



PA220: Database systems for data analytics

Introduction, Business Intelligence, Data Warehouse

# Overview of data warehousing

- motivation
  - business intelligence / data analytics

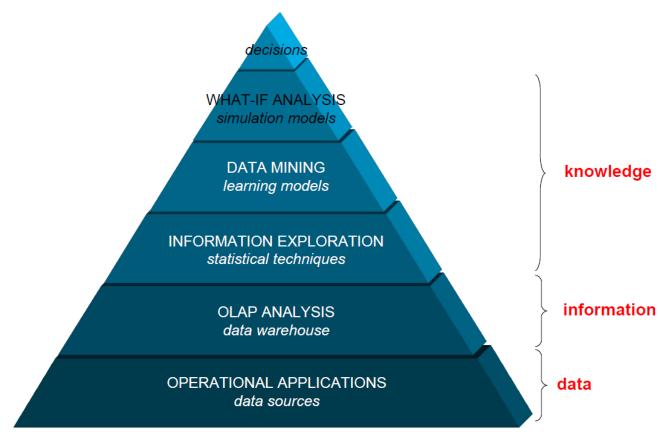
- data warehouse
  - architecture
  - oltp vs. olap
  - big data



### Motivation



- Data production
  - Information systems
  - Monitoring services
  - Sensors, GPS tracking
  - Social networks
- Data processing
  - Storage & archiving
  - Summarization
  - Reporting
  - Visualization
  - Insights
  - Predictions



Business Intelligence pyramid

### Business Intelligence

- a process of analyzing data and presenting results to business managers
  - to make informed decisions
- tools and applications
  - to collect data
  - to prepare it for storage and analysis
  - to develop and run queries
  - to create reports and dashboards
  - to visualize data
- evolved from decision support systems
- business analytics / (advanced) data analytics
  - prescriptive analytics



### Business Intelligence vs. Artificial Intelligence

- BI is the "opposite" of Artificial Intelligence (AI)
  - Al systems make decisions for the users
  - BI systems help users make the right decisions, based on the available data
  - Many BI techniques have roots in AI, though.

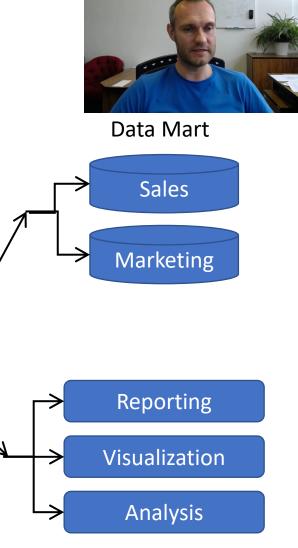


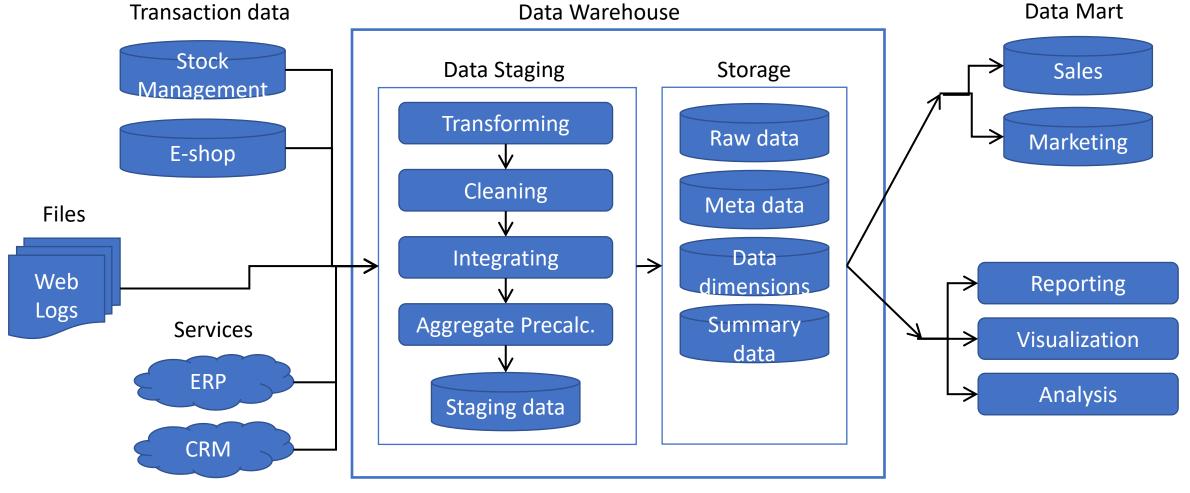
### Business Intelligence: Key Problems

- 1. Complex and unusable models
  - Many DB models are difficult to understand
  - DB models do not focus on a single clear business purpose
- 2. Same data found in many different systems
  - Example: customer data in many different systems
  - The same concept is defined differently
- 3. Data is suited for operational systems
  - Accounting, billing, etc.
  - Do not support analysis across business functions
- 4. Data quality is bad
  - Missing data, imprecise data, different use of systems
- 5. Data are "volatile"
  - Data deleted in operational systems (6 months)
  - Data change over time no historical information



### Business Intelligence Architecture





PA220 DB for Analytics 30.09.2020

### Data Warehouse

#### • Typically:

- One large repository for entire company
- Dedicated hard- and software
  - Enterprise-grade DBMS
  - Often: database appliances (e.g., Teradata, Oracle Exadata, IBM Netezza, ...)

#### • Goal:

- Single source of truth for analysis and reporting
- Requires data cleansing and conflict resolution



### Data Warehouse Users

- Business analysts:
  - Explore data to discover information
  - Use for decision making -> "Decision Support System (DSS)"
- Consequences:
  - Workloads and access patterns not known in advance
  - For exploration, data representation must be easy to understand (even by business analysts)
  - Design and usage driven by data, not applications



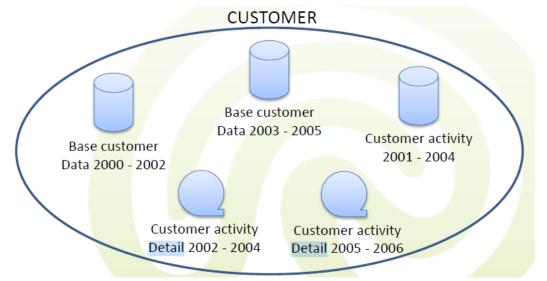




- Barry Devlin, IBM Consultant
  - A data warehouse is simply a **single**, **complete**, and **consistent** store of data obtained from a **variety** of sources and made available to end users in a way they can **understand** and **use** it in a **business context**.
- Ralph Kimball, The Data Warehouse Toolkit
  - A copy of transaction data specifically structured for query and analysis.
- W. H. Inmon, Building the Data Warehouse
  - A data warehouse is a subject-oriented, integrated, time-varying, non-volatile collection of data that is used primarily in organizational decision making.

### Definition of Data Warehouse (1)

- Subject-oriented
  - The data in the DW is organized in such a way that all the data elements relating to the same real-world event or object are linked together
    - Typical subject areas in DWs are Customer, Product, Order, Claim, Account,...



Base tables hold original data and can be different in schema.

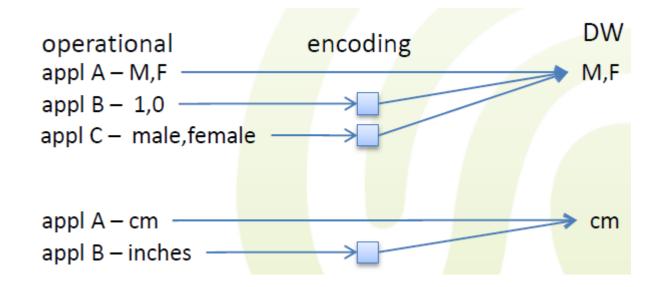
Customer activity represents

summary (derived) information.



# Definition of Data Warehouse (2)

- Integrated
  - The DW contains data from most or all the organization's operational systems and this data is made consistent
  - E.g. gender, measurement, conflicting keys, consistency,...

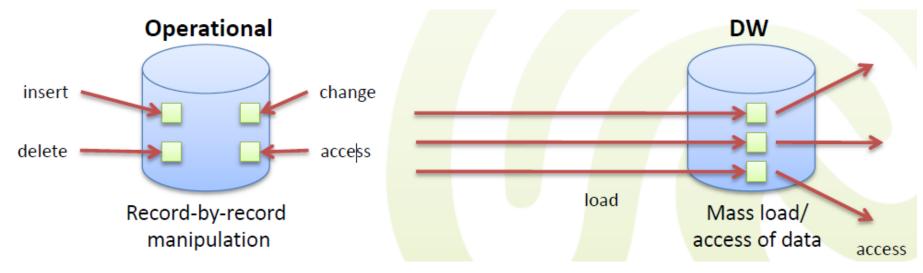








- Non-volatile
  - Data in the DW is never over-written or deleted-once committed, the data is static, read-only, and retained for future reporting
  - Data is loaded, but not updated
  - When subsequent changes occur, a new version or snapshot record is written



### Definition of Data Warehouse (4)

- Time-varying
  - The changes to the data in the DW are tracked and recorded so that reports show changes over time
  - Different environments have different time horizons associated
    - While for operational systems a 60-to-90 daytime horizon is normal, DWs have a 5-to-10-year horizon



### General DW Definition

- A large repository of some organization's electronically stored data
- Specifically designed to facilitate reporting and analysis
- Requirements:
  - information easily accessible
  - consistent information
  - present information timely
  - protect the information
  - adapt to change
  - accepted by users







- Up to 912 CPU cores and 28.5TB memory per rack for database processing
  - Up to 576 CPU cores per rack dedicated to SQL processing in storage
  - From 2 to 19 Database Servers per rack; From 3 to 18 Storage Servers per rack
- Up to 3.0 PB of disk capacity (raw) per rack
  - Up to 920 TB of flash capacity (raw) per rack
  - Ability to perform up to 4.8M 8K database read I/O operations,
  - or 4.3M 8K flash write I/O operations per second per full rack
- Hybrid Columnar Compression (10-15x compression ratio)
- 40 Gb/second (QDR) InfiniBand Network
  - Uncompressed I/O bandwidth of up to 560 GB/second per full rack from SQL
- Complete redundancy for high availability
- Scale by connecting by InfiniBand up to 18 racks



16

### I.I Use Case



- DW stands for big data volume, so lets take an example of 2 big companies, Walmart and a RDBMS vendor, Teradata (in 1990):
  - Walmart CIO: I want to keep track of sales in all my stores simultaneously
  - Teradata consultant: You need our wonderful RDBMS software. You can stuff data in as sales are rung up at cash registers and simultaneously query data right in your office
  - So Walmart buys a \$1 milion Sun E10000 multi-CPU server, a \$500 000 Teradata license, a book "Database Design for Smarties", and builds a normalized SQL data model







- After a few months of stuffing data into the table a Walmart executive asks...
  - I have noticed that there was a Colgate promotion recently, directed to people who live in small towns. How much toothpaste did we sell in those towns yesterday?
  - Translation to a query:

```
    select sum(sales.quantity_sold) from sales, products, product_categories, manufacturers, stores, cities where manufacturer_name = 'Colgate' and product_category_name = 'toothpaste' and cities.population < 40 000 and trunc(sales.date_time_of_sale) = trunc(sysdate-I) and sales.product_id = products.product_id and sales.store_id = stores.store_id and products.product_category_id = product_categories.product_category_id and products.manufacturer_id = manufacturers.manufacturer_id and stores.city_id = cities.city_id</li>
```



# 1.1 Use Case



 The tables contain large volumes of data and the query implies a 6 way join so it will take some time to execute



- The tables are at the same time also updated by new sales
- Soon after executive start their quest for marketing information, the store employees notice that there are times during the day when it is impossible to process a sale







 Minutes later... the Walmart CIO calls Teradata tech support



- Walmart CIO: WE TYPE IN THE TOOTHPASTE QUERY AND OUR SYSTEM HANGS!!!
- Teradata support: Of course it does! You built an on-line transaction processing (OLTP) system. You can't feed it a decision support system (DSS) query and expect things to work!
- Walmart CIO: !@%\$#. I thought this was the whole point of SQL and your RDBMS...to query and insert simultaneously!!
- Teradata support: Uh, not exactly. If you're reading from the database, nobody can write to the database. If you're writing to the database, nobody can read from the database. So if you've got a query that takes 20 minutes to run and don't specify special locking instructions, nobody can update those tables for 20 minutes.







- Walmart CIO: It sounds like a bug.
- Teradata support: Actually it is a feature. We call it pessimistic locking.
- Walmart CIO: Can you fix your system so that it doesn't lock up???
- Teradata support: No. But we made this great loader tool so that you can copy everything from your OLTP system into a separate Data Warehouse system at 100 GB/hour

### After a while...

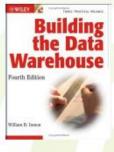
















### (Enterprise) Data Warehouse

- integrates data from more sources
- subject-oriented
- stores current and historical data
- answers multidimensional queries
- create aggregated data reports
- is it a relational DBMS?
  - on-line transaction processing (OLTP)

PA220 DB for Analyti

- on-line analytical processing (OLAP)
  - MOLAP (Multidimensional OLAP)
  - ROLAP (Relational OLAP)

| OLTP                  |                             | DW           |  |
|-----------------------|-----------------------------|--------------|--|
| few                   | Indexes                     | many         |  |
| many                  | Joins                       | some         |  |
| normalized            | Schema                      | denormalized |  |
| rare                  | Derived data and aggregates | common       |  |
| update/select         | Workload                    | select       |  |
| predefined            | Typical operations          | ad hoc       |  |
| few days              | Historical data             | years        |  |
| indexing /<br>hashing | Data access<br>method       | full scans   |  |
| GB                    | Data volume                 | ТВ           |  |
| ics Thousands         | Users                       | Hundreds     |  |

30.09.2020

# OLTP (Online Transaction Processing)

- Day-to-day business operations
  - Mix of insert, update, delete, and read operations
  - e.g., enter orders, maintain customer data, etc.
- System sometimes called operational data store (ODS)
  - Up-to-date state of the data
- From a database perspective:
  - Short-running operations
  - Most queries known in advance
  - Often point access, usually through indexes
  - write access ACID principles



# OLAP (Online Analytical Processing)

- Provide data for reporting and decision making
  - Mostly read-only access
  - e.g., resource planning, marketing initiatives
- Need archive data; (slightly) outdated information might be okay
  - Report changes over time
  - Can use separate data store (non-ODS)
- From a database perspective:
  - Long-running operations, mostly read-only
  - Queries not known in advance, often complex (windexing?)
  - Might need to scan through large amounts of data
  - Data is (almost) append-only.



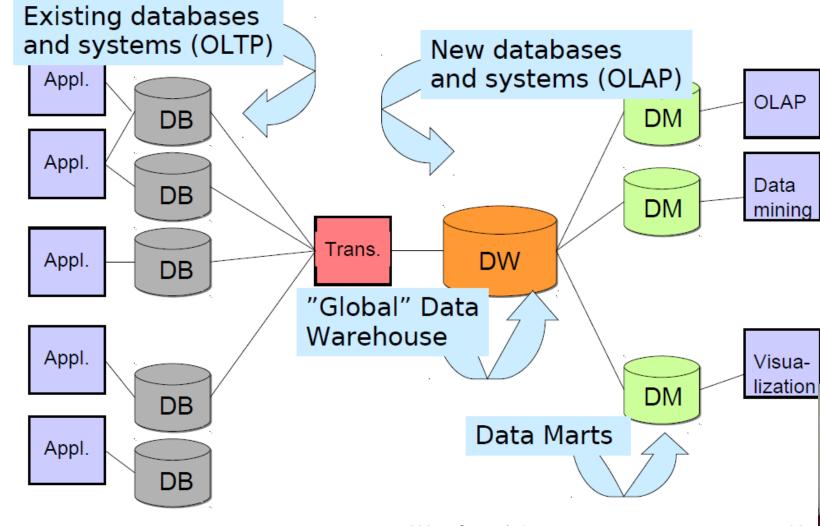




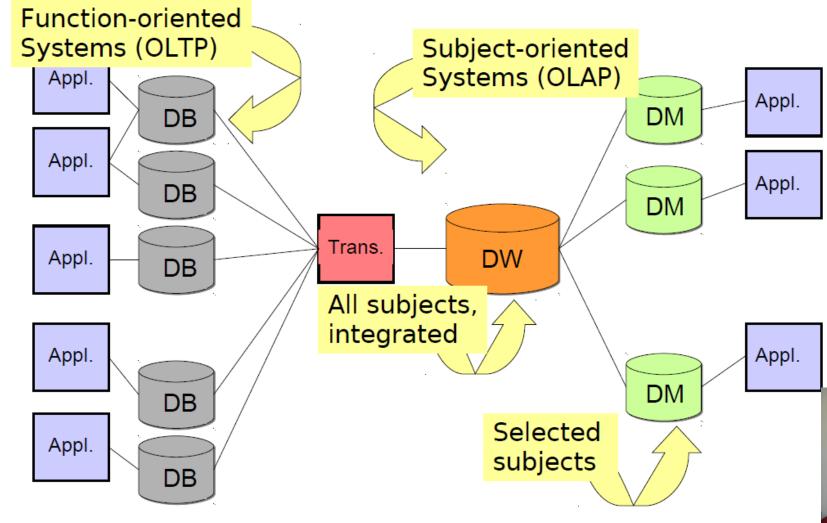
|                          | OLTP        | ODS         | OLAP     | DM / DW      |
|--------------------------|-------------|-------------|----------|--------------|
| Business Focus           | Operational | Oper./Tact. | Tactical | Tact./Strat. |
| DB Technology            | Relational  | Relational  | Cubic    | Relational   |
| <b>Transaction Count</b> | Large       | Medium      | Small    | Small        |
| Transaction Size         | Small       | Medium      | Medium   | Large        |
| Transaction Time         | Short       | Medium      | Medium   | Long         |
| DB Size in GB            | 10-400      | 100-800     | 100-800  | 800-80,000   |
| Data Modeling            | Trad. ERD   | Trad. ERD   | N/A      | Dimensional  |
| Normalization            | 3-5 NF      | 3 NF        | N/A      | 0 NF         |

source: Bert Scalzo. Oracle DBA Guide to Data Warehousing and Star Schemas.

### OLTP/OLAP and DW



### OLTP/OLAP and DW (2)



### Architecture Alternatives



- Variants of the full data warehouse architecture:
  - 1. Independent data marts (no central warehouse)
    - Populate data marts directly from sources
    - Like several "mini warehouses"
    - Redundancy, no "single source of truth"
  - 2. Logical data marts (no explicit, physical data marts)
    - Data mart just a logical view on full warehouse
    - Easier to provide integrated, consistent view across the
    - enterprise
- Data marts (and warehouse) might also reside at different geographic locations.

### Building DW: Top-down Approach



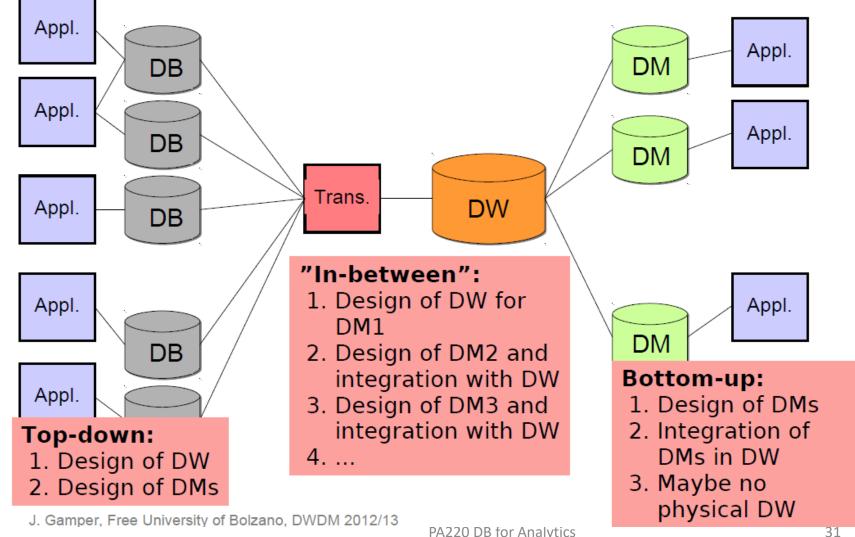
- Analyze global business needs, plan how to develop a data warehouse, design it, and implement it as a whole
  - This procedure is promising: it is based on a global picture of the goal to achieve, and in principle it ensures consistent, well integrated data warehouses.
  - High-cost estimates with long-term implementations discourage company managers from embarking on these kind of projects.
  - Analyzing and integrating all relevant sources at the same time is a very difficult task,
    even because it is not very likely that they are all available and stable at the same
    time.
  - It is extremely difficult to forecast the specific needs of every department involved in a project, which can result in the analysis process coming to a standstill.
  - Since no working system is going to be delivered in the short term, users cannot check for this project to be useful, so they lose trust and interest in it.

### Building DW: Bottom-up Approach

- DWs are incrementally built and several data marts are iteratively created. Each data mart is based on a set of facts that are linked to a specific department and that can be interesting for a user group.
  - Leads to concrete results in a short time
  - Does not require huge investments
  - Enables designers to investigate one area at a time
  - Gives managers a quick feedback about the actual benefits of the system being built
  - Keeps the interest for the project constantly high
  - May determine a partial vision of the business domain

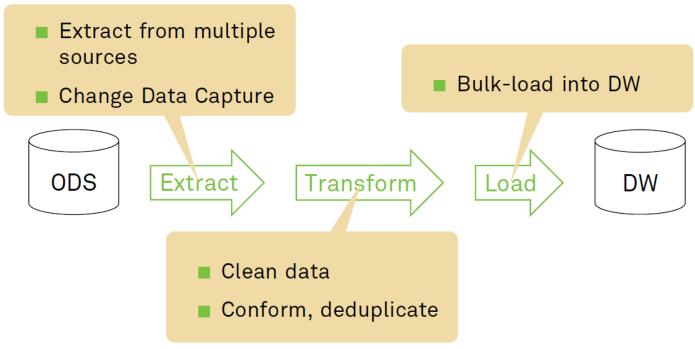


### Building DW: Comparison of Approaches

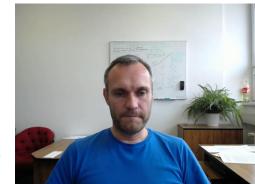


### Data Warehouse Preparation

Data is periodically brought from the ODS to the data warehouse.



• This is also referred to as ETL Process.



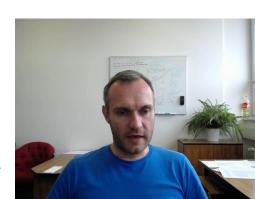
### Data Warehouse Preparation - Transformation

- Query-Driven Data Integration
  - Data is integrated on demand (lazy)
  - PROS
    - Access to most up-to-date data (all source data directly available)
    - No duplication of data
  - CONS
    - Delay in query processing
      - Slow (or currently unavailable) information sources
      - Complex filtering and integration
    - Inefficient and expensive for frequent queries
    - Competes with local processing at sources
    - Data loss at the sources (e.g., historical data) cannot be recovered
  - Has not caught on in industry

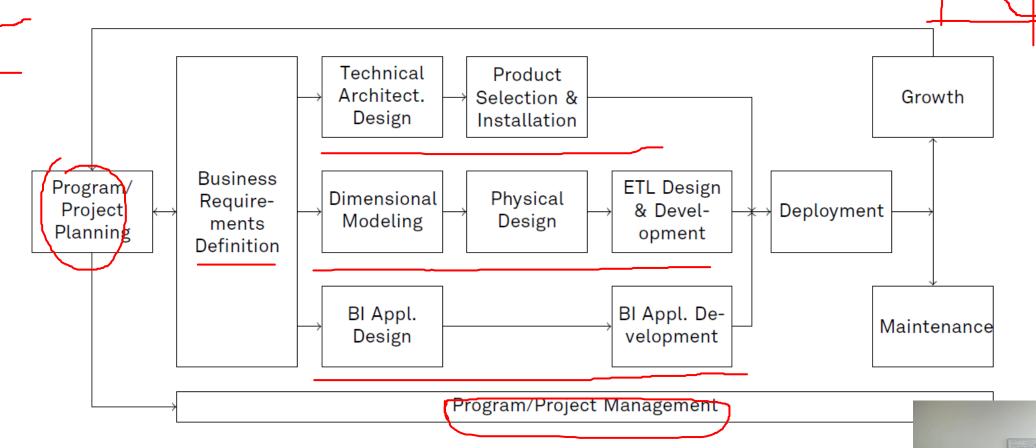


### Data Warehouse Preparation - Transformation

- Warehouse-Driven Data Integration
  - Data is integrated in advance (eager)
  - Data is stored in DW for querying and analysis
  - PROS
    - High query performance
    - Does not interfere with local processing at sources
      - Assumes that data warehouse update is possible during downtime of local processing
      - Complex queries are run at the data warehouse
      - OLTP queries are run at the source systems
  - CONS
    - Duplication of data
    - The most current source data is not available
  - Has caught on in industry



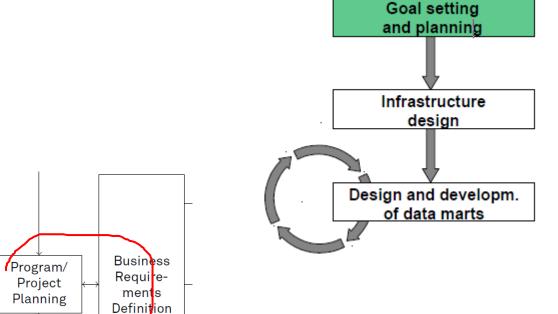
### Data Warehouse Lifecycle



35

Kimball et al. The Data Warehouse Lifecycle Toolkit.

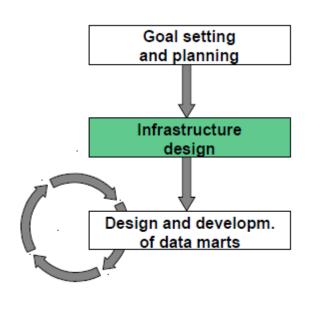
# Data Warehouse – Lifecycle (1)



- gather system goals, borders, and size & prioritize them
- estimate costs and benefits
- analyze risks and expectations
- examine the skills of the working team



# Data Warehouse – Lifecycle (2)



- analyze and compare the possible architectural solutions
- assess the available technologies and tools
- select an approach for design and implementation

create a preliminary plan of the whole system

Technical

Architect.

Design

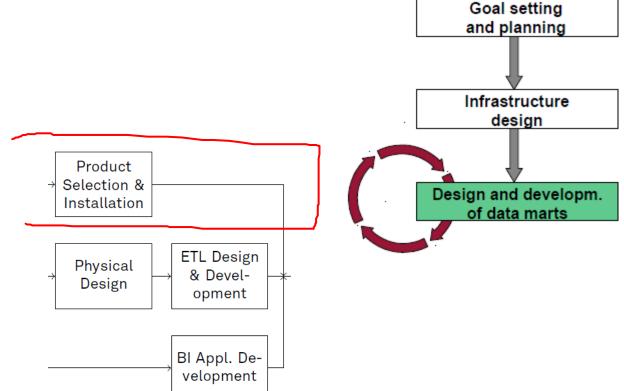
Dimensional Modeling

BI Appl.
Design

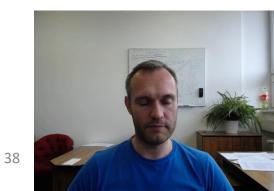
30.09.2020 PA220 DB for Analytics



# Data Warehouse – Lifecycle (3)

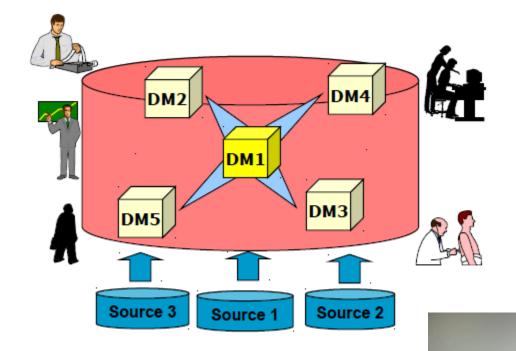


 Every iteration causes a new data mart and new applications to be created and progressively added to the DW system.



#### First Data Mart

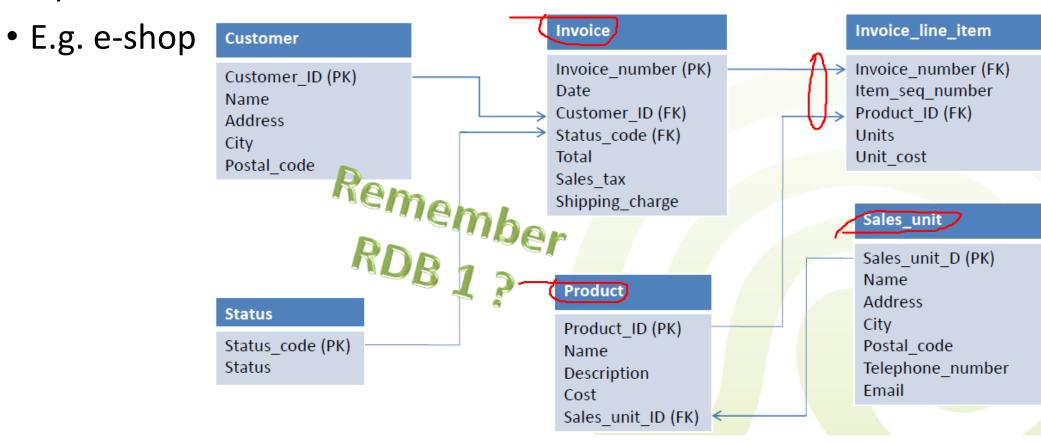
- is the one playing the most strategic role for the enterprise
- should be a backbone for the whole DW
- should lean on available and consistent data sources







Operational stores – normalized database

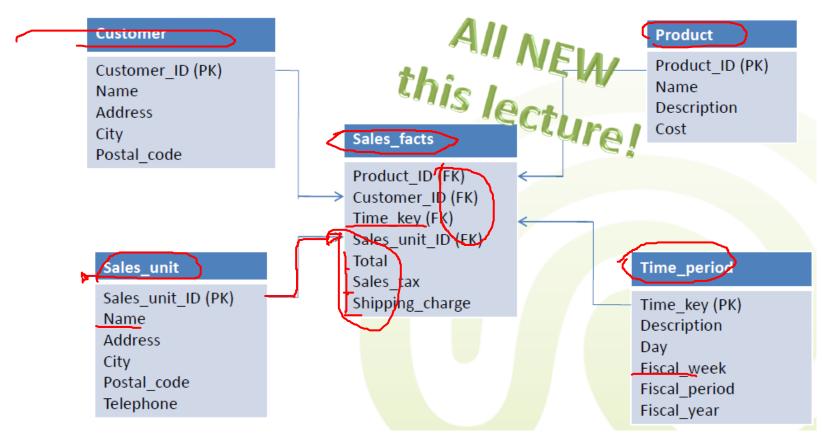


30.09.2020 PA220 DB for Analytics 41





Data Warehouse is subject-oriented -> sales are important



30.09.2020 PA220 DB for Analytics 42

#### Data Warehouse – Data Model

- star schema fact table and dimension tables
  - one purpose-focus analytics
  - not very good for complex analytics
- fact table
  - data measurements/metrics
  - numeric values and foreign keys to dimensions
  - atomic level of detail
- dimension table
  - description of fact
  - many attributes

Dim\_product

id (PK)

id\_product

name

brand

category DB for Analytics

Dim store

id (PK)

id\_store

name

street

city

state

country

region

manager

Dim\_time

id

Fact\_sales

id time

id store

quantity

price

id\_product

date

day

month

year

day of week

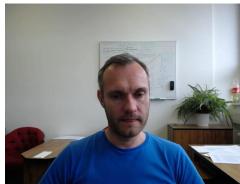
### Nature of Current Data and Processing

- Volume
  - the amount of data increases tenfold every five years
- Velocity
  - continuous data flow from sensors, social networks, ...
- Variety
  - data structure can change, text, multimedia, ...
- Veracity
  - with different data sources, it is getting more difficult to maintain data certainty
- Real-time processing



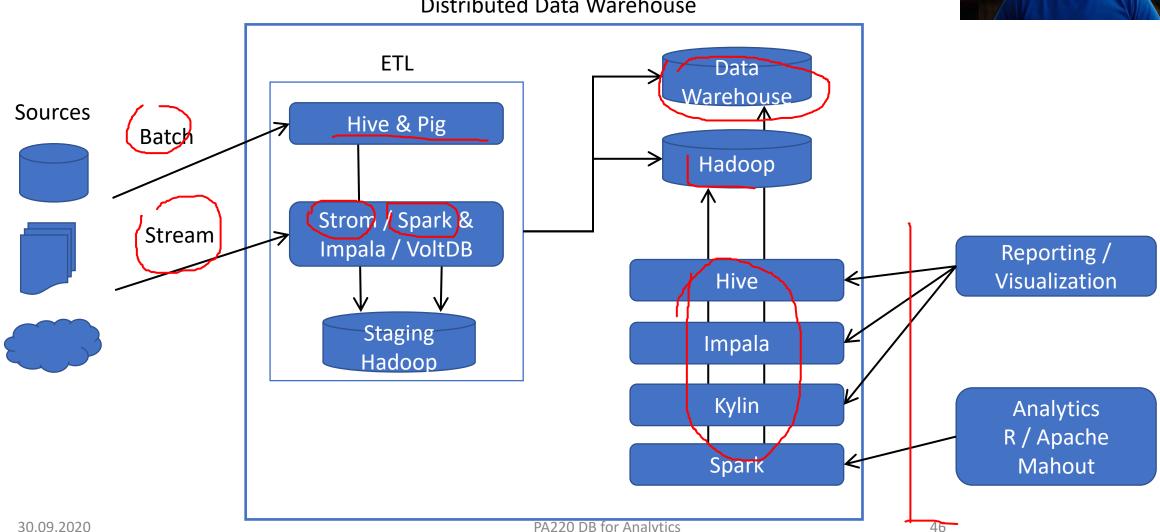
#### Distributed Data Warehouse

- new platforms
  - columnar DBMSs (e.g. C-Store)
  - HDFS & MapReduce (e.g. Hadoop)
  - NoSQL platforms (e.g. HBase)
  - in-memory DBMSs (e.g. VoltDB)
- horizontal scaling instead of vertical scaling
  - ETL in Hadoop
  - Storing raw data in HDFS
  - SQL-based analytics in columnar DBMSs



#### Distributed Data Warehouse

Distributed Data Warehouse



### Hadoop Platform

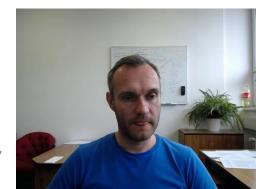
- SW library for distributed processing of large data sets
  - across clusters of computers
- High-availability achieved on application layer by replication
  - tasks run / data stored on unreliable HW
- MapReduce programming model for large scale data processing
  - Map() filtering and sorting, outputs "key, value" pairs

 $Map(k1,v1) \rightarrow list(k2,v2)$ 

• Reduce() – summarizing Map() results by their keys

Reduce(k2, list (v2))  $\rightarrow$  list(v3)

- HDFS distributed high-throughput file system
  - designed for mostly immutable files
  - concurrent write not supported
  - cooperation with MapReduce data & computation locality



#### Distributed Data Warehouse

- Apache Hive data warehouse for large datasets
  - projects structure onto the data in HDFS
  - manages and queries data using HiveQL
    - converts them to Map-Reduce jobs
  - supports indexing
  - DML operations
    - UPDATE & DELETE at row level (new since end of 2014)



#### Apache Hive

```
CREATE TABLE dim_product ( id INT,
                         id_product INT,
                         name STRING,
                         brand STRING,
                         category STRING);
```

Dim\_product

id (PK)

id product

name

brand

category

Fact\_sales

id time

id\_store

id\_product

quantity

price

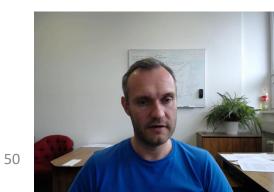
LOAD DATA LOCAL INPATH '.../file.txt' OVERWRITE INTO TABLE dim\_product PARTITION (ds='2014-12-15');

INSERT OVERWRITE TABLE dim product SELECT TRANSFORM (id, id\_product, name, brand, category) USING 'python cleaning\_mapper.py' AS (id, id\_product, name, brand, category) FROM tmp\_product;

SELECT p.name, SUM(s.quantity \* price) AS income FROM dim\_product p LEFT JOIN fact\_sales s ON (p.id = s.id\_product) GROUP BY p.name;

### Apache Impala

- similar to Apache Hive
- native analytical database for Hadoop
- low-latency queries
  - no translation to Map-Reduce jobs
  - in-memory data in Parquet format
- preference to numeric values than strings
- joins done in memory







- platform for analyzing large data set
- scripting language for data processing and transformations
  - similar to procedural languages
- creates Map-Reduce jobs

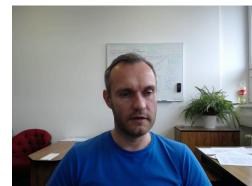
```
raw = LOAD 'excite.log' USING PigStorage('\t') AS (user, time, query);

clean = FILTER raw BY org.apache.pig.tutorial.NonURLDetector(query);

hour_freq_tmp = GROUP clean BY (query, time);
hour_freq_tmp2 = FOREACH hour_freq_tmp GENERATE flatten($0), COUNT($1) as count;
hour_frequency = FOREACH hour_freq_tmp GENERATE $0 as query, $1 as hour, $2 as count;
```

### Apache Kylin

- framework for OLAP in Hadoop
  - uses Hive
  - precalculates aggregations
  - query engine translation
    - exploit prepared aggregations
- integrate with your favorite BI tools like Tableau and Power BI



### Summary



- BI is well-recognized and is a combination of a number of techniques to support decision making.
- DW is at the core of BI that
  - provides a complete, consistent, subject-oriented and time-varying collection of the data;
  - allows to separate OLTP from OLAP.
- Applications that use the DW include OLAP, data mining, visualization
- BI can provide many advantages to an organization
  - Creates added value by transforming data into information
  - Provides comprehensive knowledge about your business
  - A good DW is a prerequisite for BI
  - But, a DW is a means rather than a goal ... it is only a success if it is heavily used
- Following a clear design methodology is important.

#### What next?

Modeling for Data Warehouse

