlastislav-dohnal/teaching/nosql-databases-fall-2019/

. data ,
COnspstenc

uuuuuu

Agenda

e Fundamentals of RDBMs and NoSQL Databases
e Data Model of Aggregates

® Models of Data Distribution
o scalability, sharding

o replication: master-slave, peer-to-peer
o combination

® (Consistency

O write-write vs. read-write conflict
o strategies and techniques
o relaxing consistency

data g
consistencyi .. &

Agenda

® Fundamentals of RDBMs and NoSQL Databases

Fundamentals of RDBMS

Relational Database Management Systems (RDMBS)

1. Data structures are broken into the smallest units

o normalization of database schema (3NF, BCNF)
® because the data structure is known in advance
e and users/applications query the data in different ways

o database schema is rigid

2. Queries merge the data from different tables
3. Write operations are simple, search can be slower

4. Strong guarantees for transactional processing

From RDBMS to NoSQL

Efficient implementations of table joins and of
transactional processing require centralized system.

NoSQL Databases:

e Database schema tailored for specific application
o keep together data pieces that are often accessed together

e \Write operations might be slower but read is fast
e \Weaker consistency guarantees

=> efficiency and horizontal scalability

Data Model

e The model by which the database organizes data
e Each NoSQL DB type has a different data model

o Key-value, document, column-family, graph
o The first three are oriented on aggregates

® Let us have a look at the classic relational model

data ,

consnstencym
Example (1): UML Model
<<Entity>> <<Entity>> <<Entity>>
Customer Order Invoice
1 0..N 1 1
(—' =
name date bankAccount
paymentDate
1 0..N
<<Relationship>>
Invoice Address
0..N
<<Entity>> <<Entity>> 1
Product 1 0..N Order Item <;§gtity>>
ress
name quantity
price street
city
ZIP

<<Relationship>>
Customer Address

source: Holubova, Kosek, Minafik, Novak. Big Data a NoSQL databaze. 2015.

Example (2): Relational Model

consnstencgv\a,

Customer

Order

data ,

i
- di
ne

gm

customerlD
name

addressID (FK)

orderNumber

date

customerID (FK)

Invoice

invoicelD

bankAccount
paymentDate
addressID (FK)

orderNumber (FK)

Product

Orderltem

Address

productiD

name

orderNumber (FK)

product|D (FK)

quantity

price

address|D

street
city
ZIP

source: Holubova, Kosek, Minafik, Novak. Big Data a NoSQL databaze. 2015.

8

data ,

consnstecncuwflte

nShardmg =l g

distribut
network

Agenda

e Data Model of Aggregates

Aggregates

An aggregate

e A data unit with a complex structure
o Not simply a tuple (a table row) like in RDBMS

e A collection of related objects treated as a unit
o unit for data manipulation and management of consistency

e Relational model is aggregate-ignorant
o |tis not a bad thing, it is a feature
o Allows to easily look at the data in different ways

o Best choice when there is no primary structure for data

manipulation
10

<<Entity>>
Customer

name

data ,

¢

consnstencyc:@azr
Example (3): Aggregates
<<Entity>>
1 0..N Order
date

0..N 1

<<Entity>> <<Entity>> <<Entity>>
Product 0.N Order Item Invoice

@

name quantity bankAccount
price paymentDate

1

<<Entity>>
Address

street
city
ZIP

source: Holubova, Kosek, Minafik, Novak. Big Data a NoSQL databaze. 2015. 11

data ,

consistency: - ¢

Example (4): Aggregates

fFerent

// collection "Customer" // collection "Order"
{ {
"customerID": 1, "orderNumber": 11,
"name": "Jan Novak", "date": "2015-04-01",
"address": { "customerID": 1,
"city": "Praha', "orderItems": |
"street": "Krasna 5", {
"ZIP": "111 00" "productID": 111,
} "name": "Vysavac ETA E1490",
} "quantity": 1,

// collection "Invoice" price": 1300

(Yo
"invoiceID": 2015003,
"orderNumber": 11,
"bankAccount": "64640439/0100",
"paymentDate": "2015-04-16",
"address": {

"city": "Brno",
"street": "Slunec¢na 7",
"ZIP": "602 00"

"productID": 112,
"name": "Sacek k ETA E1490",
"quantity": 10,
"price": 300
}
]I

"invoice": { "bankAccount": .., ..}

data

Many NoSQL stores are aggregate-oriented:

o Thereis no general strategy to set aggregate boundaries
o Aggregates give the database information about which bits

of data will be manipulated together
m What should be stored on the same node

o Minimize the number of nodes accessed during a search

o Impact on concurrency control:

m NoSQL databases typically support atomic manipulation of a single
aggregate at a time

13

. data .,
consistency::

Agenda

e Models of Data Distribution
o scalability, sharding
o replication: master-slave, peer-to-peer
o combination

14

Scalability of Database Systems

e Scalability = handling growing amounts of data
and queries without losing performance

Two general approaches:
e vertical scalability

e horizontal scalability

15

_Qata
COnS%lStenC e

uuuuuu

Vertical Scalability (Scaling up)

® [nvolve larger and more powerful machines

o large disk storage using disk arrays
o massively parallel architectures
o large main memories

e Traditional choice
o in favour of strong consistency
o very simple to realize (no handling of data distribution)

e Works in many cases but...

16

Vertical Scalability: Drawbacks

Higher costs

o Large machines cost more than equivalent commodity HW
Data growth limit

o Large machine works well until the data grows to fill it

o Even the largest of machines has a limit

Proactive provisioning

o In the beginning, no idea of the final scale of the application
o An upfront budget is needed when scaling vertically
Vendor lock-in

o Large machines are produced by a few vendors
o Customer is dependent on a single vendor (proprietary HW)17

System is distributed across multiple machines/nodes

e Commodity machines, cost effective

® Provides higher scalability than vertical approach
o Data is partitioned over many disks
o Application can use main memory of all machines
o Distribution computational model

® Introduces new problems:
o synchronization, consistency, partial failures handling, etc.

18

data e
consistency.::

Horizontal Scalability: Fallacies

e Typical false assumptions of distributed computing:
o The network is reliable

Latency is zero

Bandwidth is infinite

The network is secure

The network is homogeneous

Topology of the network does not change

There is one network administrator

O O O O O O

source: https://blogs.oracle.com/jag/resource/Fallacies.html 19

https://blogs.oracle.com/jag/resource/Fallacies.html

® Horizontal scalability = scaling out

e Two generic ways of data distribution:

o Replication —the same data is copied over multiple nodes
m Master-slave vs. peer-to-peer

o Sharding — different data chunks are put on different nodes
(data partitioning)

m Master-master

® \We can use either or combine them

o Distribution models = specific ways to do sharding,
replication or combination of both

20

Running the database on a single machine is

always the preferred scenario
o it spares us a lot of problems

It can make sense to use a NoSQL database on a

single server

o Other advantages remain: Flexible data model, simplicity

o Graph databases: If the graph is “almost” complete, it is
difficult to distribute it

21

data .,
o
ASTEr pomed™e s E

Sharding (Data Partitioning)

e Placing different parts
of the data (card suits) N

onto different servers }’L/

Each shard reads and
writes its own dafa

e Applicability: Different
clients access different

parts of the dataset

N N—

source: Sadalage & Fowler: NoSQL Distilled, 2012 22

data .
COnSlStenC B e

uuuuuuu

Distribution Models: Sharding (2) ™~

eﬂanmt AN

We should try to ensure that
1. Data accessed together is kept together

o So that user gets all data from a single server
o Aggregates data model helps achieve this

2. Arrange the data on the nodes:

o Keep the load balanced (can change in time)
o Consider the physical location (of the data centers)

e Many NoSQL databases offer auto-sharding

® A node failure makes shard’s data unavailable
o Sharding is often combined with replication

23

Master-slave Replication

data
o
O .|

We replicate data across
multiple nodes

Master

All updates are made fo

One nOde IS deSIgnated > o Reads can be done from
primary (master), others as \ s st s —— e
secondary (slaves)

Master is responsible for ‘ K2 K2 ;.
processing all updates to ol & (ol &
the data

Slaves

Reads from any node source: Sadalage & Fowler: NoSQL Distilled, 2012 24

Master-slave Replication (2)

® For scaling a read-intensive application

o More read requests — more slave nodes
o The master fails — the slaves can still handle read requests
o A slave can become a new master quickly (it is a replica)

e Limited by ability of the master to process updates

e Masters are selected manually or automatically
o User-defined vs. cluster-elected

25

data
consnstencgw 3

Peer-to-peer Replication e

e No master, all the
replicas are equal

All nodes read and

e Every node can handle \ i L

Nodes communicate
their writes

a write and then
spreads the update
to the others ' '

P bl @

3
o

source: Sadalage & Fowler: NoSQL Distilled, 201%6

. data
consnstenc

Peer-to-peer Replication (2) e

® Problem: consistency
o Users can write simultaneously at two different nodes

e Solution:

o When writing, the replicas coordinate to avoid conflict
m At the cost of network traffic
m The write operation waits till the coordination process is finished

o Not all replicas need to agree on the write, just a majority
(details below)

27

. data
consistency: - &

o

Sharding & Replication (1) i

.]
e Sharding and master-slave replication:

o Each data shard is replicated (via a single master)

o A node can be a master for some data and a slave for other
master for two shards slave for two shards master for one shard

E source: Sadalage & Fowler: NoSQL Distilled, 2012

m“,gv%?: :m slave for two shards slave for one shard 28

data

Sharding & Replication (2)

e Sharding and peer-to-peer replication:

o A common strategy for column-family databases

o A typical default is replication factor of 3
m each shard is present on three nodes

=> we have to solve
consistency issues

(let’s first talk more about
what consistency means)

source: Sadalage & Fowler: NoSQL Distilled, 2012 29

data

Agenda

e Fundamentals of RDBMs and NoSQL Databases
e Data Model of Aggregates

® Models of Data Distribution
o scalability, sharding

o replication: master-slave, peer-to-peer
o combination

® (Consistency

O write-write vs. read-write conflict
o strategies and techniques

o relaxing consistency
30

Consistency in Databases

e “Consistency is the lack of contradiction in the DB”
e Centralized RDBMS ensure strong consistency

e Distributed NoSQL databases typically relax

consistency (and/or durability)

o Strong consistency — eventual consistency

o BASE (basically available, soft state, eventual consistency)
o CAP theorem

o tradeoff between consistency and availability

31

data

Write (Update) Consistency

® Problem: two users want Write (K, 2))

\ Write (K, B) .~

\ Phe

to update the same record \ -

(write-write conflict)

o Issues: lost update, second update is based on stale data

e Two general solutions

o Pessimistic approach: preventing conflicts from occurring
m acquiring write locks before update

o Optimistic approach: lets conflicts occur, but detects

them and takes actions to resolve them
m conditional update, save both updates and record the conflict

m implementation by, e.g., version stamps (details later in the course) -

Read Consistency

4 1. Write (K, A)
® Problem: one user reads @ 2. Read(K) »@
\\ 3. Read(K') = ===p
in the middle of other 4 write, B)

user’s writes

(read-write conflict, inconsistent read)
o this leads to logical inconsistency

® |deal solution: transactions (ACID)
O strong consistency

33

Read Consistency in NoSQL

e NoSQL databases inherently support atomic

updates only within a single aggregate

o Update that affects multiple aggregates leaves a time slot
when clients could perform an inconsistent read

o Inconsistency window

e Graph Databases
o Typically strong consistency (if centralized)

34

e Basically, no problem if the DB is centralized

o ACID can be implemented

o Various levels of isolation (details later in the course)
read uncommitted

read committed

repeatable reads

serializable

® Distributed transactions (details later in the course)
o X/Open Distributed Trans. Processing Model (X/Open XA)
o Two-phase Commit Protocol (2PC)
o Strong Strict Two-phase Locking (SS2PL)

35

Replication Consistency

e Consistency among replicas
o Ensuring that the same data item
has the same value when reading
from different replicas

e After some time, the write propagates everywhere

o Eventual consistency, in the meanwhile: stale data
o Various levels of consistency (e.g. quorums - see below)

® Read-your-writes (session consistency)

o |sviolated if one user writes and reads on different replicas

o Solution: sticky session (session affinity)
36

. data

CAP Theorem

CAP = Consistency, Availability, Partition Tolerance

Consistency

e After an update, all readers in a distributed system
(assuming replication) see the same data

e Example:
o A single server database is always consistent
o If the replication factor > 1, the system must handle the

writes and/or reads in a special way
37

data

CAP Theorem (2)

Availability

® FEveryrequest must resultin a response
o |If a node (server) is working, it can read and write data

Partition Tolerance

e System continues to operate, even if two sets of servers

get isolated
o A connection failure should not shut the system down

It would be great to have all these three CAP properties!

38

CAP Theorem: Formulation

® CAP Theorem: A “shared-data” system cannot

have all three CAP properties

o Or: only two of the three CAP properties are possible
m Thisis the common version of the theorem

® First formulated in 2000: prof. Eric Brewer

o PODC Conference Keynote speech
m www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

® Proven in 2002: Seth Gilbert & Nancy Lynch

o SIGACT News 33(2) http://dl.acm.org/citation.cfm?id=564601

39

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://dl.acm.org/citation.cfm?id=564601

CAP Theorem: Real Application

® A single-server system is RDBMS oreseney
always CA Ny s
o As well Il ACID m - +
well as all ACID systems Availability \ tslaerrt;tlnocne
e A distributed system practically - Key-value stores

has to be tolerant of network Partitions (P)
O because it is difficult to detect all network failures

e So, tradeoff between Consistency and Availability
o in fact, it is not a binary decision 40

data

(:()r]sﬁgigm
PC: Partition Tolerance & Consistéenc
Example: two users, two @Wmm(k%) @
nodes, two write attempts vricetrey,

”
-

e Strong consistency: [node 1 | node2.

<+ - - P>
agreement

O Before the write is committed,
both nodes have to agree on the order of the writes

\ -
\ P
-

e |f the nodes are partitioned, @Wmte(key, b e teey 5
we are losing Availability \yeiting fever) (maiting dever) -
o (but reads are still available) : -

(odet J><{ oz

data
consistency:::

PC: Partition Tolerance & Consistéhcy (2 -

Write (key, A)
e Adding some availability: @ write (key, B -7 @

o Master-slave replication
o

Write (key, B)

® [n case of partitioning,

master can commit write rette teen, B
o Losing some Consistency: N ety m o
\ (waiting 4ever) -

Data on slave will be stale -

for read mastar_

42

\

e Choosing Availability: @Wme(my N @
\\ Write (key, B) ”/’

o Peer-to-peer replication
o Eventual consistency \

® [n case of Partitioning

o All requests are answered (full Availability)
o We risk losing consistency guarantees completely

® But we can do something in the middle: Quorums

43

_data ,
COnSlgCenC o

‘‘‘‘‘‘‘‘‘

Quorums i

® Peer-to-peer replication with replication factor N
o Number of replicas of each data object

e Write quorum: W

o When writing, at least W replicas have to agree

o Having W > N/2 results in write consistency
m in case of two simultaneous writes, only one can get the majority

Example: \\Write(key, A) Write (key, B) _ -
® Replication factor N =3 -y

e Write quorum: W =2 m m
(W > N/2) Vﬁ

44

. data .,
consistency::

Quorums (2)

e Read quorum: R

o Number of peers contacted for a single read
m Assuming that each value has a time stamp (time of write) to tell the
older value from the newer

o For a strong read consistency: R+ W >N
m reader surely does not read stale data

Example:

® Read quorum: R =2 s Write(key, 2) Write (key, B) .
(R+W>N)
® 2 nodes contacted for read
=>the newest data returned ____?e_af‘_k-e-@——@
5

Relaxing Durability

Durability:
e When Write is committed, the change is permanent

® In some cases, strict durability is not essential and it

can be traded for scalability (write performance)
O e.g., storing session data, collection sensor data

A simple way to relax durability:

e Store data in memory and flush to disk regularly
o if the system shuts down, we loose updates in memory

46

. data ,
COnSlStenC :

Relaxing Durability I

® Replication durability (of a write operation)

o The writing node can either

1. acknowledge (answer) the write operation immediately
e not wait until spread to other replicas
e if the writing node crashes before spreading, durability fails
e write-behind (write-back)

2. oritcan first spread the update to other replicas
® operation is answered only after acknowledgement from the others
e write-through

o both variants are possible for P2P repl., master-slave
replication, quora...

47

. data ,
COnS%lyg.tenc

BASE Concept

BASE is a vague term often used as contrast to ACID

® Basically Available

o The system works basically all the time
o Partial failures can occur, but without total system failure

e Soft state

o The system is in flux (unstable), non-deterministic state
o Changes occur all the time

e [Eventual consistency
o The system will be in some consistent state
o At some time in future

source: Eric Brewer: Towards Robust Distributed Systems. www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf 48

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

data

Summary of the Lesson

e Aggregate-oriented data modelling

e Sharding vs. replication

o Master-slave vs. peer-to-peer replication
m Combination of sharding & replication

e Database consistency:

o Write/Read consistency (write-write & write-read conflict)
m Replication consistency (also, read-your-own-writes)

® Relaxing consistency:

o CAP (Consistency, Availability, Tolerance to Partitions),
m Eventual consistency

o Quoras (write/read quorum)

m can ensure strong replication consistency; wide range of settings 49

Conclusions

data
consnstencgw -

e There is a wide range of options influencing

O

O

O

O

Scalability

m of data storage, of read operations, of update (write) requests
Availability
m How the system behaves in case of HW (e.g. network) failure

Consistency
m Consistency has many facets and it depends how important they are

Durability

m Canlrely on confirmed updates (and is it so important)?

Fault-tolerance
m Do | have copies of data to recover after a complete HW fail?

e [t's good to know the options and choose wisely

50

data

n l t e n C G =
CO S S >3 scgwaguli’t“uWnte Q fffffffff
el {150 'C?lf‘é%onew@ii:*fﬂ,nﬂégcw

References

e |. Holubova, J. Kosek, K. Minarik, D. Novak. Big Data a
NoSQL databaze. Praha: Grada Publishing, 2015. 288 p.

e Sadalage, P. J., & Fowler, M. (2012). NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot
Persistence. Addison-Wesley Professional, 192 p.

e RNDr. Irena Holubova, Ph.D. MMF UK course NDBI040:
Big Data Management and NoSQL Databases

e Eric Brewer: Towards Robust Distributed Systems.
www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

51

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

