ons

8 Isolation SYStem Xgaezgn - = techniques replication
Consistent hash) Omanagement ©"

k St 1 0 write
Featgress Bamaélpsgreeﬁl c :j mutas;;leng dceonﬂlct

acti

dlStrlbUted EXample Concurrency may
single commit * O IDnO

part1t10n1ng o = ch’unter lsession source
multiple 2% & § er81on (ifcﬁate -valu
33 o operation
558 Qﬁ k ynamo 4_,
5 operatlons 0P hashmg '8 Vector
= Riak g
j:)(o

Distributed Key-value Stores
Lecture 4 of NoSQL Databases (PA195)

David Novak & Vlastislav Dohnal
Faculty of Informatics, Masaryk University, Brno

http://disa.fi.muni.cz/vlastislav-dohnal/teaching/nosqgl-databases-fall-2019/

http://disa.fi.muni.cz/vlastislav-dohnal/teaching/nosql-databases-fall-2019/

em llllllllllllllllllllllllllll

man g ement
o Bftamps Value D‘c node |

ict
Agenda aiidid ke data
mul

nespes § Version G =5Key ~valué
5 Qﬁ ke Dynamo (4,—3 hashmgoPcrEa{l/O;er

oooooooooo

e Fundamentals of Key-value Stores
o Basic Example: Riak

e Key Techniques of Many Key-value Stores
o Data Sharding: Consistent hashing + virtual nodes
o Replica management & consistency (version stamps)
o Gossip protocols (distributed management of nodes)
o Transactions: Two-phase commit protocol (2PC); MVCC

e Comparison of K-V Stores and Applicability
O Features to consider - basic, advanced
o Modes of communication with the database
o When (not) to use Key-value Stores

stem A}‘?ﬂezgn fx] techniques replication

g Isolaction Y3 L ash Q) 5
£ onsistent hasl ¢ counters
keys™ Stamps _value 5 urie - node
FeaturesBasic (" OTEEI] F'—D'g?guse}wsm S nflice

e as!
distributed red Examp

. £
sces le 4 Canareney may
Key-value Stores: Basics e hodes 5 datd
L partitioning &, "G . b Q)K ccccccc 1 ssssssssssss e
le 02 58 O Version opdae RINEY-VaAlUE

multiple 9§
S5 Dynamo @] ¢ operation
& §§ ~ key % (4,—3 hashing ™ 5 Vector
8§

operations
é Riak

® A simple hash table (map), primarily used when

all accesses to the database are via primary key
o key-value mapping

e In RDBMS world: A table with two columns:

o IDcolumn (primary key)
o DATA column storing the value (unstructured BL.OB)

® Basic operations:
o Put avalue for a key put (key, value)
o Get the value for the key value:= get (key)
o Delete a key-value delete (key) 3

em A}Eaehgn b '9UES replication

g Isolation SYSt!
£ Consistent hash 1
keys® Stamps _valu AT

Phcation s
FeaturesBasic reen .— gglaﬂn@de et

e 2 : conflic
° d1s_tr1butsg§1P redo Example cgmvu;%ga; ata
ue ryl n g sigecortinic 'Y »10JES G kAL .

xxxxxxxxxxx H
multiple A &g O Version %c;)udrate‘a OOOOOOOO
22
g §§ Qﬁ key Dynamo ﬁ hashing ¥ ector
g

oooooooooo

e \We can query by the key

® To query using some attribute of the value is

not possible (in general)
o We need to read the value to test any query condition

e What if we do not know the key?

o Some systems support additional functionality
m Using some kind of additional index (e.g. full text)
m The data must be indexed first
m Example later: Riak search

lsmbuted

e BB G Phglzgs @'

1 amgolaréaeigﬁg_?sm Al
Representatives S
@
amazon L
Smamovs N N1 C k @
ORACLE 126 levelps

! Infinis

& redis .

- ANapbB;
l- hazelcast Bl EHCACHE

Ranked list: http://db-engines.com/en/ranking/key-value+store 5

Project
Voldemort

http://db-engines.com/en/ranking/key-value+store

e 4'3 techniques replication

keys Stamp "“Rralue S5

R. k. B [I f e dtbtdredo Eem%g E [dré(’)td%fhct
lak: Basic Information iy didde datd.

Qﬁkey Dyn, momghhg °°°°° o

oooooooooo

e Developer: Basho, open source communlty
o thereis a company behind

e |[nitial release date: 2009
o itis not a new (shaky) technology

® License: Apache 2 + commercial enterprise
o for free, but with option to have a support

® Language: Erlang, C, C++, some parts in JavaScript
o Efficient; not possible to embed to e.g. Java application

® Server OS: Linux, BSD, Mac OS X, Solaris

basic info: http://db-engines.com/en/system/Riak website: http://basho.com/products/riak-overview 6

http://db-engines.com/en/system/Riak
http://basho.com/

em Ex?aehgn b '9UES replication

g solaCtion§ st R ash = 08
£ onsistent hasl management "%
keys® Stamps value 3 8 write

FeaturesBasic reen .— gguselngde et

[] distributed I'ed gExample (‘g _OT‘_I;; Y t conflic
Riak: HTTP REST API i ity
) ok £3 8 sKeyvalte

multiple %?p ‘9§ Q Version %c;)udrateo e
g g‘éﬂﬁ key Dynamo 5 pashing PR oeor
28, w E

oooooooooo

e Riak HTTP API

o HTTP Restful service (aka HTTP REST)
o asimple way to define Web services

® Listening on a port and providing services
http://localhost:8098/

e Such interface can be directly called from
m application written in any language
m client side of the application (e.g. AJAX request)
m command line (simple scripts), ...

o : S i
& Isolation ?ySterri‘ h U‘ESE‘\ 5 techniques replicag(l)llsms
onsistent has| Q) Qmanagement

keysg Stcamps VahAlé 3 & write node
r n g sten i

FeaturesBasic

= ea g " BB Use Posiens conflic
o ° o o dls_trl]:)utssgP red gExample C‘ﬁ]cﬁyﬁ:ﬁ% data
single commit "9 mnodes 0
[) paritioning 8, S €O NI Q)K ccccccc |asource
multiple g2 égpﬁﬁ) ¥er51061 update"‘ eyrggatg]e
E é ey opera}tligl?;z © % hashing g Vector
&8 ial §

o
B8

e Wewilluse curl -X method URL -d data
o command line tool to communicate with server (HTTP(S),...)

curl -X PUT http://localhost:8098/buckets/authors/keys/David
-d '{"name": "David Novak", "affiliation": "MU"}'

curl -X GET http://localhost:8098/buckets/authors/keys/David

{"name": "David Novak'", "affiliation": "MU"}

curl -X DELETE
http://localhost:8098/buckets/authors/keys/David

Management of the Keys

® How to design the key?

I l

keys™ Stamps Valu

Features Basic

d1str1buted red E m1
lﬂgl comrmt "O nopdes

itiple 0 Vers1on pdt

o Provided by the user (natural unique key):

m shopping cart data (user ID)
m web session data (with the session ID as the key)
m user profiles (user ID), ...

o Generated by some algorithm
o Derived from time-stamps (or other data)

® Expiration of keys

o After a certain time interval
m e.g. for caches, session/shopping cart objects,...

%]
=}
95,
4_;
8
rd

i node
£ da

?g Isolation System Mser

5 Consistent hash 12" Q)‘umcan; e;nent o0
keys® Stamps value 5 3 ﬂOde
.FeaturesBasic n = S?“Use systems conflict

distributed red Bicarup 058

18 VE PR
Keys : Buckets (Names pace S) wiecann 2 .110des g AL

partitioni
multiple 98 o)
og's of n
5906 ynamo 5 ;. opera
- SQ operations ¢f) haShmg g Vector
8 Riak g

® keys can be grouped into buckets (naméspaces)

o division of the key space
o logical differentiation of records by types
o but physically, all keys are hashed into the same space

® e.g. Riak definesa location for each value
location = <namespace, key>

put (<namespace, key>, wvalue)
value := get(<namespace, key>)

delete (<namespace, key>)

10

123
=i
-) 0. 1.
§ Isolation System 111&@5“ + = techniques o
£ Consistent hash 1X o Q)gmanagerrfgllccaﬂl’g‘sms
keys® Stamps _ValU€ = & yrice nOde
FeaturesBasic Teel ; = SSueYra - sonflict
distributed a1 i
e i re ExampHConcurrencymay

paces: Example S5 ata
glecommit pNOJdEesS 7
arttioning 9, SS9 s = Q) Y- counter _ {session I
* mingle 52 58 & Version %ﬁamuKeyfvalues"“ “

Namespace User

Key:

userlD

Value:

userProfile
sessionData

shoppingCart
o tem1
o jtem?2

583
£39
3

=4

«©

o
B8

~key

Dynamo > __operation
era}tlions % hashing 8 Vector
Riak 5

prot

Single namespace:
e works well, if the application often
wants to access all data

Namespace UserProfiles

Key: userlD

Namespace ShoppingCart
Value: userProfile

Key: userlD

Value: shoppingCart
Namespace Sessions o Jjtem1
Key: userlD o item2
Value: sessionData

e thisis an example of the aggregates-based data modelling 9

thnS

E Isolation System Aser.
5 ConslstenthaShl Q)
keys* Stamps _Va ue Saw
Feau:uresBas1C I‘ ‘_‘
distributed red Ex ample c
ncurr y
smglecommlt e IDnO

techniques

anagement
write

ccccccc

B I' ansac
& reads

Use Jsystems conflict

ey, = @ CLIOUC O O ier sessionSOUICe
maltiple E;EZ Ver31on updateuKey 1 n
g §§ k ynamo = haShmg Vector
&8 Rink wn
g 5

Key Techniques of Key-value Stores

Data Sharding: Consistent hashing + virtual nodes

s\:em
xxxxxxxx

T g techniq plication
Leys* Stamp et 1o O St
roen 2

node

t b tdred g e sUse ms conflict

Key-value Stores: The Beginning™: :knodeSKdaFa
namoﬁh shing %Vector

oooooooooo

e 200/: Amazon Dynamo paper
o DeCandia, G. et al. (2007). Dynamo: Amazon’s Highly
Available Key-value Store. ACM SIGOPS Operating Systems

Review, 41(6), pp 205-220.
m http://dl.acm.org/citation.cfm?id=1294281

e Amazon Dynamo: first fully-fledged distributed
key-value store

e Now: DynamoDB - available as paid service
o http://aws.amazon.com/dynamodb/

13

http://dl.acm.org/citation.cfm?id=1294281
http://aws.amazon.com/dynamodb/

)
g tem St
I Y nmon 4-»

keys™ Stamps Value V>wt

dﬁi?g“ze?;ed en =5l dHOde

S ute Exampl

Dynamo and Other Systems 5 knodes Ka1
82, r;l“:’ﬁh ashing " v ctor

“““““““““““““““

o
B8

® Amazon Dynamo paper

o Defined the fundamental challenges and their solutions
o Laid the foundations for other systems

e Other Key-value Stores
o Each has a slightly different purpose

m The set of challenges differs
o Each has a specific set of solutions of these challenges

o The additional functionality may differ
m Besides basic put/get/delete operations

14

thnS

II yem

Fealt(e esSB Stamps Value ww ite ﬂOde
d1str1b3€ed Fed i ‘_' ﬂm d
Selected Challenges & Solutions™=% redes sdatd

5 °Q

Eg"’ ey Dynmouhhg Vt
= (O

= Riak §

Challenge Selected Techniques

Data partitioning (sharding) | Consistent hashing

Read scalability & reliability | Data replication

Replica management Version stamps, vector clocks
Detection of a node Gossip protocol (no centralized registry
join/leave/failure of nodes’ membership and liveness)

Concurrency, transactions | Two-phase commit protocol, MVCC

15

em um-sgn ‘B techniques replication

"‘BI &
key Stam e Valu Gmanagement 1
S e

M ° M d I H h e dis 1tnrlbut dred Fxample ~ X
Sharding: Modulo Hashing Zk“"d"'s latd .
i Y“lﬁmm%“g%m

oooooooooo

e We wanttouse hash (key) for partitioning of
key-value pairs to nodes (auto sharding)
e Standard modulo-based hashing:

!! ? :
node (key) = hash(key) mod (##ob6fnonddsy - 1)

® Recalculate the hashes of all objects, if # of nodes changes
o and migrate practically all data objects to different nodes 16

Consistent Hashing: Principles

node “B” is
responsible
for interval

Hash value space
A-B

(ring)

node “C” is
responsible for

| nodeD |
interval A-C
(only data in
A-B range need
relocation)

%]

C<
11 ytm USEI‘ .-4 echniques replicat

keys® Stamps Value wr\?zantgm S

FeaturesBas v—' rd”J Od%n flict
d1str1buted red E mp1 o d
des

1 9,
single corngll'; »NOdesS g, >%¢ 1 mmmmmm source
mltiple 9 §8 ®¥ers1o]£1 pdt‘-‘ eYVa ue
namo 5
3 g y opera}tllons % haShlng v ctor

m"

Use the same hash
function for data and
nodes

hash: Keys ->[0,2"]
For each hash value, the

next clockwise node is
“responsible”

17

OHS

em
angmn Kt

"31
St Brorite
Fealt{S essBasxcampS Value,_. ﬂm nOde)

Sharding by Hashing S et data

5 S Vers1on pdat ‘5Key Valtue
upﬁ ke Dynamo % hashlngopeg\l/o:ctor

oooooooooo

e Consistent hashing
o is used in massively distributed systems (like Riak)

e Modulo-based hashing

o is also used, e.g. in Solr or Lucene

e Modulo hashing is good for keeping data balanced

o consistent hashing cannot guarantee balanced data
m especially for low number of nodes

o it must use different techniques to achieve balancing

18

B Isolation System user

& Eonsistent hash lA‘““"“
keys® Stamps __ValUue€ = &uwri
FeaturesBasic green o
€qc

gy e
H ©9 systems, i
i e istributed red g Ma} gUse conflict
° e L pangeycnmiis (J AL Q
singlecommit " mnodes 0 ,

[] partitioning § &3 (] / b Q) 1 counter session SOUIT'CE

miliple 2% 68 & Version updateHKeyfygalt%e
m key g?a}trlgg;n © % hashing " g Vector
Riak g

S
o

&

transaction
protoc

160

2 0 Virtual nodes:
) \/a single vnode/partition e Q equal-sized partitions
| node 0 (virtual nodes)

- ® S physical nodes
® (/S partitions per node

a ring with 32 partitions

node 2

assumed: Q >> S

node 3 e result: balanced

\«2'60/4
AN

\ hash(<<"artist"ss <<"REM">>) d|str|.but|on of data to
1—’ physical nodes

2|60/2

source: http://docs.basho.com/riak/latest/theory/concepts/ 19

http://docs.basho.com/riak/latest/theory/concepts/

v
S
5
£ Isolation System A 5 techniques . eplication
g Conslstent hash 1 ion Q) Smanagement =
keys® tamps 5 B rite
r‘Sp'risUse systems conflict

FeaturesBasic
d1str1buted d Example cg.mummymay

single commlt e, 9 »NO

partitioning &, '_o‘ counter Sesion SOUfCe
multple 55 §8 Qeﬁ) VerSIO]gl update"‘K lt
°FEs k ynamo & opera ion
3 % ey operations ¢f) hashin gVector
g Rial 5
B

Key Techniques of Key-value Stores

Replica management & consistency

K Isola\ction §ysteni‘ I q Amazon © 5 icati

onsistent hasl management U
Stamps value) g\griteg node
n. i S%Use systems conflict
Conda ‘ I

keys .
FeaturesBasic ree
SF Eg“d red Exampl

2
oncurren

(<
1p -

R 9 .n0d
- O.Eglgl% =t ‘DnQ %ur Q)K ccccccc 1 wwwwww source
multiple g2 ’§§QQ£) léf eI’SlO]gl update!a eY’Xgat}(;];]e

&5 namo 1 3

g §§ eyop 04 % hashing EVector

H

pdl]
cymay
170]

Consistent Hash: Data Replicati

erations
Riak

o
B8

put(<<"artist">>,<<"REM">>)

e FEach object storedat N
consecutive nodes

® Possible both master-slave
or peer-to-peer replication

_ ® master-slave is OK for
read-intensive applications

source: http://docs.basho.com/riak/latest/theory/concepts/ 21

http://docs.basho.com/riak/latest/theory/concepts/

actlons

Fea%gr;sBELaggs emvalu r:) :g nOde
e e e distributed 1@, Fxam 1 =3 d
P2P Replication: Consistency "= Vggggdst Ka1

5“"‘Qﬁke ynmo,‘_)hh
g y le(D g Vt

I'l

o
B8

e Recall the concept of quorum W > N/2

o N =replication factor (typical default: N = 3)
o W = data must be written at least at W nodes R+ W>N
O R =data must be read at least from R nodes

e Example: replication factor N =5, quora W =3

o Write is reported as successful only when reported as a
successful on >= 3 nodes
o Tolerate N -W = 2 nodes being down for write operations

22

thnS

II yem

keys™ Stamps Value V>wt

c dlféilg‘azi?;ed réen = dfg’de
Quora per Operation e @ggé% ,data”
ﬁg“mkey D0 33 ting ™V

o
B8

e The R/W values can be often set per operation

o Riak: all / one / quorum / an integer value
o it is a way to tune efficiency/availability vs. consistency

e example:N=3,quoraW=2,R=2
o value for keyl isstored on nodeA, nodeB, nodeC

o at least two of them always have the newest value
m and operation get (keyl) will always get the newest value

e we cansetR=1 for operation value:= get (keyl)
© meaning: get the value the from any replica, e.g. nodeB

o even though nodeA and nodeC may have a newer value
23

)
g ues
I Y tem Anmon 4_» llllllllllll

S B wri
FealggressB% tamps Value—c nsv i nOde
d1str1buted red Examp da

le
A Problem to Solve i nodes p Jatd

‘5““&& key Dynamo Q
1S Y %hhg Vt

le

o
B8

Let’s assume the peer-to-peer replication...
o with write/read quora

..we need to have a mechanisms to:

1. recognize which value for a single record is newer
2. find out that two write operations are concurrent and
causing a write-write conflict

24

ns

Il
angm

keys® Stamps Value & write ﬁode

H H . Fé?é‘diifﬁed hoieon ﬁ“” d
P2P Replication Conflict Examplé: «:nodesKal IIIIII
% ing ™ Vt

oooooooooo

fi
B8

three nodes, initial state: (key, wvaluel)

® single update, then sync
e how to find out which value is newer?

® next update on green
o how to find out which value is newer?

® two simultaneous updates
o how to find out that it is a conflict?

(key, wvalueR)

CGNRACT? (hey, waines)

(key, valuel) 25

e 4'3 techniques replication

keys Stamp "“Rralue S5

i dtbtdred o on [drég,)geaf]t
Version Stamps e S data” |

e 8 Versmn updm*aKey Value
m key y mo%h ashif ng 5 {1/0 n

oooooooooo

Family of techniques: avoid/detect update conflicts

® \ersion stamp in general:
o A field created for each record
o The stamp changes every time the data record changes

® Basic usage (also in centralized system):
o Aclient reads the stamp together with the record
o When later updating the record, the stamp is sent back
together with the new value and checked

o |f the stamp differs from the actual stamp => conflict
26

11111111111 chniques replication

anagement courgers
k eys | Stampgrvalue SEw i IlOde i
d t b e dred 2 ict

Constructing Version Stamps “=% nodestalta

5 S Vers1on update =
pdate
ey B Sl
wn g

oooooooooo

=}
9 techni
may

There are several ways to construct the stamps:

1. counter - incremented after each record update

o pros: it is clear, which version is newer
o cons: duplications must be avoided (single master?)

2. GUID - a large unique random number

o pros: anybody can generate them (client)
O cons: cannot be checked for recentness

3. Hash from the data

O pros: anybody can generate it, is deterministic
O cons: cannot be checked for recentness 27

-
g Leolaion 7% tem s ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

key St 1 V>w
FeatgressBas amps Va uev—c nsv ano

istribute d At
Constructing Version Stamps (2)* ci%j‘? “nodes e
= per % ing " Vt

O]
Zsa " R

o
B8

4. Timestamps

o pros: recentness like counters, a single master not needed
o cons: clock synchronization, sufficient granularity needed

Combination is worth:

e counter + hash:

o counter = recentness comparison
o hash = if two updates appear concurrently on two servers
(with the same counter), the hash identifies the conflict

28

lOI'lS

I 1 y \',em ““““““ “_‘techmq\]esreplicaﬁon

keys*® Stamps Valu ;3

et tesPasic RE HOd%nﬂm
Version Stamps on Multiple No&f“ : f?‘% Hodes , datd

oooooooooooooooooooo

0) Vers1o]§1 updat =5Key Value
~ key Dy R asing ™R

e |f there is a single master, everything works well

® Peer-to-peer replication:
o Any peer can process update

o When contacted for update, the peer must reply to the

client immediately after storing the new value
m it cannot wait until all peers commit the update (2-phase commit protocol)

e Objective: A distributed algorithm that would
o reliably detect write-write conflict

o balance between write performance and conflict prevention
m orallow the user to balance it

29

Il yem

11111111

ke S*® Stamps Value ‘”W t node

o Fapisnes Toreen -2l
Vector Stamps Algorithms dmgf’coigff‘% ﬁoaes Kdal sssssss

uliple 52 88 Q) Vers1on pdt o)

Vector stamps

o Family of algorithms for generating a partial ordering of
events in a distributed system and detecting “conflicts”.

o Each node has its own counter
m for each dataitem

m The node’s counter increments when its value is updated
o Each node keeps a counter vector with counters of all nodes
m The nodes exchange their values

o Each node uses the counter vectors to determine
m Wwhich value is new
m if thereis a conflict

30

% Isola\Ction ?YSEe“i‘ N Q) niques ., i o
£ onsistent hasl Qmanagement "%
keys® Stamps value 3 8 write

4 [=R%]
FeaturesBasic reen . — SEUSQ]QQd%nﬂm

. st red BLoT 108] At S
single commit "9 mnodes 0
L] partitioning &, "G] s b Q)K ccccccc 1 sssssss source
multiple 55 88 peﬁ) Version Undace eY’XE}at}O}F
Fie~ key , Dymamo 3 haching PR o
u Riak g

o
B8

three nodes, initial state: (key, valuel) [blue: 1, green: 1, red: 1]

® single update, then sync - the stamp order is clear
o [blue: 1, green: 1, red: 1] is older than [blue: 2, green: 1, red: 1]

e next update on green

e two simultaneous updates
o [blue: 3, green: 2, red: 1] cannot be compared to [blue: 2, green: 2, red: 2]

(key, wvalueR)

[blue: 2, greem: 2, red: 1]

(key, wvalueB)
C(SMIHUCT [blue: 2, greemn: 2, red: 1]

(key, valuel)
[blue: 2, green: 2, med: P] 31

I l

thnS

angmn

keys* Stamps Value o

Feamiaie ,_.Wt node
Vector Stamps: Specific TEChnlqﬁéﬁv SBasE Kd31 sssssss

Y Vers1on update
yﬂmOJ_)hhg Vt
Rikw
al

e Specific techniques differ in the way they communicate

e Widely used techniques (and their variants)
o Lamport timestamps (1987)

o Vector clocks (used by Dynamo, etc.)
m counters updated whenever nodes communicate
m last value can be retrieved only during reads

o Version vectors
o Matrix clocks

32

)
g ues
I Y tem Anmon 4_» llllllllllll

S B wri
FealggressB% tamps Valuev—c nsv i nOde
distributed red Examp da

[J [} o
Conflict Resolution “iits fisdes pdatd

‘5““&& key Dynamo Q
g2 Y %hhg Vt

le

o
B8

e There are three general ways to resolve conflicts

o (reconcile differences between copies of distributed data)
o this process is often known as anti-entropy

1. Write repair

o The correction takes place during a write operation

2. Read repair
o The correction is done when a read finds an inconsistency
m Optimistic strategy, read operation is slowed down
3. Asynchronous repair
o The correction is done as separate operations

o AKA active “anti-entropy” 33

[] ict
Gossip Protocols digi;énﬁ‘?dv i data

Y Versmn updm*aKey Value
m key y mo%h ashif ng 5 {1/0 n

oooooooooo

A set of distributed protocols

e Each node periodically sends its current info
o To arandomly-selected peer
o The peers keep the newer info

In distributed NoSQL databases, gossip is used for

e Spreading information about current state
o of the entering/leaving/failing nodes

o asynchronous reconciling of conflicts (anti-entropy)

o other properties, ... iy

v
5
u E Isolation System A i techniques replication
Consistent hash 1 mn) Omanagement =%
keys Stamps € S Surite
—53
E “5 mUse systems conflict

FeaturesBasic
d1str1buted d Example cg.mummymay

single commlt e, mno

partitioning §,
miple. 5 ly ers1o]£1 update opemon
ynamo
ey operanol{ns (b_) hashin, EVector
ial g

Couﬂtef session Source
=-<K value

language
transactlon
protocol
Rea

Key Techniques of Key-value Stores

Distributed Transactions

stem A}‘?ﬂezgn fx] techniques repli cation

8 Isolaction Y3 hash Q)
£ onsistent has! Omanagement ©"%
keys* Stamps value = & write

FeaturesBasic reen . —sg HQdQ a
a n S a ct 1 o n S distributed red gExample EMekip ¥ gondlict
inole 23 d,oncum:m ; l ; I
r I sngecommit g tNIOUES 8. sk i ure .

z occul Q)
multiple 8 .§§ O Version updrate‘aKeY’Val.ue
5 Q‘épﬁ key Dynamo 33 fy55hing PR
2 w2
5= k

Transaction = a sequence of atomic operations that
form one logical operation on the database.

e Some of the distributed key-value stores enable
full transactional processing

e The following techniques are key:

o Two-phase commit protocol (2PC)
m Atomicity of transaction: either all operations (commit) or none (rollback)

o Multi-version concurrency control (MVCC)
m Levels of isolation of transactions

36

actlons

I l y em r Q)
keys™ Stamps Valu V>w

de
. dlféilg‘azz?;ed eet ~:ﬂ dno
Levels of Isolation (1) T s s s Jatd’

®Vers1on Update
ES Oﬁke ynmoghhg Vt
28, wn

Riak

I'l

o
B8

e The transactions should be “isolated”
o Isolation: property that defines how/when results of one
operation become visible to other concurrent operations.

e \We recognize four levels of isolation
o We talk about different "read phenomena" (see below)

37

actlons

I l y em r Q)
keys™ Stamps Valu = S wri

o Lo TBreen 2o d“"de
Examp ¥ may
Levels of Isolation (2) mgllc?n:gngvegg%st sdatd.
E: Qﬁke Yﬂmomghhg Vt

I'l

Riak

1. READ UNCOMMITTED: Operation can access uncommitted
changes made by other transactions.
o |t suffers phenomenon "dirty read" - a transaction
reads uncommitted values that is later rolled back.

2. READ COMMITTED: If one transaction commits a value,
other transactions will read it immediately.
o |t suffers phenomenon "non-repeatable read" - if a
transaction reads the same record twice, the second read
has a different result.

38

II yem

S
FealggressBas tamps Valu ,_. ﬂm nOde
d1str1buted red Examg, 157 d a

[)
Levels of Isolation (3) S0 neded, datd

Q)Versmn Update
5“ Qﬁke ynmoghhg Vt
R 2 g

3. REPEATABLE READS: Multiple reads of the same record/key
issued within the same transaction will always return the
same value.

o |t suffers phenomenon "phantom read" - if a transaction
does two identical "range queries”, and the collection of
rows returned by the second query differs from the first.

6

sactlons

W

I'l

4. SERIALIZABLE: All transactions occur in a completely isolated
fashion as if executed serially.
o None of the read phenomena may occur.

39

Levels of Isolation (4)

Isolat jon System USCF
Z0n
Consistent haSh

keys™ Stamps Value ggwme

Features Basic

distributed red

singlecommit "9 9 »NO

oridonin €%
ultiple :,

la.ng

transactio:

=1

O

protoc

R

Example ccccccccccc y may

Vers1on update

Dynamo
y operati ons ﬁ haShlng

Q) Kcountex 1 ‘‘‘‘‘‘‘ source

OPCFBCIOI]
Vector

Isolation level Dirty reads | Non-repeatable reads Phantoms
Read Uncommitted may occur may occur may occur
Read Committed - may occur may occur
Repeatable Read - - may occur

Serializable

Snapshot isolation is still not the serializable level! Assume two records in a table -
black and white. T1 changes all blacks into whites and T2 vice versa. If you run them
simultanously, in snapshot isolation you will end up with swapped colors. In

serializable, you will have either all blacks or all whites!

source: http://en.wikipedia.org/wiki/lsolation (database systems)

40

http://en.wikipedia.org/wiki/Isolation_(database_systems)

Multi-version Concurrency Contt

lOI'lS

)
“I ye lllllllllllllllll

11111111

key St 1
Featgres asi a(rinps Varlll ‘—"‘” nOde
_r1 tef re Example ‘may d
3] ot nodes atd
- o O Vers1or1 opdite ‘5Key Val ue
guupﬁkey ynmcﬁhhg Vt
: Riak

sac

oooooooooooooo source

e Multi-version Concurrency Control (I\/IVCC)

O
O
O

a technique to solve concurrent access to data
faster than strict use of r/w locks
popular in many (RDBMS) databases

if one transaction is writing and the other is reading, the

system can create another version of the data
m each transaction sees a snapshot of the data at a particular instant in time

source: http://en.wikipedia.org/wiki/Multiversion concurrency control 41

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

tions

Isolatxon system user
Consistent hash

tcchmques replicati on.

Q) Urnana ement “U§"
keys Stamps lue Fwritc

FeaturesBasic r .—1 m-o

gUse SYS‘E‘Qd%nﬂict
. distributed ed Example cgme ymay data
. EXampie i3 10
et 8 Version update‘-‘K value
o g a4 key Dynamo %hashlngopeéa{%]ctor

operations
Ria g

|:| obsolete
- new version

atomic pointer update

marked for
compaction

thdase[® . -

Index Index Index Index Index

\
T

Sl 188|818 |8]|8||8||8||8| & | 8
© « © « < « ns « « < < <
Q)] Q] |a] |a] |a] |a] [a] |a] |[a] |a] B A

source: http://www.slideshare.net/quipo/nosql-databases-why-what-and-when 42

http://www.slideshare.net/quipo/nosql-databases-why-what-and-when

% Isola\Ction ?YSEe“i‘ N Q) niques ., i o
2 onsistent hasl Qmanagement "%
keys® Stamps value 3 8 write

: aw
FeaturesBasic reen e S%Use Isn“(s)d%nﬂict

bl distribut_ec} redo gExample cicﬁy‘;‘na‘; ta
e d
and Isolation Levels Sa nedesy data
muliple % é g Qeﬁ) léferslolgl update‘a ey/ggatg]e
] §§ ey Opm}t'l.“amo % hashing ™ 5 Vector
al g

e MVCC cannot ensure full SERIALIZABILITY

o skew write (write skew anomaly)
m two transactions concurrently read an overlapping data set,
concurrently make disjoint updates and finally concurrently commit,
neither having seen the update performed by the other

ons
Riak

® For instance, in Infinispan user can choose
o READ_UNCOMMITED

m don’t use transactions at all

o READ COMMITED (default)
o REPEATABLE READS

m using some version of JBoss MVCCEntry

source: http://en.wikipedia.org/wiki/Snapshot_isolation http://infinispan.org/docs/7.0.x/user gquide/user quide.html 43

http://en.wikipedia.org/wiki/Snapshot_isolation
http://infinispan.org/docs/7.0.x/user_guide/user_guide.html

tions

solation System Jaser

echniques o ficy
Consistent hash

Q)U anagement s
S @ wri
° di FealggresilBF ta(rinpsg Valueg 8 :Use nOd%nﬂict
1stribute: e Example
fTwo-phase Commit Protocol " sisdes data.
i gggg S Vers1or1 Update uKey 1
°g ey ynarno % hashmg *v ctor
k g

a

a

transacti
prot

e 2PC: Distributed algorithm

o coordinating all participants in a distributed transaction

o on whether to commit or abort (roll back) the transaction
m it's a special type of consensus protocol

1. Commit request phase
(voting phase)

[coordinator] 0AyE Iﬁ%g t/on

2. Commit phase
ro/lé ke gé%%élftort (NO)
C

a. SUCCESS
(agreement from all)
[] [] [] b. FAILURE
participants (abort from any)

1. Execute trdwagiets apdrad@iiddvidtiphase
2. WriteZzntrRéteb$¢A0ck ivd: REBO| bugks

source: http://en.wikipedia.org/wiki/2PC http://www.slideshare.net/quipo/nosql-databases-why-what-and-when 44

http://en.wikipedia.org/wiki/2PC
http://www.slideshare.net/quipo/nosql-databases-why-what-and-when

v
5
u Isolanon system A i techniques replication
Consistent hash 1 mn) Omanagement =%
keys* Stamps € S Surite
=58
g “5 mUse systems conflict

FeaturesBasic
d1str1buted d Example concumcymay

singlecommit "9 9 »NO

partitioning §, "3 counter Sesion SOUrCe
multiple 58 §8 Qeﬁ) lzferSIO]gl update"‘K lt
°FEs ynamo opera ion
3 . ey operations (b_) hashin g Vector
g Rial 5
H

Comparison of K-V Stores & Applicability

Il yem

keys*® Stamps Value ;3 T

writ
FeaturesBas ree v—lrd':’ » B

2ee_node
i asthasited BEoi 08 AT
K-V Stores: Suitable Use Cases =} odes KdaFa

ltiple o8 5
A58 eyDYmOuhhgv
ﬁa R A

e Storing Web Session Information
o Every web session is assigned a unique session_id value
o Everything about the session can be stored by a single PUT
request or retrieved using a single GET
o Fast, everything is stored in a single object

e User Profiles, Preferences
o Every user has a unique user_id/user_name + preferences
(language, time zone, design, access rights, ...)
o Asin the previous case: Fast, single object, single GET/PUT

e Shopping Cart Data

o Similar to the previous cases 26

actlons

I l y em r Q)
keys™ Stamps Valu = S wri

dlfé?é‘&iié?ed e *“” ande
np ymay
K-V Stores: When Not to Use = 4 sedes’ Ka1
;g ey Dyr;ﬁlioﬁh ashiny g V ctor

o
B8

I'l

e Relationships among Data

o Relationships between different sets of data
m Some key-value stores provide link-walking features

e Multi-operation Transactions
o Saving multiple keys
m Failure to save any of them — revert or roll back the rest of the operations
e Query by Data

o Search the keys based on something found in the value part
m Additional indexes needed (some stores provide them)

e Operations by Key Sets

o QOperations are limited to one key at a time
m No way to operate upon multiple keys at the same time 47

em Ammin u“ 11 replication

K-V Stores: Features & leferendéb‘@’i‘?%vfgjgggds;»ggggiilc

oooooooooo

Dozens of key-value stores - how to choose?

1. Basic information
o programming language, license etc.

2. Internal Features

o how are certain principles implemented
o which influences performance/security/reliability/etc.

3. Advanced (User-visible) Features

o what “advanced” features does the store provide
m besides store/get/delete operations

48

10Ns
8

B Isolation System user - = techniques ;
| sol é (1)(;1115 siihash]hAmm.on Q)gmanage rr:;nt ation
keys® Stamps ' ValU€ —&uwrie ﬂOde
FeaturesBasic reen y ‘—'C S80se IS‘/stems Sonflict

1!

distributed red Examp

[] [] le 4 7 o8
gifiglhpa i) dconcurrency;)nay a ; I
pargglrl({glgll'?)‘) TDnQ §C§ Q)K cccccccc 1 ssssssssssss e
multiple :‘;?n .5 9 Oﬁﬁ) ¥er5101§1 up i tes QY/Xgatg]e
53 /
= §§ ey opera}tliggsmo ﬁ hashing g Vector
g Riak H

e Developer
o important information, if there is a company behind

e |[nitial release date
o is it a hot new (shaky) technology or more stable one?

® License
o Open Source - GNU GPL, Apache, supported version?

e Implementation language
o most often: C/C++, Java, Erlang

® Server operating systems
o usually: Linux, BSD (OS X, MS Windows)

49

Internal Features (1)

e Durability

o if the system supports data persistence
o and how is it done (storage models)

e Data Partitioning (Sharding)

II yem

. key sBStamps V%%JQ 5 a?
turesBasic — 39 P
d1ster?b3t§il red gE ample ..Drts [a

skcotimi nodes s Udld

e 8 Versmn pdat =5Key value
“Dﬁ key Dynamo &3 bashing EVE

Riak

DS tions
8
a

o if the system supports (semi)-automatic data sharding

e Data Replication

o replication can speed up read/write and provide reliability
o master-slave, P2P, R/W quora, version control, etc.

50

II yem

keys Siam Value SoEle
FeatgressBas mps reen . :é 5v[d£1m9 dcenﬂict

distributed gE e 2
Internal Features (2) mish pisdes g data

e § Version G =5Key Value
“Oﬁ k Y MO 43 hashin, ng v
Riak 1%2] 5

s tions
g

e Concurrency control
o does the system allow concurrent accesses
o and how is it managed (solved conflicts)
e Cluster topology management
o is there a centralized repository of participating nodes
o or some Gossip protocol
e Node/communication failure management
o how fault-tolerant is the system
o permanent failure recovery
® User concepts

o any support for user-based access control o

actlons

I] y em r Q)
keys™ Stamps Valu = S wri

dlfé?é‘éii%?ed cn * &5y dHOde

Examp ymay

Advanced Features (1) :knodes Ka1
%‘z"’ Dynamo (4,—3}1 ashif g V o

Riak

I'l

fi
B8

e Data model

o Is the “value” really an unstructured BLOB

O or are some advanced structures supported
m e.g. Redis: strings, hashes, lists, sets and sorted sets

e Secondary Indexes

o for efficient access of the data by the values
o e.g. interval indexes, Lucene-like indexes for full-text search

e Foreign keys
o or other links between data (keys and values)

52

actlons

Tl 1 y em ser
dlii%ﬁzzsa}}i‘?:gps e ﬁzgdmde
Example e
Advanced Features (2) s Vrgrggg§t pGatd

ﬁ“ Dﬁk Yf;.“]l(oﬁhhg oot
1al

I'l

fi
B8

e Distributed Transactions Management

o isimplemented any concept of transaction management
o like X/Open XA (eXtended Architecture)

e Map-Reduce processing
O is available some distributed operation execution like M-R

e Triggers
o procedures started automatically when something happens

53

e 4'3 techniques replication

keys® Stamp "“Rralue S5

icati sabirreg CEH 5 dfgga
mpl
Communication Modes = “’nodesKl sssss |

Dﬁkey Dyn, momghhg °°°°° o

oooooooooo

There are three basic communication modes

1. Via some web-service interface

o HTTP REST service, SOAP
o usually fast, callable from many clients/libraries/languages

2. Specific language connector

o library in the language of my application
o may be slower but comfortable

3. Embedded to my application

o the database system runs within the application process
O requires compatible (the same) programming language 54

em Ammn u '9UES replication

"‘31
keys® Stamps Value ;3’“

Featu esBasic reen . v—uw N B

d1 trlbut dred gE n & ldléc’)g%nﬂia
References B e daty

e 8 Versmn Updat =5Key ygalcg;e
Qﬁ k Dynamo (4,—3 hashing & 5 Vector

opcran ons

e |. Holubova, J. Kosek, K. Minarik, D. Novak. Blg Data a
NoSQL databaze. Praha: Grada Publishing, 2015. 288 p.

e Sadalage, P. J., & Fowler, M. (2012). NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot
Persistence. Addison-Wesley Professional, 192 p.

e RNDr. Irena Holubova, Ph.D. MMF UK course NDBI040:
Big Data Management and NoSQL Databases

55

