

PA220: Database systems for data analytics Home Assignment 1 (and general overview)

Vlastislav Dohnal

Home Assignment Overview

- Overall Objectives
 - design a DW, form analytical queries and optimize them
 - update DW with new data
- Methodology (procedure)
 - Split into 5 individual assignments
 - Analyze the problem, propose a solution, instantiate it, execute it and measure metrics
 - Some assignments may not cover all these phases.
- Grading
 - Each assignment max. 10 points

Application Domain

- GPS tracking system of cars
 - Each car is equipped with a mobile device (Android) and an application
 - The application
 - tracks movement of the car records driving as well as stationarity;
 - allows the drivers to jot down events refueling, loading/unloading cargo, rest time (sleeping);
 - allows the drivers and operators to communicate via messages;
 - periodically upload these data to server; and
 - periodically reports its status to server.

Domain of Data Warehouse

- Create a DW for information about status reports of the tracking app
 - Status of app (aka health) is reported approximately every 10 minutes,
 - The report contains information about device model, app running time, phone running time.
 - e.g., HUAWEI Y600 U20, app running for 0.17 hrs (since app start), phone running for 112.67 hrs (since reboot)
 - There is also a data-transmission log that contains app version, phone id, simcard id, transfer method and mobile network ID.
 - e.g., A38, 867897023525224, 230024100616400, "U", "23106" (MCC of O2 Slovakia)
 - There is 212,062,680 report recs in total for the period of 216 months (2.1m last month), and 82,612,448 data-transmission recs in last 23 months (3.3m last month)
 - You will have a sample only ((-:

Domain of Data Warehouse

- DW should support analysis like:
 - Per program version, report
 - the number of different device (physical phones),
 - the number of different phone models,
 - the number of phone/app restarts (app_run_time / phone_run_time is zero (or close to)).
 - Per physical device, report the same (as per prog. ver.) plus:
 - the number of program versions.
 - By analogy, report the info per phone model.
 - Distribution (pie-chart) of program versions among physical devices
 - for varying time period
 - Distribution of phone models among physical devices.
 - How many phone of a particular model are used.

Assignment 1

- Analyze the data and report
 - number of unique values in attributes:
 - imsi, imei, device, gsmnet, method, program version, car key.
 - look at it globally but also check for a shorter period, e.g. last month
- Design a dimensional model and create an ERD of it
 - Granularity of facts should be the reporting event
 - Describe measurements in the fact table
 - Describe designed dimensions and qualify their types in "SCD" (Slowly Changing Dimension)
- Instantiate the dimensional model in PostgreSQL
 - Create the dimension and fact tables.
 - Transform the input data to these tables.

You may use a UML editor by Ondrej Novak https://is.muni.cz/auth/th/np8o5/

You may use a student DBMS @ FI https://www.fi.muni.cz/tech/unix/databases.html

Assignment 1 (cont.)

- Hand in to the IS vault:
 - report of unique values,
 - ERD of dimensional model (as PNG) plus the description of it
 - a script of create table command and other SQL commands to fill the dimensional model with input data (aka transformation script)
- Grading
 - values 2 pts, model 5 pts, script 3 pts
 - total 10 pts

Input Data Details

service_key (PK)	car_key	time	app_run_time	pda_run_time	device	tracking_mode	battery_level
129686177	2870	2017-01-01 01:00:00+01	41,97	41,98	HUAWEI Y530-U00	0	100
129686178	3749	2017-01-01 01:00:01+01	17,97	17,98	HUAWEI Y540-U01	0	97
129686179	3740	2017-01-01 01:00:01+01	227,02	227,03	VF695	0	100
129686181	3448	2017-01-01 01:00:01+01	5,12	39,65	Lenovo A6000	0	100
129686182	3838	2017-01-01 01:00:01+01	40,80	40,82	VF695	4	70

- Reports of app "health"
 - table service_log
- Attributes:
 - service_key record ID
 - car_key FK to cars (number)
 - time timestamp (with time zone) when the record was created
 - app_run_time hours elapsed since app has been started
 - starts from 0, so app restart can be detected by "a drop close to zero"

- pda_run_time hours elapsed since the phone has been booted
 - starts from 0, so the phone reboot can be detected by a "a drop to zero"
- device manufacture's code name of the model
- tracking_mode
 - 0 = AC/DC,
 - 2 = Bluetooth,
 - 4 or 1 = all-time
- battery_level charge status in %

Input Data Details

log_key (PK)	sim_imsi	time	car_key	pda_imei	gsmnet_id	method	program_ver
270819244	230024101003486	2017-02-01 00:59:23.182+01	3635	867721025715353	23106	U	A38
270819286	230021100851365	2017-02-01 00:59:57.199+01	2519	867897023542906	21670	U	A39
270819285	230024100623293	2017-02-01 00:59:56.864+01	2974	null	26203	U	A38
267258392	230024100885563	2017-01-03 10:29:02.9+01	1710	\N	00000	т	1.2

- Log of data-transfer connections
 - table conn_log
- Attributes:
 - log_key record ID
 - sim_imsi number of SIM card, can also be a random string
 - time timestamp (with time zone) when the record was created
 - car_key FK to cars (number)
 - pda_imei unique ID of physical device, may not be available

- gsmnet_id MCC of GSM operator
- method either U (UDP) or T (TCP)
- program_ver version of SW, Axy or v.w