
Lecture 4

AGILE AND OTHER METHODS

PB007 Software Engineering I
Faculty of Informatics, Masaryk University

Fall 2020

1© Barbora Bühnová

Outline

 Software Process Models

 Agile Development

 Agile Practices

 Agile Methods

 UML State diagram

2© Barbora Bühnová

Software Process Models

Lecture 4/Part 1

3Chapter 22 Project management

Software process models

Chapter 2 Software Processes 4

Agile

Early SCRUM

Agile Manifesto

Spiral

Software process models

 The waterfall model

▪ Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

▪ Specification, development and validation are interleaved. May

be plan-driven or agile.

 Reuse-oriented software engineering

▪ The system is assembled from existing components. May be

plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from many different

models.
Chapter 2 Software Processes 5

Plan-driven and agile development

 Plan-driven development

▪ A plan-driven approach to software engineering is based around

separate development stages with the outputs to be produced

at each of these stages planned in advance.

▪ Not necessarily waterfall model – plan-driven, incremental

development is possible

 Agile development

▪ Specification, design, implementation and testing are inter-

leaved and the outputs from the development process are

decided through a process of negotiation during the software

development process.

6Chapter 3 Agile software development

The waterfall model

Chapter 2 Software Processes 7

Waterfall model benefits and problems

 The waterfall model is mostly used for large system

engineering projects where a system is developed at

several sites.

▪ In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

 Suitable for new versions of generic products.

▪ Well understood context, stable requirements.

 The process makes it difficult to respond to changing

customer requirements.

▪ Therefore, this model is only appropriate when the requirements

are well-understood and changes can be limited.

Chapter 2 Software Processes 8

Software prototyping

 A prototype is an initial version of a system used to

demonstrate concepts and try out design options.

 A prototype can be used in:

▪ The requirements engineering process to help with

requirements elicitation, consistency checking and validation;

▪ In design processes to explore design options and develop a

UI design;

 Prototypes often have poor internal structure and thus

should not become the foundation of the final system.

9Chapter 2 Software Processes

Boehm’s spiral model

 Process is represented as a spiral rather than as a

sequence of activities with backtracking.

 Each loop in the spiral represents a phase in the

process.

 No fixed phases such as specification or design - loops

in the spiral are chosen depending on what is required.

 Risks are explicitly assessed and resolved throughout

the process.

10Chapter 2 Software Processes

Boehm’s spiral model of the software

process

11Chapter 2 Software Processes

Spiral model sectors

 Objective setting

▪ Specific objectives for the phase are identified.

 Risk assessment and reduction

▪ Risks are assessed and activities put in place to reduce the key

risks.

 Development and validation

▪ A development model for the system is chosen which can be

any of the generic models.

 Planning

▪ The project is reviewed and the next phase of the spiral is

planned.

12Chapter 2 Software Processes

Rational Unified Process (RUP)

13© Papcunová

 A modern generic process commonly associated with the Unified

Modeling Language (UML).

 Normally described from 3 perspectives

▪ A dynamic perspective that shows phases over time

▪ A static perspective that shows process activities

▪ A practice perspective that suggests good practices to be used

during the process.

Rational Unified Process (RUP)

14Chapter 2 Software Processes

Phases in the Rational Unified Process

15Chapter 2 Software Processes

 Inception

▪ Establish the business case for the system.

 Elaboration

▪ Develop understanding of the problem domain and system architecture.

 Construction

▪ System design, programming and testing.

 Transition

▪ Deploy the system in its operating environment.

Iterative and incremental development

Chapter 2 Software Processes 16

 What is the difference between the two?

Incremental delivery

 Rather than deliver the system as a single delivery, the

development and delivery is broken down into

increments with each increment delivering part of the

required functionality.

 User requirements are prioritised and the highest

priority requirements are included in early increments.

 Once the development of an increment is started, the

requirements are frozen though requirements for later

increments can continue to evolve.

17Chapter 2 Software Processes

Incremental development benefits

 Customer value can be delivered with each increment

so system functionality is available earlier.

 Early increments act as a prototype to help elicit

requirements for later increments.

 Lower risk of overall project failure.

 The highest priority system services tend to receive the

most attention (design, testing, etc.).

Chapter 2 Software Processes 18

Incremental development problems

 The complete specification is hard to foresee.

▪ This becomes problematic when complete specification is

required in contract negotiation.

 System structure tends to degrade as new increments

are added.

▪ Unless time and money is spent on extensive refactoring,

regular changes tend to corrupt system structure and increase

the cost of incorporating further changes.

 It is hard to identify and effectively design basic facilities

shared by different parts of the system.

 The process is not visible, progress is hard to trace.

Chapter 2 Software Processes 19

Agile methods

 Agile methods:

▪ Focus on the code rather than the design

▪ Are based on an iterative and incremental approach to

software development

▪ Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

 The aim of agile methods is to reduce overheads in the

software process (e.g. by limiting documentation) and

to be able to respond quickly to changing

requirements without excessive rework.

20Chapter 3 Agile software development

Reuse-oriented software engineering

 Based on systematic reuse where systems are

integrated from existing components or COTS

(Commercial-off-the-shelf) systems.

 Process stages

▪ Component analysis;

▪ Requirements modification;

▪ System design with reuse;

▪ Development and integration.

 Reuse is now the standard approach for building many

types of business system

Chapter 2 Software Processes 21

Key points

 General process models describe the organization of

software processes.

▪ Examples of general models include the ‘waterfall’ model,

incremental development, and reuse-oriented development.

 Processes should include activities to cope with change.

▪ This may involve prototyping and incremental delivery, which

help to avoid poor early decisions on requirements and design.

 Agile methods are incremental development methods

that focus on frequent releases, reducing process

overheads and emphasize customer involvement.

Chapter 1 Introduction 22

23

Agile Development

Lecture 4/Part 2

© Papcunová

Agile

24© Papcunová

 Being agile means being responsive to a change

 A mindset established through 4 values, grounded by 12 principles

and manifested through many different practices

 A leadership philosophy that encourages teamwork, self-

organization and accountability

 Main aspects:

▪ Flexibility

▪ Work breakdown

▪ Value of teamwork

▪ Iterative improvements

▪ Cooperation with a client

Agile manifesto

25© I. Papcunová and B. Bühnová

The principles of agile methods

Principle Description

Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new

requirements and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer

specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and

exploited. Team members should be left to develop their own

ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the

system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in

the development process. Wherever possible, actively work to

eliminate complexity from the system.

26Chapter 3 Agile software development

Agile development

27© Papcunová

 A time boxed, iterative approach to software delivery that builds

software incrementally from the start of the project

 A group of software development methodologies based on iterative

development that focuses on frequent releases, reducing process

overheads and emphasize customer involvement through

collaboration between self-organizing cross-functional teams

https://content.altexsoft.com/media/2016/04/2-

agile-wp-1024x484.png

Benefits of agile development

28© Papcunová

 Customer satisfaction by continuous delivery of software

 Working software is delivered frequently

 Greater flexibility and adaptability to change

 Increased collaboration frequency and feedback

 Close cooperation between stakeholders and developers

 Focused on Business Value

 Increased project control

Problems and challenges in agile

29© Papcunová

 The project can easily get taken off track if the stakeholder is not

clear with what final outcome they want

 It can be difficult to keep the interest of customers who are

involved in the process

 The level of collaboration can be difficult to maintain

 The risk of losing long-term vision as there is no clear end of the

project

 Contracts may be a problem as with other approaches to iterative

development.

Problems and challenges in agile

 Documentation tends to get sidetracked

 Difficult to measure progress

 Because of their focus on small, tightly-integrated teams, one needs

to be careful when scaling agile methods to large systems.

 Prioritizing changes can be difficult where there are multiple

stakeholders.

 Maintaining simplicity requires extra work

30Chapter 3 Agile software development

Agile vs Waterfall

31© Papcunová

https://saigontechnology.com/assets/media/agile-scrum-vs-waterfall.png

Agile Practices

Lecture 4/Part 3

32© Papcunová

Agile practices

33© Barbora Bühnová

https://www.researchgate.net/publication/267429278_Agile_Practices_An_Assessment_of_Perception_of_Value_of_Professionals_on_the_Quality_Criteria_in_Performance_of_Projects

User Story

34© Papcunová

 The smallest unit of work in an agile framework

 An informal, natural language description of a feature or desired

outcome of a software system

 Often written from the perspective of an end user of a system to

influence the functionality of the system being developed

 May be written by various stakeholders including clients, users,

managers, or development team members

As a < type of user >, I want < some goal >

so that < some reason >.

Daily Scrum (Stand-up)

35© I. Papcunová and B. Bühnová

 A 15-minute time-boxed event for the Development Team to

synchronize activities and create a plan for the next 24 hours

 Optimizes team collaboration and performance by sharing the work

done since the last Daily Scrum/Stand-up and forecasting upcoming

Sprint work

 The Daily Scrum/Stand-up is held at the same time and place each

day

 Every team member should answer these questions:

▪ What did I work on yesterday?

▪ What am I working on today?

▪ What issues are blocking me?

Backlog

36© I. Papcunová and B. Bühnová

 List of items ordered by priority, prioritized by the product owner

 The items ranked highest on the list represent the most important or

urgent items for the team to complete

 Product backlog:

▪ The list of tasks to be done and contains a prioritized list of all

product requirements that a team maintains for a product

 Sprint backlog:

▪ The list of tasks from product backlog to be completed by the

development team during the next sprint

Backlog

37© Papcunová

S
p
ri
n
t
b
a
c
k
lo

g

Product backlog

U
s
e

r S
to

ry

Agile Methods

Lecture 4/Part 4

38© Papcunová

History of agile

39© Barbora BühnováRodríguez, Pilar, Mika Mäntylä, Markku Oivo, Lucy Ellen Lwakatare, Pertti Seppänen, and Pasi Kuvaja. "Advances in using agile and lean

processes for software development." In Advances in Computers, vol. 113, pp. 135-224. Elsevier, 2019.

History of agile

40© Barbora Bühnová

https://www.visual-paradigm.com/guide/agile-software-development/what-is-agile-software-development/

Agile umbrella

41© Papcunová

https://i.pinimg.com/originals/e8/8f/1d/e88f1dfcf8917879c7391f42eef449fa.jpg

Common points

42© Papcunová

 All Agile methods have these points in common:

▪ Iterative design process

▪ Effective communication and stakeholder engagement

▪ Aiming for quality and reliable software

▪ Short development cycle allowing regular delivery of

software

Kanban

43© Papcunová

 A workflow designed to help visualize the work, maximize efficiency

requiring real-time communication of capacity and full transparency

of work

 Work items are represented visually on a kanban board, allowing

team members to see the state of every piece of work at any time

 Two main practices are:

▪ Visualize

your work

▪ Limit work

in progress

(WIP)

https://kanbanize.com/wp-content/uploads/website-

images/kanban-resources/Kanban_board_elements.png

Scrum

44© Papcunová

 A set of meetings, tools, practices and roles to help teams structure

and manage their work

 Teams deliver products in iterations called sprints

 Continuously creating the highest priority parts of functionality and

regularly getting

customers’ feedback

h
ttp

s
://m

e
d
ia

.v
lp

t.u
s
/im

a
g
e
s
/k

a
ta

n
a
z
e
ro

8
6
/p

o
s
t/d

c
a
8
b
a
b
a

-9
8
3
4
-4

2
7
6
-a

e
8
5
-

8
7
0
7
5
3
a
b
b
0
d
d
/%

E
B

%
8
B

%
A

4
%

E
C

%
9
A

%
B

4

%
E

B
%

A
1
%

9
C

%
E

B
%

9
3
%

9
C

.jp
g
?
w

=
7
6
8

Scrum ceremonies

 Sprint

▪ Basic unit of development in Scrum, fixed duration 1-4 weeks.

 Sprint planning

▪ Planning event to discuss and agree on the scope of work that is intended to be

done during that sprint.

 Daily Scrum

▪ Each day during a sprint, the team holds a daily scrum (or stand-up) to let

everybody say what they completed yesterday, what they plan to complete today,

what impediment they face.

 Sprint review

▪ The team reviews the work that was completed and plans the work that was not

completed.

 Sprint retrospective

▪ Team reflects on the past sprint and identifies and agrees on continuous process

improvement actions.
45Chapter 3 Agile software development

SCRUM

46Chapter 3 Agile software development

Extreme programming

47© Papcunová

 An agile methodology

designed to improve the

quality of software and

its ability to adapt to the

changing needs of the

customer

 Iterative and frequent

small releases

 Practices:

▪ Pair programming

▪ Test driven

development (TDD)

https://www.hiclipart.com/free-transparent-

background-png-clipart-aqzrw

Feature driven development

48© Papcunová

 A client-centered, architecture-centered, and pragmatic software

process

 Ideal for long-term, complex projects looking for a simple but

comprehensive methodology with clear outcomes

 Principles

▪ Domain object modeling

▪ Developing by feature

▪ Individual class ownership

▪ Feature teams

▪ Inspections

▪ Configuration management

▪ Progress reports

Feature driven development

49© Papcunová

 Project stages:

▪ Develop An Overall Model

▪ Build a Features List

▪ Plan By Feature

▪ Design By Feature

▪ Build By Feature

https://www.atsc.org.my/wp-content/uploads/2015/01/FDD.jpg

Test driven development

50© Papcunová

 A process that relies on the repetition of a very short development

cycle: requirements are turned into very specific unit test cases, then

the code is improved so that the tests pass h
ttp

s
://c

o
d
ic

a
-im

a
g
e
s
-s

ta
g
in

g
.s

3
.e

u
-c

e
n
tra

l-

1
.a

m
a
z
o
n
a
w

s
.c

o
m

/c
3
c
b
6
4
e
3
a
c
2
d
4
e
a
e
8
9
0
0
2
e
0
c
c
c
5
7
8
9
d
d
.p

n
g

Project roles

51© Papcunová

 Product Owner

▪ An expert on the product and the customer’s needs and priorities. Works with the

development team daily to help clarify requirements and makes business

decisions.

 Scrum Master

▪ The team role responsible for ensuring the team lives agile values and principles

and follows the processes and practices that the team agreed they would use.

 Team Member

▪ The people who create the product. Programmers, testers, designers, writers,

data engineers, and anyone else with a hands-on role in product development.

 Stakeholder

▪ Anyone with an interest in the project. Provides regular feedback and is affected

by the project’s outcome.

Project roles

© Papcunová 52

https://wac-cdn.atlassian.com/dam/jcr:f085fea0-5149-4b9a-9fe1-

7e9fd32dc0da/Scrum-Development%20team-

revised.png?cdnVersion=1027

h
tt

p
s
:/

/w
a
c
-

c
d
n
.a

tl
a
s
s
ia

n
.c

o
m

/d
a
m

/j
c
r:

9

8
d
2
4
fa

a
-d

d
1
e
-4

5
6
3
-b

3
8
9
-

8
5
d
c
5
8
b
1
3
b
7
7
/S

c
ru

m
-

M
a
s
te

r-

re
v
is

e
d
.p

n
g
?
c
d
n
V

e
rs

io
n
=

1
0

2
7

https://wac-cdn.atlassian.com/dam/jcr:e65c7b56-55e3-

47e5-8e6b-ba80afa95a0f/Scrum-Product%20Owner-

revised.png?cdnVersion=1027

© Clear View Training 2010 v2.6 53

UML State Diagram

Lecture 4/Part 5

© Clear View Training 2010 v2.6 54

State machines

 Models life stages of a single model element – e.g. object, use case, module

 Every state machine exists in the context of a particular model element that:

▪ Has a clear life history modelled as a progression of states, transitions and events

▪ Responds to events dispatched from outside of the element

 There are two types of state machines:

▪ Behavioural state machines - define the behaviour of a model element

▪ Protocol state machines - model the protocol of a classifier

• E.g. call conditions and call ordering of an interface that itself has no behaviour

Off On Off On

turnOff

burnOut

light bulb

turnOn

© Clear View Training 2010 v2.6 55

Basic state machine syntax

 State = a situation or condition during the life of an object

▪ Determined at any point in time by the values of its

attributes, the relationships to other objects, or the

activities it is performing.

 Every state machine should have one initial state
which indicates the first state of the sequence

 Unless the states cycle endlessly, state machines
should have a final state which terminates its lifecycle

A B
anEvent

initial state transition

event

state final state

Color

red : int

green : int

blue : int

How many states?

© Clear View Training 2010 v2.6 56

State syntax

 Actions are instantaneous

and uninterruptible

▪ Entry actions occur

immediately on state entry

▪ Exit actions occur

immediately on state leaving

 Internal transitions occur

within the state. They do

not fire transition to a new

state

 Activities take a finite

amount of time and are

interruptible

EnteringPassword

entry/display passwd dialog

exit/validate password

keypress/ echo "*"

help/display help

do/get password

entry and

exit actions

internal

transitions

internal

activity

Action syntax: eventTrigger / action

Activity syntax: do / activity

state name

© Clear View Training 2010 v2.6 57

Transitions

A B
event1, event2 [guard condition] / act1, act2

behavioral state machine

C D
[precondition] event1, event2 / [postcondition]

protocol state machine {protocol}
Protocol

state machine

Specifies legal

sequences of

events.

Behavioral

state machine

Specifies

object’s

reactions to

events.

events guard condition actions

precondition events postcondition

© Clear View Training 2010 v2.6 58

 Choice pseudo state
directs its single incoming
transition to one of its
outgoing transitions

▪ Each outgoing transition
must have a mutually
exclusive guard condition

▪ Equivalent to two outgoing
transitions from one state

 Junction pseudo state
connects multiple incoming
transitions into one (or more)
transitions.

▪ When there are more
outgoing transitions, they
must have guard conditions

Unpaid

FullyPaid PartiallyPaidOverPaid

[payment == balance]

[payment > balance] [payment < balance]

acceptPayment acceptPayment

makeRefund

BankLoan

choice pseudo-state

Choice and junction pseudo states

junction

pseudo state

© Clear View Training 2010 v2.6 59

Events

 "The specification of a noteworthy
occurrence that has location in time and
space"

 Events trigger transitions in state machines

 Events can be shown externally, on
transitions, or internally within states
(internal transitions)

 There are four types of event:

▪ Call event

▪ Signal event

▪ Change event

▪ Time event

Off

On

turnOff turnOn

event

© Clear View Training 2010 v2.6 60

close()

Call event

 A call for an operation
execution

 The event should have
the same signature as an
operation of the context
class

 A sequence of actions
may be specified for a
call event - they may use
attributes and operations
of the context class

 The return value must
match the return type of
the operation

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

internal call event action

conditionexternal call event

entry action

SimpleBankAccount

© Clear View Training 2010 v2.6 61

close()

Signal events

 A signal is a

package of

information that is

sent

asynchronously

between objects

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

send a signal

«signal»
OverdrawnAccount

date : Date

accountNumber : long

amountOverdrawn : long
Calling borrowerOverdrawnAccount

signal receipt

© Clear View Training 2010 v2.6 62

close()

Change events

 The action is
performed when the
Boolean expression
transitions from false
to true

▪ The event is edge
triggered on a
false to true
transition

▪ The values in the
Boolean expression
must be constants,
globals or attributes
of the context class

 A change event
implies continually
testing the condition
whilst in the state

InCredit

deposit(m)/ balance = balance + m

balance >= 5000 / notifyManager()

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

Boolean

expression

© Clear View Training 2010 v2.6 63

Time events

 Time events occur when a

time expression becomes

true

 There are two keywords,

after and when

 Elapsed time:

▪ after(3 months)

 Absolute time:

▪ when(date =20/3/2000)

Overdrawn

balance < overdraftLimit / notifyManager

Frozen

after(3 months)

Context: CreditAccount class

© Clear View Training 2010 v2.6 64

Composite states

 Have one or more regions that

each contain a nested

submachine

▪ Simple composite state

• exactly one region

▪ Orthogonal composite state

• two or more regions

 The final state terminates its

enclosing region – all other

regions continue to execute

 The terminate pseudo-state

terminates the whole state

machine

A composite state

A B

C

region 1

region 2

submachines

Another composite state

D E

F

terminate

pseudo-state

© Clear View Training 2010 v2.6 65

Orthogonal composite states

 Has two or more regions

 When we enter the superstate, both submachines start

executing concurrently - this is an implicit fork

do/ initializeSecuritySensor

Initializing

InitializingFireSensors

do/ initializeFireSensor

InitializingSecuritySensors

Initializing composite state details

do/ monitorSecuritySensor

Monitoring

MonitoringFireSensors

do/ monitorFireSensor

MonitoringSecuritySensors

fire

intruder

Monitoring composite state details

Synchronized exit - exit the superstate when both

regions have terminated

Unsynchronized exit - exit the superstate when either

region terminates. The other region continues

© Clear View Training 2010 v2.6 66

[dialtone]

after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier [carrier]

cancel

Simple composite states

do/ dialISP

DialingISP

entry/ offHook

WaitingForDialtone
Dialing

WaitingForCarrier

entry

pseudo

state

notConnected

dial

connectedexit pseudo-state

NotConnected Connected

entry/ onHook exit/ onHook

do/ useConnection

ISPDialer

the nested states inherit the cancel transition

© Clear View Training 2010 v2.6 67

Key points

 Behavioral and protocol state machines

 States

▪ Initial and final

▪ Exit and entry actions, activities

 Transitions

▪ Guard conditions, actions

 Events

▪ Call, signal, change and time

 Composite states

▪ Simple and orthogonal composite states

