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Overview of data warehousing

• motivation
• business intelligence / data analytics 

• data warehouse
• architecture

• oltp vs. olap

• big data
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Motivation

• Data production
• Information systems
• Monitoring services
• Sensors, GPS tracking
• Social networks

• Data processing
• Storage & archiving
• Summarization
• Reporting
• Visualization
• Insights
• Predictions
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Business Intelligence pyramid
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Business Intelligence

• a process of analyzing data and presenting results to business managers
• to make informed decisions

• tools and applications
• to collect data
• to prepare it for storage and analysis
• to develop and run queries
• to create reports and dashboards
• to visualize data

• evolved from decision support systems

• business analytics / (advanced) data analytics
• prescriptive analytics
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Business Intelligence vs. Artificial Intelligence

• BI is the “opposite” of Artificial Intelligence (AI)
• AI systems make decisions for the users

• BI systems help users make the right decisions, based on the available data

• Many BI techniques have roots in AI, though.
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Business Intelligence: Key Problems

1. Complex and unusable models
• Many DB models are difficult to understand
• DB models do not focus on a single clear business purpose

2. Same data found in many different systems
• Example: customer data in many different systems
• The same concept is defined differently

3. Data is suited for operational systems
• Accounting, billing, etc.
• Do not support analysis across business functions

4. Data quality is bad
• Missing data, imprecise data, different use of systems

5. Data are ”volatile”
• Data deleted in operational systems (6 months)
• Data change over time – no historical information
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Business Intelligence Architecture
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Data Warehouse

• Typically:
• One large repository for entire company

• Dedicated hard- and software
• Enterprise-grade DBMS

• Often: database appliances (e.g., Teradata, Oracle Exadata, IBM Netezza, …)

• Goal:
• Single source of truth for analysis and reporting

• Requires data cleansing and conflict resolution
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Data Warehouse Users

• Business analysts:
• Explore data to discover information

• Use for decision making -> “Decision Support System (DSS)”

• Consequences:
• Workloads and access patterns not known in advance

• For exploration, data representation must be easy to understand (even by 
business analysts)

• Design and usage driven by data, not applications
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Definition of Data Warehouse

• Barry Devlin, IBM Consultant
• A data warehouse is simply a single, complete, and consistent store of data 

obtained from a variety of sources and made available to end users in a way 
they can understand and use it in a business context.

• Ralph Kimball, The Data Warehouse Toolkit
• A copy of transaction data specifically structured for query and analysis.

• W. H. Inmon, Building the Data Warehouse
• A data warehouse is a subject-oriented, integrated, time-varying, non-

volatile collection of data that is used primarily in organizational decision 
making.
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Definition of Data Warehouse (1)

• Subject-oriented
• The data in the DW is organized in such a way that all the data elements 

relating to the same real-world event or object are linked together
• Typical subject areas in DWs are Customer, Product, Order, Claim, Account,…
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Definition of Data Warehouse (2)

• Integrated
• The DW contains data from most or all the organization's operational systems 

and this data is made consistent

• E.g. gender, measurement, conflicting keys, consistency,…
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Definition of Data Warehouse (3)

• Non-volatile
• Data in the DW is never over-written or deleted-once committed, the data is 

static, read-only, and retained for future reporting

• Data is loaded, but not updated

• When subsequent changes occur, a new version or snapshot record is written
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Definition of Data Warehouse (4)

• Time-varying
• The changes to the data in the DW are tracked and recorded so that reports 

show changes over time

• Different environments have different time horizons associated
• While for operational systems a 60-to-90 daytime horizon is normal, DWs have a 5-to-10-

year horizon
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General DW Definition

• A large repository of some organization’s electronically stored data

• Specifically designed to facilitate reporting and analysis

• Requirements:
• information easily accessible

• consistent information

• present information timely

• protect the information

• adapt to change

• accepted by users
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Example: Oracle Exadata X8-2

• Up to 912 CPU cores and 28.5TB memory per rack for database processing
• Up to 576 CPU cores per rack dedicated to SQL processing in storage
• From 2 to 19 Database Servers per rack; From 3 to 18 Storage Servers per rack

• Up to 3.0 PB of disk capacity (raw) per rack
• Up to 920 TB of flash capacity (raw) per rack
• Ability to perform up to 4.8M 8K database read I/O operations, 
• or 4.3M 8K flash write I/O operations per second per full rack

• Hybrid Columnar Compression (10-15x compression ratio)
• 40 Gb/second (QDR) InfiniBand Network

• Uncompressed I/O bandwidth of up to 560 GB/second per full rack from SQL

• Complete redundancy for high availability
• Scale by connecting by InfiniBand up to 18 racks
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(Enterprise) Data Warehouse

• integrates data from more sources

• subject-oriented

• stores current and historical data

• answers multidimensional queries

• create aggregated data reports

• is it a relational DBMS?
• on-line transaction processing (OLTP)
• on-line analytical processing (OLAP)

• MOLAP (Multidimensional OLAP)
• ROLAP (Relational OLAP)

OLTP DW
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OLTP (Online Transaction Processing)

• Day-to-day business operations
• Mix of insert, update, delete, and read operations

• e.g., enter orders, maintain customer data, etc.

• System sometimes called operational data store (ODS)
• Up-to-date state of the data

• From a database perspective:
• Short-running operations

• Most queries known in advance

• Often point access, usually through indexes

• write access⇝ ACID principles

30.09.2020 PA220 DB for Analytics 23



OLAP (Online Analytical Processing)

• Provide data for reporting and decision making
• Mostly read-only access
• e.g., resource planning, marketing initiatives

• Need archive data; (slightly) outdated information might be okay
• Report changes over time
• Can use separate data store (non-ODS)

• From a database perspective:
• Long-running operations, mostly read-only
• Queries not known in advance, often complex (⇝indexing?)
• Might need to scan through large amounts of data
• Data is (almost) append-only.
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Transactional vs. Analytical Workloads
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OLTP/OLAP and DW
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OLTP/OLAP and DW (2)
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Architecture Alternatives

• Variants of the full data warehouse architecture:
1. Independent data marts (no central warehouse)

• Populate data marts directly from sources

• Like several “mini warehouses”

• Redundancy, no “single source of truth”

2. Logical data marts (no explicit, physical data marts)
• Data mart just a logical view on full warehouse

• Easier to provide integrated, consistent view across the

• enterprise

• Data marts (and warehouse) might also reside at different geographic 
locations.
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Building DW: Top-down Approach

• Analyze global business needs, plan how to develop a data warehouse, 
design it, and implement it as a whole
• This procedure is promising: it is based on a global picture of the goal to achieve, and 

in principle it ensures consistent, well integrated data warehouses.
• High-cost estimates with long-term implementations discourage company managers 

from embarking on these kind of projects.
• Analyzing and integrating all relevant sources at the same time is a very difficult task, 

even because it is not very likely that they are all available and stable at the same 
time.

• It is extremely difficult to forecast the specific needs of every department involved in 
a project, which can result in the analysis process coming to a standstill.

• Since no working system is going to be delivered in the short term, users cannot 
check for this project to be useful, so they lose trust and interest in it.
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Building DW: Bottom-up Approach

• DWs are incrementally built and several data marts are iteratively 
created. Each data mart is based on a set of facts that are linked to a 
specific department and that can be interesting for a user group.
• Leads to concrete results in a short time

• Does not require huge investments

• Enables designers to investigate one area at a time

• Gives managers a quick feedback about the actual benefits of the system 
being built

• Keeps the interest for the project constantly high

• May determine a partial vision of the business domain
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Building DW: Comparison of Approaches
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Data Warehouse Preparation

• Data is periodically brought from the ODS to the data warehouse.

• This is also referred to as ETL Process.
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Data Warehouse Preparation - Transformation

• Query-Driven Data Integration
• Data is integrated on demand (lazy)
• PROS

• Access to most up-to-date data (all source data directly available)
• No duplication of data

• CONS
• Delay in query processing

• Slow (or currently unavailable) information sources
• Complex filtering and integration

• Inefficient and expensive for frequent queries
• Competes with local processing at sources
• Data loss at the sources (e.g., historical data) cannot be recovered

• Has not caught on in industry
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Data Warehouse Preparation - Transformation

• Warehouse-Driven Data Integration
• Data is integrated in advance (eager)
• Data is stored in DW for querying and analysis
• PROS

• High query performance
• Does not interfere with local processing at sources

• Assumes that data warehouse update is possible during downtime of local processing

• Complex queries are run at the data warehouse
• OLTP queries are run at the source systems

• CONS
• Duplication of data
• The most current source data is not available

• Has caught on in industry
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Data Warehouse Lifecycle
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Data Warehouse – Lifecycle (1)

• gather system goals, borders, and 
size & prioritize them

• estimate costs and benefits

• analyze risks and expectations

• examine the skills of the working 
team
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Data Warehouse – Lifecycle (2)

• analyze and compare the 
possible architectural solutions

• assess the available technologies 
and tools

• select an approach for design 
and implementation

• create a preliminary plan of the 
whole system
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Data Warehouse – Lifecycle (3)

• Every iteration causes a new data 
mart and new applications to be 
created and progressively added 
to the DW system.
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First Data Mart

• is the one playing the most 
strategic role for the 
enterprise

• should be a backbone for 
the whole DW

• should lean on available 
and consistent data 
sources
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Modelling and Data Warehouse

• Operational stores – normalized database

• E.g. e-shop
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Modelling and Data Warehouse

• Data Warehouse is subject-oriented -> sales are important
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Data Warehouse – Data Model

• star schema – fact table and dimension tables
• one purpose-focus analytics

• not very good for complex analytics

• fact table
• data measurements/metrics

• numeric values and foreign keys to dimensions

• atomic level of detail

• dimension table
• description of fact

• many attributes
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Nature of Current Data and Processing

• Volume
• the amount of data increases tenfold every five years

• Velocity
• continuous data flow from sensors, social networks, …

• Variety
• data structure can change, text, multimedia, …

• Veracity
• with different data sources, it is getting more difficult to maintain data certainty

• Real-time processing
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Distributed Data Warehouse

• new platforms
• columnar DBMSs (e.g. C-Store) 

• HDFS & MapReduce (e.g. Hadoop)

• NoSQL platforms (e.g. HBase)

• in-memory DBMSs (e.g. VoltDB)

• horizontal scaling instead of vertical scaling
• ETL in Hadoop

• Storing raw data in HDFS

• SQL-based analytics in columnar DBMSs
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Distributed Data Warehouse
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Hadoop Platform

• SW library for distributed processing of large data sets
• across clusters of computers

• High-availability achieved on application layer by replication
• tasks run / data stored on unreliable HW

• MapReduce – programming model for large scale data processing
• Map() – filtering and sorting, outputs “key,value” pairs
• Reduce() – summarizing Map() results by their keys

• HDFS – distributed high-throughput file system
• designed for mostly immutable files
• concurrent write not supported
• cooperation with MapReduce – data & computation locality

Map(k1,v1) → list(k2,v2)

Reduce(k2, list (v2)) → list(v3)
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Distributed Data Warehouse

• Apache Hive – data warehouse for large datasets
• projects structure onto the data in HDFS

• manages and queries data using HiveQL
• converts them to Map-Reduce jobs

• supports indexing

• DML operations
• UPDATE & DELETE at row level (new since end of 2014)
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Apache Hive
CREATE TABLE dim_product ( id INT, 

id_product INT, 
name STRING, 
brand STRING, 
category STRING );

LOAD DATA LOCAL INPATH ‘…/file.txt' OVERWRITE INTO TABLE dim_product PARTITION (ds='2014-12-15');

INSERT OVERWRITE TABLE dim_product
SELECT TRANSFORM (id, id_product, name, brand, category) USING 'python cleaning_mapper.py'

AS (id, id_product, name, brand, category)
FROM tmp_product;

SELECT p.name, SUM(s.quantity * price) AS income
FROM dim_product p LEFT JOIN fact_sales s ON (p.id = s.id_product)
GROUP BY p.name;
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Apache Impala

• similar to Apache Hive

• native analytical database for Hadoop

• low-latency queries
• no translation to Map-Reduce jobs

• in-memory data in Parquet format

• preference to numeric values than strings

• joins done in memory

5030.09.2020 PA220 DB for Analytics



Apache Pig

• platform for analyzing large data set

• scripting language for data processing and transformations
• similar to procedural languages

• creates Map-Reduce jobs

51

raw = LOAD 'excite.log' USING PigStorage('\t') AS (user, time, query);

clean = FILTER raw BY org.apache.pig.tutorial.NonURLDetector(query);

hour_freq_tmp = GROUP clean BY (query, time);
hour_freq_tmp2 = FOREACH hour_freq_tmp GENERATE flatten($0), COUNT($1) as count;
hour_frequency = FOREACH hour_freq_tmp GENERATE $0 as query, $1 as hour, $2 as count;

STORE hour_frequency INTO '/tmp/hour_freq' USING PigStorage();30.09.2020 PA220 DB for Analytics



Apache Kylin

• framework for OLAP in Hadoop
• uses Hive

• precalculates aggregations

• query engine translation
• exploit prepared aggregations

• integrate with your favorite BI tools like Tableau and Power BI
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Summary

• BI is well-recognized and is a combination of a number of techniques to 
support decision making.

• DW is at the core of BI that 
• provides a complete, consistent, subject-oriented and time-varying collection of the 

data;
• allows to separate OLTP from OLAP.

• Applications that use the DW include OLAP, data mining, visualization
• BI can provide many advantages to an organization

• Creates added value by transforming data into information
• Provides comprehensive knowledge about your business
• A good DW is a prerequisite for BI
• But, a DW is a means rather than a goal … it is only a success if it is heavily used

• Following a clear design methodology is important.
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What next?

• Modeling for Data Warehouse
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