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Distributed Key-value Stores
Lecture 4 of NoSQL Databases (PA195)
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e Fundamentals of Key-value Stores
o Basic Example: Riak

e Key Techniques of Many Key-value Stores
o Data Sharding: Consistent hashing + virtual nodes
o Replica management & consistency (version stamps)
o Gossip protocols (distributed management of nodes)
o Transactions: Two-phase commit protocol (2PC); MVCC

e Comparison of K-V Stores and Applicability
O Features to consider - basic, advanced
o Modes of communication with the database
o  When (not) to use Key-value Stores
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® A simple hash table (map), primarily used when

all accesses to the database are via primary key
o key-value mapping

e In RDBMS world: A table with two columns:

o IDcolumn (primary key)
o DATA column storing the value (unstructured BL.OB)

® Basic operations:
o Put avalue for a key put (key, value)
o Get the value for the key value:= get (key)
o Delete a key-value delete (key) 3
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e \We can query by the key

® To query using some attribute of the value is

not possible (in general)
o We need to read the value to test any query condition

e What if we do not know the key?

o Some systems support additional functionality
m Using some kind of additional index (e.g. full text)
m The data must be indexed first
m Example later: Riak search



lsmbuted

e BB G Phglzgs @'

1 amgolaréaeigﬁg_?sm Al
Representatives S
@
amazon L
Smamovs N N1 C k @
ORACLE 126 levelps

! Infinis

& redis .

- ANapbB;
l- hazelcast Bl EHCACHE

Ranked list: http://db-engines.com/en/ranking/key-value+store 5

Project
Voldemort



http://db-engines.com/en/ranking/key-value+store

e 4'3 techniques replication

keys Stamp "“Rralue S5

R. k. B [ I f e dtbtdredo Eem%g E [dré(’)td%fhct
lak: Basic Information iy didde datd.

Qﬁkey Dyn, momghhg °°°°° o

oooooooooo

e Developer: Basho, open source communlty
o thereis a company behind

e |[nitial release date: 2009
o itis not a new (shaky) technology

® License: Apache 2 + commercial enterprise
o for free, but with option to have a support

® Language: Erlang, C, C++, some parts in JavaScript
o Efficient; not possible to embed to e.g. Java application

® Server OS: Linux, BSD, Mac OS X, Solaris

basic info: http://db-engines.com/en/system/Riak website: http://basho.com/products/riak-overview 6
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e Riak HTTP API

o HTTP Restful service (aka HTTP REST)
o asimple way to define Web services

® Listening on a port and providing services
http://localhost:8098/

e Such interface can be directly called from
m application written in any language
m client side of the application (e.g. AJAX request)
m command line (simple scripts), ...
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e Wewilluse curl -X method URL -d data
o command line tool to communicate with server (HTTP(S),...)

curl -X PUT http://localhost:8098/buckets/authors/keys/David
-d '{"name": "David Novak", "affiliation": "MU"}'

curl -X GET http://localhost:8098/buckets/authors/keys/David

{"name": "David Novak'", "affiliation": "MU"}

curl -X DELETE
http://localhost:8098/buckets/authors/keys/David



Management of the Keys

® How to design the key?
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o Provided by the user (natural unique key):

m shopping cart data (user ID)
m web session data (with the session ID as the key)
m user profiles (user ID), ...

o Generated by some algorithm
o Derived from time-stamps (or other data)

® Expiration of keys

o After a certain time interval
m e.g. for caches, session/shopping cart objects,...
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® keys can be grouped into buckets (naméspaces)

o division of the key space
o logical differentiation of records by types
o but physically, all keys are hashed into the same space

® e.g. Riak definesa location for each value
location = <namespace, key>

put ( <namespace, key>, wvalue )
value := get( <namespace, key> )

delete ( <namespace, key> )

10
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Single namespace:
e works well, if the application often
wants to access all data

Namespace UserProfiles

Key: userlD

Namespace ShoppingCart
Value: userProfile

Key: userlD

Value: shoppingCart
Namespace Sessions o Jjtem1
Key: userlD o item2
Value: sessionData

e thisis an example of the aggregates-based data modelling 9
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Key Techniques of Key-value Stores

Data Sharding: Consistent hashing + virtual nodes
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e 200/: Amazon Dynamo paper
o DeCandia, G. et al. (2007). Dynamo: Amazon’s Highly
Available Key-value Store. ACM SIGOPS Operating Systems

Review, 41(6), pp 205-220.
m http://dl.acm.org/citation.cfm?id=1294281

e Amazon Dynamo: first fully-fledged distributed
key-value store

e Now: DynamoDB - available as paid service
o http://aws.amazon.com/dynamodb/

13
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® Amazon Dynamo paper

o Defined the fundamental challenges and their solutions
o Laid the foundations for other systems

e Other Key-value Stores
o Each has a slightly different purpose

m The set of challenges differs
o Each has a specific set of solutions of these challenges

o The additional functionality may differ
m Besides basic put/get/delete operations

14
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Challenge Selected Techniques

Data partitioning (sharding) | Consistent hashing

Read scalability & reliability | Data replication

Replica management Version stamps, vector clocks
Detection of a node Gossip protocol (no centralized registry
join/leave/failure of nodes’ membership and liveness)

Concurrency, transactions | Two-phase commit protocol, MVCC

15
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e We wanttouse hash (key) for partitioning of
key-value pairs to nodes (auto sharding)
e Standard modulo-based hashing:

!! ? :
node (key) = hash(key) mod (##ob6fnonddsy - 1)

® Recalculate the hashes of all objects, if # of nodes changes
o and migrate practically all data objects to different nodes 16



Consistent Hashing: Principles

node “B” is
responsible
for interval

Hash value space
A-B

(ring)

node “C” is
responsible for

| nodeD |
interval A-C
(only data in
A-B range need
relocation)
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Use the same hash
function for data and
nodes

hash: Keys ->[0,2"]
For each hash value, the

next clockwise node is
“responsible”

17
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e Consistent hashing
o is used in massively distributed systems (like Riak)

e Modulo-based hashing

o is also used, e.g. in Solr or Lucene

e Modulo hashing is good for keeping data balanced

o consistent hashing cannot guarantee balanced data
m especially for low number of nodes

o it must use different techniques to achieve balancing

18
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2 0 Virtual nodes:
) \/a single vnode/partition e Q equal-sized partitions
| node 0 (virtual nodes)

- ® S physical nodes
® (/S partitions per node

a ring with 32 partitions

node 2

assumed: Q >> S

node 3 e result: balanced

\«2'60/4
AN

\ hash(<<"artist"ss  <<"REM">>) d|str|.but|on of data to
1—’ physical nodes

2|60/2

source: http://docs.basho.com/riak/latest/theory/concepts/ 19
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Key Techniques of Key-value Stores

Replica management & consistency
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put(<<"artist">>,<<"REM">>)

e FEach object storedat N
consecutive nodes

® Possible both master-slave
or peer-to-peer replication

_ ® master-slave is OK for
read-intensive applications

source: http://docs.basho.com/riak/latest/theory/concepts/ 21
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e Recall the concept of quorum W > N/2

o N =replication factor (typical default: N = 3)
o W = data must be written at least at W nodes R+ W>N
O R =data must be read at least from R nodes

e Example: replication factor N =5, quora W =3

o Write is reported as successful only when reported as a
successful on >= 3 nodes
o Tolerate N -W = 2 nodes being down for write operations

22
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e The R/W values can be often set per operation

o Riak: all / one / quorum / an integer value
o it is a way to tune efficiency/availability vs. consistency

e example:N=3,quoraW=2,R=2
o value for keyl isstored on nodeA, nodeB, nodeC

o at least two of them always have the newest value
m and operation get (keyl) will always get the newest value

e we cansetR=1 for operation value:= get (keyl)
© meaning: get the value the from any replica, e.g. nodeB

o even though nodeA and nodeC may have a newer value
23
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Let’s assume the peer-to-peer replication...
o with write/read quora

..we need to have a mechanisms to:

1. recognize which value for a single record is newer
2. find out that two write operations are concurrent and
causing a write-write conflict

24
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three nodes, initial state: (key, wvaluel)

® single update, then sync
e how to find out which value is newer?

® next update on green
o how to find out which value is newer?

® two simultaneous updates
o how to find out that it is a conflict?

(key, wvalueR)

CGNRACT? (hey, waines)

(key, valuel) 25
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Family of techniques: avoid/detect update conflicts

® \ersion stamp in general:
o A field created for each record
o The stamp changes every time the data record changes

® Basic usage (also in centralized system):
o Aclient reads the stamp together with the record
o When later updating the record, the stamp is sent back
together with the new value and checked

o |f the stamp differs from the actual stamp => conflict
26
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There are several ways to construct the stamps:

1. counter - incremented after each record update

o pros: it is clear, which version is newer
o cons: duplications must be avoided (single master?)

2. GUID - a large unique random number

o pros: anybody can generate them (client)
O cons: cannot be checked for recentness

3. Hash from the data

O pros: anybody can generate it, is deterministic
O cons: cannot be checked for recentness 27
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4. Timestamps

o pros: recentness like counters, a single master not needed
o cons: clock synchronization, sufficient granularity needed

Combination is worth:

e counter + hash:

o counter = recentness comparison
o hash = if two updates appear concurrently on two servers
(with the same counter), the hash identifies the conflict

28
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e |f there is a single master, everything works well

® Peer-to-peer replication:
o Any peer can process update

o When contacted for update, the peer must reply to the

client immediately after storing the new value
m it cannot wait until all peers commit the update (2-phase commit protocol)

e Objective: A distributed algorithm that would
o reliably detect write-write conflict

o balance between write performance and conflict prevention
m orallow the user to balance it

29
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Vector stamps

o Family of algorithms for generating a partial ordering of
events in a distributed system and detecting “conflicts”.

o Each node has its own counter
m for each dataitem

m The node’s counter increments when its value is updated
o Each node keeps a counter vector with counters of all nodes
m The nodes exchange their values

o Each node uses the counter vectors to determine
m Wwhich value is new
m if thereis a conflict

30
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three nodes, initial state: (key, valuel) [blue: 1, green: 1, red: 1]

® single update, then sync - the stamp order is clear
o [blue: 1, green: 1, red: 1] is older than [blue: 2, green: 1, red: 1]

e next update on green

e two simultaneous updates
o [blue: 3, green: 2, red: 1] cannot be compared to [blue: 2, green: 2, red: 2]

(key, wvalueR)

[blue: 2, greem: 2, red: 1]

(key, wvalueB)
C(SMIHUCT [blue: 2, greemn: 2, red: 1]

(key, valuel)
[blue: 2, green: 2, med: P] 31
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e Specific techniques differ in the way they communicate

e Widely used techniques (and their variants)
o Lamport timestamps (1987)

o Vector clocks (used by Dynamo, etc.)
m counters updated whenever nodes communicate
m last value can be retrieved only during reads

o Version vectors
o Matrix clocks

32
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e There are three general ways to resolve conflicts

o (reconcile differences between copies of distributed data)
o this process is often known as anti-entropy

1. Write repair

o The correction takes place during a write operation

2. Read repair
o The correction is done when a read finds an inconsistency
m Optimistic strategy, read operation is slowed down
3. Asynchronous repair
o The correction is done as separate operations

o AKA active “anti-entropy” 33
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A set of distributed protocols

e Each node periodically sends its current info
o To arandomly-selected peer
o The peers keep the newer info

In distributed NoSQL databases, gossip is used for

e Spreading information about current state
o of the entering/leaving/failing nodes

o asynchronous reconciling of conflicts (anti-entropy)

o other properties, ... iy
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Key Techniques of Key-value Stores

Distributed Transactions
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Transaction = a sequence of atomic operations that
form one logical operation on the database.

e Some of the distributed key-value stores enable
full transactional processing

e The following techniques are key:

o Two-phase commit protocol (2PC)
m Atomicity of transaction: either all operations (commit) or none (rollback)

o Multi-version concurrency control (MVCC)
m Levels of isolation of transactions
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e The transactions should be “isolated”
o Isolation: property that defines how/when results of one
operation become visible to other concurrent operations.

e \We recognize four levels of isolation
o We talk about different "read phenomena" (see below)
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1. READ UNCOMMITTED: Operation can access uncommitted
changes made by other transactions.
o |t suffers phenomenon "dirty read" - a transaction
reads uncommitted values that is later rolled back.

2. READ COMMITTED: If one transaction commits a value,
other transactions will read it immediately.
o |t suffers phenomenon "non-repeatable read" - if a
transaction reads the same record twice, the second read
has a different result.
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3. REPEATABLE READS: Multiple reads of the same record/key
issued within the same transaction will always return the
same value.

o |t suffers phenomenon "phantom read" - if a transaction
does two identical "range queries”, and the collection of
rows returned by the second query differs from the first.

6

sactlons

W
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4. SERIALIZABLE: All transactions occur in a completely isolated
fashion as if executed serially.
o None of the read phenomena may occur.
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Isolation level Dirty reads | Non-repeatable reads Phantoms
Read Uncommitted may occur may occur may occur
Read Committed - may occur may occur
Repeatable Read - - may occur

Serializable

Snapshot isolation is still not the serializable level! Assume two records in a table -
black and white. T1 changes all blacks into whites and T2 vice versa. If you run them
simultanously, in snapshot isolation you will end up with swapped colors. In

serializable, you will have either all blacks or all whites!

source: http://en.wikipedia.org/wiki/lsolation (database systems)
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e Multi-version Concurrency Control (I\/IVCC)

O
O
O

a technique to solve concurrent access to data
faster than strict use of r/w locks
popular in many (RDBMS) databases

if one transaction is writing and the other is reading, the

system can create another version of the data
m each transaction sees a snapshot of the data at a particular instant in time

source: http://en.wikipedia.org/wiki/Multiversion concurrency control 41
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source: http://www.slideshare.net/quipo/nosql-databases-why-what-and-when 42
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e MVCC cannot ensure full SERIALIZABILITY

o skew write (write skew anomaly)
m two transactions concurrently read an overlapping data set,
concurrently make disjoint updates and finally concurrently commit,
neither having seen the update performed by the other

ons
Riak

® For instance, in Infinispan user can choose
o READ_UNCOMMITED

m don’t use transactions at all

o READ COMMITED (default)
o REPEATABLE READS

m using some version of JBoss MVCCEntry

source: http://en.wikipedia.org/wiki/Snapshot_isolation http://infinispan.org/docs/7.0.x/user gquide/user quide.html 43
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e 2PC: Distributed algorithm

o coordinating all participants in a distributed transaction

o on whether to commit or abort (roll back) the transaction
m it's a special type of consensus protocol

1. Commit request phase
(voting phase)

[ coordinator ] 0AyE Iﬁ%g t/on

2. Commit phase
ro/lé ke gé%%élftort (NO)
C

a. SUCCESS
(agreement from all)
[ ] [ ] [ ] b. FAILURE
participants (abort from any)

1. Execute trdwagiets apdrad@iiddvidtiphase
2. WriteZzntrRéteb$¢A0ck ivd: REBO| bugks

source: http://en.wikipedia.org/wiki/2PC http://www.slideshare.net/quipo/nosql-databases-why-what-and-when 44
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e Storing Web Session Information
o Every web session is assigned a unique session_id value
o Everything about the session can be stored by a single PUT
request or retrieved using a single GET
o Fast, everything is stored in a single object

e User Profiles, Preferences
o Every user has a unique user_id/user_name + preferences
(language, time zone, design, access rights, ... )
o Asin the previous case: Fast, single object, single GET/PUT

e Shopping Cart Data

o Similar to the previous cases 26
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e Relationships among Data

o Relationships between different sets of data
m Some key-value stores provide link-walking features

e Multi-operation Transactions
o Saving multiple keys
m Failure to save any of them — revert or roll back the rest of the operations
e Query by Data

o Search the keys based on something found in the value part
m Additional indexes needed (some stores provide them)

e Operations by Key Sets

o QOperations are limited to one key at a time
m No way to operate upon multiple keys at the same time 47
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Dozens of key-value stores - how to choose?

1. Basic information
o programming language, license etc.

2. Internal Features

o how are certain principles implemented
o which influences performance/security/reliability/etc.

3. Advanced (User-visible) Features

o what “advanced” features does the store provide
m besides store/get/delete operations

48



10Ns
8

B Isolation System user - = techniques ;
| sol é (1)(;1115 siihash ]hAmm.on Q)gmanage rr:;nt ation
keys® Stamps ' ValU€ —&uwrie ﬂOde
FeaturesBasic reen y ‘—'C S80se IS‘/stems Sonflict

1!

distributed red Examp

[ ] [ ] le 4 7 o8
gifiglhpa i ) dconcurrency;)nay a ; I
pargglrl({glgll'?)‘ ) TDnQ §C§ Q)K cccccccc 1 ssssssssssss e
multiple :‘;?n .5 9 Oﬁﬁ) ¥er5101§1 up i tes QY/Xgatg]e
53 /
= §§ ey opera}tliggsmo ﬁ hashing g Vector
g Riak H

e Developer
o important information, if there is a company behind

e |[nitial release date
o is it a hot new (shaky) technology or more stable one?

® License
o Open Source - GNU GPL, Apache, supported version?

e Implementation language
o most often: C/C++, Java, Erlang

® Server operating systems
o usually: Linux, BSD (OS X, MS Windows)
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Internal Features (1)

e Durability

o if the system supports data persistence
o and how is it done (storage models)

e Data Partitioning (Sharding)
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o if the system supports (semi)-automatic data sharding

e Data Replication

o replication can speed up read/write and provide reliability
o master-slave, P2P, R/W quora, version control, etc.
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e Concurrency control
o does the system allow concurrent accesses
o and how is it managed (solved conflicts)
e Cluster topology management
o is there a centralized repository of participating nodes
o or some Gossip protocol
e Node/communication failure management
o how fault-tolerant is the system
o permanent failure recovery
® User concepts

o any support for user-based access control o
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e Data model

o Is the “value” really an unstructured BLOB

O or are some advanced structures supported
m e.g. Redis: strings, hashes, lists, sets and sorted sets

e Secondary Indexes

o for efficient access of the data by the values
o e.g. interval indexes, Lucene-like indexes for full-text search

e Foreign keys
o or other links between data (keys and values)
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e Distributed Transactions Management

o isimplemented any concept of transaction management
o like X/Open XA (eXtended Architecture)

e Map-Reduce processing
O is available some distributed operation execution like M-R

e Triggers
o procedures started automatically when something happens
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There are three basic communication modes

1. Via some web-service interface

o HTTP REST service, SOAP
o usually fast, callable from many clients/libraries/languages

2. Specific language connector

o library in the language of my application
o may be slower but comfortable

3. Embedded to my application

o the database system runs within the application process
O requires compatible (the same) programming language 54
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