
Neo4j Graph Database

Seminar 5 of NoSQL Databases (PA195)

David Novak & Vlastislav Dohnal
Faculty of Informatics, Masaryk University, Brno



Agenda

● Graph Databases
● Neo4j

○ Basic information
○ Data model
○ Cypher query language

■ Structure and examples
■ Other interfaces: Experience with Web UI

○ Java API (embedded database)
○ Traversal of the graph

■ Traversal framework
■ Examples

2



Graph Databases: Example

source: Sadalage & Fowler: NoSQL Distilled, 2012 3



Graph Databases: Mission

● To store entities and relationships between them
○ Nodes are instances of objects
○ Nodes have properties,  e.g., name
○ Edges have directional significance
○ Edges have types e.g., likes, friend, …

● Nodes are organized by relationships
○ Allows finding interesting patterns
○ Example: Get all nodes that are “employee” of “Big 

Company” and that “likes” “NoSQL Distilled”

4



Graph Databases: Representatives

Ranked list: http://db-engines.com/en/ranking/graph+dbms 5

http://db-engines.com/en/ranking/graph+dbms


Neo4j: Basic Info

6

Source: neo4j.com

● Open source graph database
● Initial release: 2007

○ Current version 4.2

● Written in: Java
● OS: cross-platform
● Full transactions (ACID)
● Partitioning: supported by queries

● since 4.0, by Neo4j Fabric

● Replication: Master-slave
○ Eventual consistency

https://neo4j.com/developer/neo4j-fabric-sharding/
https://neo4j.com/docs/operations-manual/current/tutorial/fabric-tutorial/#tutorial-fabric-model-data


Data Model: Nodes

http://db-engines.com/en/system/Neo4j

● Fundamental unit: node

● Nodes have properties
○ Key-value pairs
○ null is not a valid property value

■ nulls can be modelled by the absence of a key

● Nodes have labels
○ labels typically express "type of node"

7

http://db-engines.com/en/system/Neo4j


Data Model: Properties

Type Description

boolean true/false

byte 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float 32-bit IEEE 754 floating-point number

double 64-bit IEEE 754 floating-point number

char 16-bit unsigned integers representing 

Unicode characters

String sequence of Unicode characters 

8



Data Model: Relationships

● Directed relationships (edges)
○ Incoming and outgoing edge

■ Equally efficient traversal in both directions
■ Direction can be ignored 

if not needed by the application

○ Always a start 
and an end node
■ Can be recursive

9



Use of Neo4j 

● Two ways to use Neo4j:
○ Embedded: Used directly within a Java application
○ Self-standing server + connections

● Various types of connections
○ Neo4j Cypher Shell
○ HTTP API

■ uses Cypher query language

○ Web GUI
■ using Cypher query language

○ Standard Java API
○ Gremlin graph traversal language (plugin), etc. 10



Neo4j in Server mode

● Virtual machine http://stratus.fi.muni.cz
○ Template “PA195 - Neo4j”, ID 255

$ ssh root@... -L 7474:localhost:7474 

-L 7687:localhost:7687

# neo4j-community-3.1.4/bin/neo4j start

● or Install on your own:
○ download from https://neo4j.com/ to /var/tmp
○ tar xvzf neo4j-community-*.tar.gz

■ module add jdk

○ ./bin/neo4j start 11

stratus

http://stratus.fi.muni.cz
https://neo4j.com/download/community-edition/


Neo4j Command-line Querying

● Cypher shell
○ ./bin/cypher-shell

○ can also be installed separately, but shipped with the 
server

12



HTTP API

● Query/update operations using HTTP protocol
○ GET, POST methods
○ data sent/received in JSON

● Fully transactional in the latest version
● Example: create node with “name” property

curl -i -X POST http://localhost:7474/db/neo4j/tx/commit  

-H "Content-Type: application/json; charset=UTF-8" --user 

"neo4j" -d '{ "statements": [ { "statement": "CREATE (n 

$props) RETURN n", "parameters": { "props": { "name": 

"John Doe" } } } ] }'

https://neo4j.com/docs/http-api/current/ 13



Neo4j Web Interface

● By default, running on http://localhost:7474/
○ default credentials: neo4j/neo4j

● Online interpreter of Cypher
● Graphical display of query results

14

http://localhost:7474/


Cypher Language

● Neo4j graph query language
○ For querying and updating

● Declarative – we say what we want
○ Not how to get it
○ Not necessary to express traversals

● Human-readable
● Inspired by SQL and SPARQL
● Still growing = syntax changes are often

http://neo4j.com/docs/stable/cypher-query-lang.html 15

http://neo4j.com/docs/stable/cypher-query-lang.html


Cypher: Clauses

● MATCH: The graph pattern to match
● WHERE: Filtering criteria
● RETURN: What to return 
● START: Starting points in the graph

○ by explicit index lookups or by node IDs (both deprecated)

● WITH: Divides a query into multiple parts

● CREATE: Creates nodes and relationships. 
● DELETE: Remove nodes, relationships, properties
● SET: Set values to properties

16



Cypher: Creating Nodes (Examples)

CREATE (n);

(create a node, assign to var n)
Created 1 node, returned 0 rows

CREATE (a: Person {name : 'Jan'}) RETURN a;

(create a node with label ‘Person’ and  

‘name’ property Jan’)
Created 1 node, set 1 property, returned 

1 row

17



Cypher: Creating Relationships

MATCH (a {name:'John'}), (b {name:'Jack'})
CREATE (a)-[r:FRIEND]->(b)
RETURN r ;

(create a relation FRIEND between John and Jack)
Created 1 relationship, returned 1 row

START a=node(1), b=node(2)
CREATE (a)-[r:RELTYPE {name : a.name + '->' + b.name }]->(b)
RETURN r

(set property ‘name’ of the relationship)
Created 1 node, set 1 property, returned 1 row 18



Cypher: Creating Paths

CREATE p = (andres: Person {name: 'Andres'})
-[:WORKS_AT]->
(neo)
<-[:WORKS_AT]-
(michael: Person {name:'Michael'})
RETURN p ;

(all parts of the pattern are created)
P [Node[4]{name:"Andres"},:WORKS_AT[2] 

{},Node[5]{},:WORKS_AT[3] {},Node[6]{name:"Michael"}]

1 row 

Nodes created: 3 

Relationships created: 2 

Properties set: 2 19

To create just a relationship, use 

MATCH and WHERE



Cypher: Changing Properties

MATCH (n: Person {name: 'Andres'}) 
SET n.surname = 'Taylor' 
RETURN n

(find a node with name ‘Andres’ and set it surname ‘Taylor’)

n                                        

Node[0]{name:"Andres",surname:"Taylor"} 

1 row

Properties set: 1

20



Task 1: Update Queries

MATCH (user: Person {name: 'Andres'})-[:FRIEND]->(follower)
RETURN user.name, follower.name

(find all ‘friends’ of 'Andres')

MATCH (p: Person)
WHERE p.age > 18 AND p.age < 30
RETURN p.name

(return names of all adult people under 30)

Modify the nodes so that these queries return something:

21
Copy & paste the queries and their responses to the file task1.txt and 

upload to the IS’s vault.



Cypher: Queries (2)

MATCH (andres: Person {name: 'Andres'})-[*1..3]-(node)
RETURN andres, node ;

(find all ‘nodes’ within three hops from ‘Andres’)

MATCH p=shortestPath(
(andres:Person {name: 'Andres'})-[*]-(david {name:'David'})

)
RETURN p ;

(find the shortest connection between ‘Andres’ and ‘David’)
22



Cypher: Delete

MATCH (n: Person {name: 'Andres'}) 
DELETE n

(delete all Persons with name ‘Andres’)

Cannot delete node<3>, because it still has relationships.

MATCH (n: Person {name: 'Andres'}), ((n)-[r]-())
DELETE r,n

(first, we must delete all relationships of node with name ‘Andres’)
Nodes deleted: 1

Relationships deleted: 1

23



Task 2: Movies Database

● Go over the “Movies” demo prepared by Neo4j
○ Download the data from the course page (movies-

insert.cypher)
○ Copy the file to Stratus VM
○ Import by cypher shell

neo4j-community-3.1.4/bin/cypher-shell -u neo4j -p test 

<movies-insert.cypher

Added 171 nodes, Created 253 relationships, Set 564 

properties, Added 171 labels

24

stratus

localhost

https://is.muni.cz/auth/el/fi/podzim2019/PA195/um/seminar-5/movies-insert.cypher


Task 2: Query Movies

● Find all actors who played in a movie with Keanu 
Reeves.

● Find all directors of movies where acted Tom 
Hanks.

● Find the oldest director
● It ain’t “Max von Sydow”

● Print distinct first names of all persons

25
Copy & paste the queries and their responses to the file task2.txt and 

upload to the IS’s vault!    In case you fail to form any query, make a notice there!



Neo4j as Embedded Database

● either use .jar packages from the distribution
● ...or download packages from Maven repository

○ package org.neo4j:neo4j:3.0.0
■ dependencies automatically loaded

○ newest versions available in repository
http://repo.maven.apache.org/maven2/

● ...or download project from the course web
$ unzip neo4j-excercise.zip

$ module add idea-2019.2

$ idea.sh

26

localhost

http://repo1.maven.org/maven2/
https://is.muni.cz/auth/el/fi/podzim2020/PA195/um/seminar-5/neo4j-excercise.zip


Neo4j: “Hello World” – Java API

String PATH="some_directory";

GraphDatabaseService graphDb;

// starting a database

graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(new 

File(PATH));

Node firstNode, secondNode;

Relationship relationship;

27



Neo4j: “Hello World” (2)

// create a small graph:

firstNode = graphDb.createNode();

firstNode.setProperty( "message", "Hello, " );

secondNode = graphDb.createNode();

secondNode.setProperty( "message", "World!" );

relationship = firstNode.createRelationshipTo

(secondNode, 

RelationshipType.withName("KNOWS"));

relationship.setProperty 

("message", "brave Neo4j ");

28



Neo4j: Transactions

// all writes (creating, deleting and updating any data) 

// have to be performed in a transaction:

try (Transaction tx = graphDb.beginTx()) {

(…)

// print the result:

System.out.print(firstNode.getProperty("message"));

System.out.print(relationship.getProperty("message"));

System.out.println(secondNode.getProperty("message"));

// transaction operations

tx.success();

}

29



● Path = specific nodes + connecting relationships
○ Path can be a result of a query or a traversal

Data Model: Path & Traversal

● Traversing a graph = visiting 
its nodes, following
relationships according 
to some rules
○ Typically, a subgraph is visited
○ Neo4j: Traversal framework 

in Java API, Cypher, Gremlin
30



Traversal Framework

● A traversal is influenced by
○ Starting node(s) where the traversal will begin
○ Expanders – define what to traverse

■ i.e., relationship direction and type 

○ Order – depth-first / breadth-first
○ Uniqueness – visit nodes (relationships, paths) only once
○ Evaluator – what to return 

and whether to stop or continue beyond current position

Traversal = TraversalDescription + starting node(s)

31



Traversal Framework – Java API

● org.neo4j...TraversalDescription

○ The main interface for defining traversals
■ Can specify branch ordering breadthFirst() / depthFirst()

● .relationships()

○ Specify the relationship types to traverse
■ e.g., traverse only edge types: FRIEND, RELATIVE
■ Empty (default) = traverse all relationships

○ Can also specify direction
■ Direction.BOTH

■ Direction.INCOMING

■ Direction.OUTGOING

32



Traversal Framework – Java API (2)

● org.neo4j...Evaluator

○ Used for deciding at each node: should the traversal 
continue, and should the node be included in the result
■ INCLUDE_AND_CONTINUE: Include this node in the result and 

continue the traversal 
■ INCLUDE_AND_PRUNE: Include this node, do not continue traversal 
■ EXCLUDE_AND_CONTINUE: Exclude this node, but continue traversal 
■ EXCLUDE_AND_PRUNE: Exclude this node and do not continue 

○ Pre-defined evaluators:
■ Evaluators.toDepth(int depth) / 

Evaluators.fromDepth(int depth),

■ Evaluators.excludeStartPosition()

■ …
33



Traversal Framework – Java API (3)

● org.neo4j...Uniqueness

○ Indicates under what circumstances a traversal may 
revisit the same position in the graph

● Traverser

○ Starts actual traversal given a TraversalDescription and 
starting node(s)

○ Returns an iterator over “steps” in the traversal
■ Steps can be: Path (default), Node, Relationship

○ The graph is actually traversed “lazily” (on request)

34



Sample Data

35



Query: Find All “Admins”

Node admins = getNodeByName( "Admins" );

TraversalDescription desc = graphDb.traversalDescription()

.breadthFirst()

.evaluator( Evaluators.excludeStartPosition() )

.relationships(RoleRels.PART_OF, Direction.INCOMING)

.relationships(RoleRels.MEMBER_OF, Direction.INCOMING);

Traverser traverser = desc.traverse(admins);

StringBuilder output = new StringBuilder();

for ( Node node : traverser.nodes() ) {

output.append("Found: ")

.append(node.getProperty(NAME))

.append(" at depth: ")

.append(path.length()).append("\n");

}

Found: HelpDesk at depth: 1
Found: Ali at depth: 1
Found: Engin at depth: 2
Found: Demet at depth: 2

36



Query: Get Group Membership of a User

Node jale = getNodeByName( "Jale" );

desc = graphDb.traversalDescription()

.depthFirst()

.evaluator( Evaluators.excludeStartPosition() )

.relationships(RoleRels.MEMBER_OF, Direction.OUTGOING)

.relationships(RoleRels.PART_OF, Direction.OUTGOING);

traverser = traversalDescription.traverse( jale );

Found: ABCTechnicians at depth: 1
Found: Technicians at depth: 2
Found: Users at depth: 3

37



Query: Get All Groups

Node referenceNode = getNodeByName( "Reference_Node" ) ;

desc = graphDb.traversalDescription()

.breadthFirst()

.evaluator( Evaluators.excludeStartPosition() )

.relationships(RoleRels.ROOT, Direction.INCOMING )

.relationships(RoleRels.PART_OF, Direction.INCOMING);

traverser = desc.traverse( referenceNode );

Found: Admins at depth: 1
Found: Users at depth: 1
Found: HelpDesk at depth: 2
Found: Managers at depth: 2
Found: Technicians at depth: 2
Found: ABCTechnicians at depth: 3

38



Query: Get All Members in the Database

Node referenceNode = getNodeByName( "Reference_Node" ) ;

desc = graphDb.traversalDescription()

.breadthFirst()

.evaluator(Evaluators.includeWhereLastRelationshipTypeIs

(RoleRels.MEMBER_OF ));

traverser = 

desc.traverse( referenceNode );

Found: Ali at depth: 2
Found: Engin at depth: 2
Found: Burcu at depth: 2
Found: Can at depth: 2
Found: Demet at depth: 3
Found: Gul at depth: 3
Found: Fuat at depth: 3
Found: Hakan at depth: 3
Found: Irmak at depth: 3
Found: Jale at depth: 4

39



Access to Nodes

● How to get to the starting node(s) before traversal
1. Using internal identifiers (unique generated IDs)

■ not recommended because Neo4j does reuse freed IDs

2. Using specified properties
■ one of the properties is typically “ID” (natural user-specified ID)
■ recommended, properties can be indexed

● automatic indexes

3. Using “labels”
■ group nodes into “subsets” (named graph)
■ a node can have more than one label

● belong to more subsets

Node ali = 

graphDb.findNode(Label.label("Person"), "name", "Ali");

40



Task 3: Movies in Embedded Mode

● Use the Movie database in the embedded mode
○ download the Java Maven project from course page
○ insert the Movie database using Cypher

■ The code is prepared in MoviesBuild.java
■ source data in movies-insert.cypher

41

localhost

https://is.muni.cz/auth/el/fi/podzim2020/PA195/um/seminar-5/neo4j-excercise.zip


Task 3: Query Movies in Embedded Mode

● Find all actors who played in a movie with Keanu 
Reeves.

● Find all directors of movies where acted Tom 
Hanks.

42



Questions?

Please, any questions? Good question is a gift...

43



References

● RNDr. Irena Holubova, Ph.D. MMF UK course NDBI040: 

Big Data Management and NoSQL Databases

● Neo4j http://www.neo4j.org/

● Neo4j Manual http://neo4j.org/docs/stable/

● Neo4j Download http://www.neo4j.org/download

● Cypher Query Language 

http://neo4j.com/docs/stable/cypher-query-lang.html

44

http://www.neo4j.org/
http://docs.neo4j.org/chunked/stable/
http://www.neo4j.org/download
http://neo4j.com/docs/stable/cypher-query-lang.html

