Lecture 4

AGILE AND OTHER METHODS

PB0O07 Software Engineering |
Faculty of Informatics, Masaryk University

Fall 2020

5 SRTIS 1, v,
V © Barbora Buhnova 1
‘-ﬂ”'ﬁij\%"@é

Outline

< Software Process Models
< Agile Development

< Agile Practices

< Agile Methods

< UML State diagram

© Barbora Bliihnova

Software Process Models

Lecture 4/Part 1

SRTIS Iy
& %,

7@ Chapter 22 Project management
‘:"??’7'1&7\:./\5"\5;

Software process models

Waterfall

Agile Manifesto

Late RUP
Predictive
Pre-Planned
1960 1970 1980 1990 2010
lterative
Adaptive Early RUP
Trial and Error Early SCRUM

Single expert
developers

Chapter 2 Software Processes

Waterfall

Analysis Evaluation

Plﬂ““mg Development

Aglle

Agile

idea
concept

&
-] » &
% %

% %“59; avdﬁﬁf) &?
short problem D, .,pq‘
description ¥ suojsal

dh

software develop ment

release

feedback

~

to market

Software process models

< The waterfall model

= Plan-driven model. Separate and distinct phases of specification
and development.

< Incremental development

= Specification, development and validation are interleaved. May
be plan-driven or agile.

< Reuse-oriented software engineering

* The system is assembled from existing components. May be
plan-driven or agile.

<> In practice, most large systems are developed using a
process that incorporates elements from many different
models.

L
& %,

%,

Chapter 2 Software Processes 5

Plan-driven and agile development

< Plan-driven development

= A plan-driven approach to software engineering is based around
separate development stages with the outputs to be produced
at each of these stages planned in advance.

»= Not necessarily waterfall model — plan-driven, incremental
development is possible

< Agile development

= Specification, design, implementation and testing are inter-
leaved and the outputs from the development process are

decided through a process of negotiation during the software
development process.

Chapter 3 Agile software development

The waterfall model

Reguirements
definition
L

System and
software design

Implementation

and unit testing

Integration and
system testing

L

Operation and
maintenance

W ; Chapter 2 Software Processes 7

Waterfall model benefits and problems

< The waterfall model is mostly used for large system

engineering projects where a system is developed at
several sites.

* |n those circumstances, the plan-driven nature of the waterfall
model helps coordinate the work.

< Suitable for new versions of generic products.

= Well understood context, stable requirements.

<> The process makes it difficult to respond to changing
customer requirements.

= Therefore, this model is only appropriate when the requirements
are well-understood and changes can be limited.

Chapter 2 Software Processes

Software prototyping

< A prototype Is an initial version of a system used to
demonstrate concepts and try out design options.

<> A prototype can be used in:

* The requirements engineering process to help with
requirements elicitation, consistency checking and validation;

» |n design processes to explore design options and develop a
Ul design;

<> Prototypes often have poor internal structure and thus
should not become the foundation of the final system.

Chapter 2 Software Processes

Boehm’s spiral model

< Process is represented as a spiral rather than as a
sequence of activities with backtracking.

<> Each loop in the spiral represents a phase in the
process.

<> No fixed phases such as specification or design - loops
In the spiral are chosen depending on what is required.

< Risks are explicitly assessed and resolved throughout
the process.

Chapter 2 Software Processes 10

Boehm’s spiral model of the software .
process

mﬂ:::]ne_“?iﬁ“' ,__f"d_d__—.__—___“' Evaluate alternatives,
ative T identify; resolve risks
constraints ")

- Profo-
REWIEW analysis

Rick
e ——t— _____E_nih'sui
Risk

analysis

_ Prototype 2
I'I Risk

II

.I] |II |

' \ ||. Requirerments plan
Life-cycle plan Concept of
Dperation

Integration

and test plan
Flan next phase -__________p_ .
i tast
Samice
e next-level product
RTIS I
Sl “,
Chapter 2 Software Processes 11

o™

%y, W
KETPUC

Spiral model sectors

<> ODbjective setting
= Specific objectives for the phase are identified.
< Risk assessment and reduction

= Risks are assessed and activities put in place to reduce the key
risks.

< Development and validation

= A development model for the system is chosen which can be
any of the generic models.

< Planning

= The project is reviewed and the next phase of the spiral is
planned.

Chapter 2 Software Processes 12

Rational Unified Process (RUP)

< A modern generic process commonly associated with the Unified
Modeling Language (UML).

<> Normally described from 3 perspectives

= A dynamic perspective that shows phases over time
= A static perspective that shows process activities

= A practice perspective that suggests good practices to be used
during the process.

Understand the problem Understand the solution Have the solution Have the system

INCEPTION ELABORATION CONSTRUCTION TRANSITION

© Papcunova

13

Rational Unified Process (RUP)

Workflows

Business Modeling
Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

Phases
Elaboration Construction

Inception Transition

1
I'u
Illl'n

I/
,a

- ! e
= = PN
i - H
' ' '
i I— —
' ' '
L] L] L]
Const || Const | Const || Tran || Tran
Initial || Elab #1 | | Elab 2| Cont || L8] R T A

Iterations

Chapter 2 Software Processes

14

Phases in the Rational Unified Process

< Inception
= Establish the business case for the system.
< Elaboration
= Develop understanding of the problem domain and system architecture.
< Construction
= System design, programming and testing.
< Transition

= Deploy the system in its operating environment.

' o
I\ Phase iteration
-
Inception Elaboration Construction Transition

V Chapter 2 Software Processes 15
Eﬂh- Jlgr‘ii:

lterative and incremental development

< What is the difference between the two?

Develop system
increment

Design system
architecture

Define outline Assign requirements
requirements to increments

Validate Integrate \alidate
increment increment system

System
incomplete?

Deploy
increment

System

complete?

Final
system

@S Chapter 2 Software Processes

2, d
-
@opr =
A5 MAS™

16

Incremental delivery

<> Rather than deliver the system as a single delivery, the
development and delivery is broken down into
Increments with each increment delivering part of the
required functionality.

< User requirements are prioritised and the highest
priority requirements are included in early increments.

<> Once the development of an increment is started, the
requirements are frozen though requirements for later
Increments can continue to evolve.

Chapter 2 Software Processes 17

Incremental development benefits

< Customer value can be delivered with each increment
so system functionality is available earlier.

< Early increments act as a prototype to help elicit
requirements for later increments.

< Lower risk of overall project failure.

< The highest priority system services tend to receive the
most attention (design, testing, etc.).

Chapter 2 Software Processes 18

Incremental development problems

< The complete specification is hard to foresee.

= This becomes problematic when complete specification is
required in contract negotiation.

<> System structure tends to degrade as new increments
are added.

= Unless time and money is spent on extensive refactoring,
regular changes tend to corrupt system structure and increase
the cost of incorporating further changes.

<> It is hard to identify and effectively design basic facilities
shared by different parts of the system.

<> The process is not visible, progress is hard to trace.

Chapter 2 Software Processes 19

Agile methods

< Agile methods:

= Focus on the code rather than the design

= Are based on an iterative and incremental approach to
software development

= Are intended to deliver working software quickly and evolve this
quickly to meet changing requirements.
< The aim of agile methods is to reduce overheads in the
software process (e.g. by limiting documentation) and

to be able to respond quickly to changing
requirements without excessive rework.

Chapter 3 Agile software development 20

Reuse-oriented software engineering

<> Based on systematic reuse where systems are
Integrated from existing components or COTS
(Commercial-off-the-shelf) systems.

<> Process stages

= Component analysis;

» Requirements modification;

= System design with reuse;

= Development and integration.

< Reuse is now the standard approach for building many
types of business system

Chapter 2 Software Processes 21

Key points

< General process models describe the organization of
software processes.

= Examples of general models include the ‘waterfall’ model,
iIncremental development, and reuse-oriented development.

<> Processes should include activities to cope with change.

* This may involve prototyping and incremental delivery, which
help to avoid poor early decisions on requirements and design.

< Agile methods are incremental development methods
that focus on frequent releases, reducing process
overheads and emphasize customer involvement.

Chapter 1 Introduction 22

Agile Development

Lecture 4/Part 2

T1S g,
& > \Fo“tl
& B,
P /& © Papcunova
%, e
Hrrg S

23

Agile

<> Being agile means being responsive to a change

< A mindset established through 4 values, grounded by 12 principles
and manifested through many different practices

< A leadership philosophy that encourages teamwork, self-
organization and accountability

<> Main aspects:
= Flexibility
» Work breakdown
= Value of teamwork
= |terative improvements
= Cooperation with a client

© Papcunova 24

Agile manifesto

The Agile Manifesto

Individuals and Interactions Processes and Tools

Working Product Comprehensive Documentation
Customer Collaboration Contract Negotiation
Responding to Change Following a Plan

That is, while there is value in the items on the right,

we value the items on the left more.
www.agilemanifesto.org

& “,

g /) , . ;

V © 1. Papcunova and B. Biihnova 25
1.'? __,"’ {S

The principles of agile methods

Customer involvement Customers should be closely involved throughout the

Incremental delivery

People not process

Embrace change

Maintain simplicity

YIS Iy,
oM o,
Iy -
) E; s
2. W&
Sry. o

development process. Their role is provide and prioritize new
requirements and to evaluate the iterations of the system.

The software is developed in increments with the customer
specifying the requirements to be included in each increment.

The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive processes.

Expect the system requirements to change and so design the
system to accommodate these changes.

Focus on simplicity in both the software being developed and in
the development process. Wherever possible, actively work to
eliminate complexity from the system.

Chapter 3 Agile software development 26

Agile development

< Atime boxed, iterative approach to software delivery that builds
software incrementally from the start of the project

< A group of software development methodologies based on iterative
development that focuses on frequent releases, reducing process
overheads and emphasize customer involvement through
collaboration between self-organizing cross-functional teams

G 0
\a &
PRODUCT SPRINT N\ *-"}o FINAL
BACKLOG BACKLOG ?‘i" 1 PRODUCT
Sl
Q I
* s
o—o0 o—o0 SPRINT o—o - @ -
o s ~
m |
~
-
o ‘:”7}
y 0 &
-'3{!1 L‘-‘ﬁ

© Papcunova 27

Benefits of agile development

< Customer satisfaction by continuous delivery of software
< Working software is delivered frequently

< Greater flexibility and adaptability to change

< Increased collaboration frequency and feedback

< Close cooperation between stakeholders and developers
< Focused on Business Value

<> Increased project control

© Papcunova 28

Problems and challenges in agile

< The project can easily get taken off track if the stakeholder is not
clear with what final outcome they want

< It can be difficult to keep the interest of customers who are
Involved in the process

< The level of collaboration can be difficult to maintain

< The risk of losing long-term vision as there is no clear end of the
project

< Contracts may be a problem as with other approaches to iterative
development.

© Papcunova 29

Problems and challenges in agile

< Documentation tends to get sidetracked
< Difficult to measure progress

<> Because of their focus on small, tightly-integrated teams, one needs
to be careful when scaling agile methods to large systems.

< Prioritizing changes can be difficult where there are multiple
stakeholders.

< Maintaining simplicity requires extra work

Chapter 3 Agile software development 30

Agile vs Waterfall

Agile Waterfall
@ @ Define requirements
Track and
Monitor

Requirements

i ()

Release Agile
development

Plan

Test

Develop Design @

V © Papcunova 31
s, W/ ﬁ@

Agile Practices

Lecture 4/Part 3

© Papcunova

32

Agile methodologies practices

Project
phases
XP Scrum ASD FDD DSDM Crystal TDD
S Incremental design . —_— I _ Develop Overall Study of business , - .)
Planning Spike Solutions Sprint Planning Adaptative cycle Model objective Refine features
Requirements CRC Cards Product Backlog Mission L -
Analysis User Story Sprint Backlog declaration veatures list User stocy vison document -
Development by Pareto principle Fixed iterations
Rul 10 2-4 k 1 features SOwa% Holistic Diversit Work rested
ules minutes Build -4 weeks cycle - catures Reversible olistic Diversity ork res
Regular Builds ~ "~ Strategy
changes
Sn;alllcam:s Small teams C o Several teams SU.IU
Teams Pairs Multi-disciplinary Features teams Small teams Pairs

Lead programmer
Refactoring

Continuous integration

Codification Pair programming
Collective code

ownership
Estimatives Planning games
Meetings Stand up meetings

Monitoring Project Velocity

Unit tests Screening

Tests bugs

Releases Frequent

Multi-disciplinary

Sprint planning

Stand up meetings
Sprint review

Bumdown Chart

Kanban

Frequent

Individual
Technical review ownership code
Inspections
By mission By Features

Analysis focused Domain

in customer Walkthrough
Milestones Milestones
Integrated tests Integrated tests
Frequent Frequent

working in parallel

Implementation of

the prototypes

By
Features

Business review

Milestones

Integrated tests

Frequent

By Features

Workshop analysis

Milestones

Automated tests

Frequent

Small teams

Pairing
Refactoring
Continuous
integration

Test first

Frequent

httpsﬁ:({wmpé!. researchgate.net/publication/267429278_Agile_Practices_An_Assessment_of_Perception_of_Value_of_Professionals_on_the_Quality_Criteria_in_Performance_of_Projects

FA
gy ot

R

gy,
s MASP

© Barbora Bliihnova

33

User Story

<> The smallest unit of work in an agile framework

< An informal, natural language description of a feature or desired
outcome of a software system

< Often written from the perspective of an end user of a system to
Influence the functionality of the system being developed

<> May be written by various stakeholders including clients, users,
managers, or development team members

AS a < type of user >, T want < some goal >
so that < some reasow >,

© Papcunova 34

Daily Scrum (Stand-up)

< A 15-minute time-boxed event for the Development Team to
synchronize activities and create a plan for the next 24 hours

< Optimizes team collaboration and performance by sharing the work
done since the last Daily Scrum/Stand-up and forecasting upcoming
Sprint work

< The Daily Scrum/Stand-up is held at the same time and place each
day
< Every team member should answer these questions:

= What did | work on yesterday?
= What am | working on today?
» What issues are blocking me?

© |. Papcunova and B. Bihnova 35

Backlog

<> List of items ordered by priority, prioritized by the product owner

< The items ranked highest on the list represent the most important or
urgent items for the team to complete

< Product backlog:

= The list of tasks to be done and contains a prioritized list of all
product requirements that a team maintains for a product

< Sprint backlog:

= The list of tasks from product backlog to be completed by the
development team during the next sprint

s MAIR T

Specific Measurable Achievable Relevant Time-bounded

& RIS J.\‘;b&'li
7@ © 1. Papcunova and B. Bihnova 36
éé‘”'«aij\s*“*\:

Backlog

Umh\uxm.
Usormn Prescans
Stoos [owe

Sprint backlog

018 I,
IS

2,

G

Yy, W
KETPUC

v Scrum Sprint1 6 issues

Implement the new weather alert system +- A
02/Apr/18 1:21 PM « 13/Apr/18 1:21 PM

I3 -

Backlog 16 issues

(< I < N = B < I <.

sn €D O

Linked pages 0 oo

Recalibrate the semi-coherer VERSION 1.0 @ SMART-43 T 140h
Add app alert for changed weather events f SMART 472 1 -
Update notifications settings with weather option ﬁ SMART-8 ¥ 5Bh
Push notifications documentation upc Epic 456 , SMART-3 T -
Low-power indicator optimasation on (JEBIEH2S) ' SMARTE ¥ -

Investigate power outages , SMART-10 1 3h

Create sprint

@ svArT-12 1 -

@ svarT-16 T -

Build the solar panel

Invert every graviton attractor
Update positronic circuits to amplify our multiphasic re SMART-9 1T -
SMART-4 + 6h

New control panel design

Account for antimatter modulatc VERSION 1.0 @ SMART-15 T 3h

Product backlog

© Papcunova

- and make over 50,000+ customers...

0 SMART-17 ‘4'= © o
Add app alert for changed
weather events

@ @ oo

Status

As a user | want to know when bad weather is
approaching so | can cover or protect my solar
panels.

Scope & requirements

* Software change only
¢ Third party weather tracking API
¢ Does not include app alert development

¢ Restore release notes

http://google.com

Attachments

SEMMERVILLE

N

NGINEERIN

A101S 18sN

37

Agile Methods

Lecture 4/Part 4

© Papcunova

38

I seMMERVILLE
[_ ML 230 tHE

History of agile

==)
i
Traditional Development Agile and Lean Development
Heavyweight, stage-based, Lightweight, flexible, adaptive
static processes processes

A

v

Continuous Deployment
(Humble and Farley 2010)

Lean Software Development |
(Poppendiecks 2003)
—pe
Agile Methods
(Agile Manifesto 2001)
Unified Process
Spiral Model (Jacobson et al. 1999)
(Boehm 1988)
Prototyping Model T
(Agresti 1986)
Iterative Enhancement Model
(Basili and Turner 1975)
Waterfall Model —_
(Royce 1970)
-]- L
1970 1975 1986 1986 1999 2001 2003 2010

Rodriguez, Pilar, Mika Mantyla, Markku Oivo, Lucy Ellen Lwakatare, Pertti Seppénen, and Pasi Kuvaja. "Advances in using agile and lean
processes for software development." In Advances in Computers, vol. 113, pp. 135-224. Elsevier, 2019.

History of agile

— Scrum

(Ken Schwaber, Jeff Sutherand)

Waterfall Model Adaptive Software Development (ASD)

(Winston W. Royce) (Jim Highsmith, Sam Bayer)

Concept of FDD
“Adaptive Software Development” (Jeff De Luca)
(Edmonds, E. A))
DSMD . .
Rapid App. Development (DSDM Consortium) Agile Manifesto
(James Martin)

1970 1974 1980 1980 1991 1995 1998
Lean SW Dev.
Crystal Clear _
(Alistair Cockburn) (Marry & Tom Poppendieck)
XP

(Kent Beck, Ward Cunningham and Rom Jeffries)

https://www.visual-paradigm.com/guide/agile-software-development/what-is-agile-software-development/

RIS I,

s."“(z>

© Barbora Bihnova 40

}%}MA g

ﬁr@n- FA’C(JC?'
K

s s

Agile umbrella

Scrum | XP
DSDM
Crystal FDD
Kanban RUP

and few more...

V © Papcunova
I-% __,"\‘?&,:P

More Prescriptive
more rules to follow

RUP (120+)

RUP has over 30 roles, over 20
activities, and over 70 artifacts

XP (13)

Scrum (9)

Kanban (3)

Do Whatever!! (0)

More Adaptive

fewer rules to follow

41

Common points

< All Agile methods have these points in common:

= [terative designh process
= Effective communication and stakeholder engagement
= Aiming for quality and reliable software

= Short development cycle allowing regular delivery of
software

© Papcunova 42

Kanban

< A workflow designed to help visualize the work, maximize efficiency
requiring real-time communication of capacity and full transparency
of work

< Work items are represented visually on a kanban board, allowing
team members to see the state of every piece of work at any time

< Two main practices are:

= Visualize Requested In Progress
your work) (13

= Limit work
In progress
(WIP)

© Papcunova 43

Scrum

< A set of meetings, tools, practices and roles to help teams structure
and manage their work

< Teams deliver products in iterations called sprints

<> Continuously creating the highest priority parts of functionality and

regularly getting C@j
customers’ feedback

Scrum Master

Daily Scrum

?ﬁ % SPRINT
1-4 WEEKS
Product Owner Team

&R

Sprint
Review
+
Sprint
Retrospective

=3 =
V=
g_ i

Product Sprint Planning Sprint Finished

P My,

15 /% Backlog Meeting Backlog i Work

© Papcunova 44
?ﬂ”'ﬁir\%"“{k

Scrum ceremonies

< Sprint
= Basic unit of development in Scrum, fixed duration 1-4 weeks.
< Sprint planning

= Planning event to discuss and agree on the scope of work that is intended to be
done during that sprint.

< Daily Scrum

= Each day during a sprint, the team holds a daily scrum (or stand-up) to let
everybody say what they completed yesterday, what they plan to complete today,
what impediment they face.

< Sprint review

= The team reviews the work that was completed and plans the work that was not
completed.

< Sprint retrospective

= Team reflects on the past sprint and identifies and agrees on continuous process

Improvement actions.
Chapter 3 Agile software development 45

The Agile - Scrum Framework

Inputs from Executives,

Team, Stakeholders, @ Burndown/up
Customers, Users m Charts G hdd L}
SErim Daily Scrum

Meeting

Master

~ Every
24 Hours

i S T
Product Owner The Team Sprint Review
r; Team selects < 4 @
~ | starting at top m
3 e 1 as much as it
i ired: can commit .
5 Sféi‘i.‘,‘,'.;i" 1 to deliver by Sprint Sf;;"';%';?ieea::l;:d Finished Work
6 | stories,.. || end of Sprint
7 Backlog do not change ® @
8 J Sprint
Product Planning
Backlog Meeting e
prin
Retrospective

WS Chapter 3 Agile software development 46
Y W &

Extreme programming

<> An agile methodology
designed to improve the
guality of software and
its ability to adapt to the
changing needs of the
customer

< lterative and frequent
small releases

< Practices:
= Pair programming

= Test driven
development (TDD)

© Papcunova

Planning/Feedback Loops

Release Plan
Months

Iteration Plan
Weeks

Acceptance Test

Days

Stand Up Meeting

One day

Pair Negotiation

Hours I

Unit Test

Minutes

Pair Programming

Code

47

Feature driven development

< A client-centered, architecture-centered, and pragmatic software
process

<> ldeal for long-term, complex projects looking for a simple but
comprehensive methodology with clear outcomes

< Principles

Domain object modeling
Developing by feature
Individual class ownership
Feature teams

Inspections

Configuration management
Progress reports

© Papcunova 48

Feature driven development

< Project stages:

= Develop An Overall Model
= Build a Features List

= Plan By Feature

= Design By Feature

= Build By Feature

g 4
- PRTIS Iy, Fo,
& ‘%
V © Papcunova 49
W N ¢
MASH

Test driven development

< A process that relies on the repetition of a very short development
cycle: requirements are turned into very specific unit test cases, then
the code is improved so that the tests pass

Start here s s \Write a test

Test Driven
Development

1S N,
é‘i’?'“r J\;Oﬁ%
A& .
s X 3 © Papcunova 50
%r”'isiuf\%"ék

Project roles

< Product Owner

= An expert on the product and the customer’s needs and priorities. Works with the
development team daily to help clarify requirements and makes business
decisions.

< Scrum Master

= The team role responsible for ensuring the team lives agile values and principles
and follows the processes and practices that the team agreed they would use.

< Team Member

= The people who create the product. Programmers, testers, designers, writers,
data engineers, and anyone else with a hands-on role in product development.

< Stakeholder

= Anyone with an interest in the project. Provides regular feedback and is affected
by the project’s outcome.

© Papcunova 51

Project roles

® EMPIRICISM

TRANSPARENCY @

@® SCRUM VALUES

SELF ORGANIZATION @
® REMOVE BLOCKERS

@ RELEASE MANAGEMENT

PROTECTING THE TEAM @
MANAGING THE
SCRUM BACKLOG

<

- &
...... ® UX

SELF ORGANIZATION @®--:--- . .
@ STAKEHOLDER MANAGEMENT

DESIGN @

52

DEVELOPMENT @

© Papcunova

SKTIS I,
B oy
&l

3
B,
T =

);tJ

ey,

UML State Diagram

Lecture 4/Part 5

LIS I
& %,

7@ © Clear View Training 2010 v2.6
‘:"??’7'1&7\:./\5"\5;

53

State machines

<> Models life stages of a single model element — e.g. object, use case, module

< Every state machine exists in the context of a particular model element that:

= Has a clear life history modelled as a progression of states, transitions and events
= Responds to events dispatched from outside of the element

< There are two types of state machines:

= Behavioural state machines - define the behaviour of a model element

= Protocol state machines - model the protocol of a classifier
« E.g. call conditions and call ordering of an interface that itself has no behaviour

light bulb |
turnOn
— (] burnOut

turnOff

Off

@7 © Clear View Training 2010 v2.6 54

Basic state machine syntax e
_ event
/‘ A } / anEvent >[B :
initial state transition state/ final\state

< State = a situation or condition during the life of an object

= Determined at any point in time by the values of its

. : . : 2
attributes, the relationships to other objects, or the How many states”

activities it is performing. Color
< Every state machine should have one initial state _
which indicates the first state of the sequence red :int
] green : Int
< Unless the states cycle endlessly, state machines blue int
should have a final state which terminates its lifecycle

© Clear View Training 2010 v2.6 55

State syntax

< Actions are instantaneous

and uninterruptible

= Entry actions occur
immediately on state entry

= EXit actions occur
iImmediately on state leaving

Internal transitions occur
within the state. They do
not fire transition to a new
State

Activities take a finite
amount of time and are
iInterruptible

TIS I,
o .\,.0}”
&

&, £
V
’2& W, &

L7,
KETPUC

state name <

entry and)
exit actions

internal
transitions
internal {
activity

~

/Entering Password

entry/display passwd dialog
exit/validate password
keypress/ echo "*"

help/display help

Qo/get password

/

Action syntax: eventTrigger / action
Activity syntax: do / activity

© Clear View Training 2010 v2.6

56

Transitions

Behavioral
state machine

Specifies
object’s
reactions to
events.

Protocol
state machine

Specifies legal
sequences of
events.

VIS I,
o PTIS
& - s
P -
£ \ s
%, -
5, =

Fras aas

behavioral state machine ’

W eventl, event2 [guard condition] / actl, act2

e ' Y

A
. AN /N J

events guard condition actions

protocol state machine {protocol} ’

W [precondition] eventl, event2 / [postcondition]

Y ' Y

c]
g AN VAN J

precondition events postcondition

)

© Clear View Training 2010 v2.6

57

Choice and junction pseudo states

< Choice pseudo state
directs its single incoming
transition to one of its
outgoing transitions

= Each outgoing transition
must have a mutually
exclusive guard condition

= Equivalent to two outgoing
transitions from one state

< Junction pseudo state
connects multiple incoming
transitions into one (or more)
transitions.

= When there are more
outgoing transitions, they
must have guard conditions

BankLoan J

choice pseudo-state

[payment > balance]

A\ 4 . .
. junction
Unpaid

acceptPayment/
Z
N

N4

pseudo state

acceptPayment

[payment < balance]

[payment =

= balance]

N4
., | makeRefund (
OverPaid >

q FullyPaid } [PartiaIIyPai

i

Y © Clear View Training 2010 v2.6

58

Events

< "The specification of a noteworthy
occurrence that has location in time and
space”

<>

Events trigger transitions in state machines

<>

Events can be shown externally, on [O f j
transitions, or internally within states
(internal transitions) | T

<> There are four types of event: turnOff turnOn
= Call event ‘

= Signal event
= Change event [On]

= Time event

event

© Clear View Training 2010 v2.6 59

Call event

A call for an operation
execution

The event should have
the same signature as an
operation of the context
class

A sequence of actions
may be specified for a
call event - they may use
attributes and operations
of the context class

The return value must
match the return type of
the operation

SimpleBankAccount)

internal call event

action
/ close()

\{InCredit

[]

Eieposit(m)/ balance = balllance +m

external call event

withdraw(m)
[balance < m]

condition

/

withdraw(m)
[balance >= m]

(RejectingWithdrawaI

W (AcceptingWithdrawaI W

Lentry/ logRejectedWithdrawal()
/

J Lentry/ balance = balance - m J

entry action

© Clear View Training 2010 v2.6

60

Signal events = e
E
. . SimpleBankAccount)
< Asignalis a
package_ of | osel
iInformation that is _
sent (lnCredlt W
asynchronously Ldeposn(m)/ balance = balance + m J
between ObJECtS withdraw(m) withdraw(m)
[balance < m] [balance >= m]
(RejectingWithdrawaI W (AcceptingWithdrawaI W
«signal» Lentry/ logRejectedWithdrawal() J Lentry/ balance = balance - m J
OverdrawnAccount
date : Date
accountNumber : long OverdrawnAccount OverdrawnAccount Calling borrower
amountOverdrawn : long
send a signal signal receipt \l/

<—7 © Clear View Training 2010 v2.6 61

Change events == |
i
< The action is SimpleBankAccount)
performed when the
Boolean expression
transitions from false g C\'OSGO
to true InCredit
= The eventis edge > deposit(m)/ balance = balance + m <
triggered on a Boolean /\balance >= 5000 / notifyManager()
false to true expression
transition withdraw(m) withdraw(m)
= The values in the [balance < m] [balance >=m]
Boolean expression

must be constants, (RejectingWithdrawaI W (AcceptingWithdrawaI W

globals or attributes

of the context class Lentry/ logRejectedWithdrawal() J Lentry/ balance = balance - m J

< Achange event

implies continually
testing the condition OverdrawnAcco@

whilst in the state

V © Clear View Training 2010 v2.6 62

Time events

time expression becomes

< Time events occur when a l
true

(Overdrawn
tnalance < overdraftLimit / notifyManager J

<> There are two keywords,
after and when

<> Elapsed time: after(3 months)
= after(3 months) =
_ [Frozen }
<> Absolute time:

= when(date =20/3/2000) _
Context: CreditAccount class

© Clear View Training 2010 v2.6 63

Composite states

<> Have one or more regions that

each contain a nested (/Acomposite state)
submachine cgont | | @ N @
= Simple composite state - A ______ S B ________________ submachines
 exactly one region egon2 { | @ ¢ ®
= Orthogonal composite state . J
* fwo or more regions / . \
< The final state terminates its Another Gomposite state
enclosing region — all other &> p e HX\\
regions continue to execute =~ [o crate
< The terminate pseudo-state \‘9 E @J

terminates the whole state
machine

@7 © Clear View Training 2010 v2.6 64

Orthogonal composite states

<> Has two or more regions

< When we enter the superstate, both submachines start
executing concurrently - this is an implicit fork

Synchronized exit - exit the superstate when both Unsynchronized exit - exit the superstate when either

regions have terminated region terminates. The other region continues
Initializing composite state details) Monitoring composite state details)
/Initializing \ /I\/Ionitoring \
(o) (A) fire
. InitializingFireSensors @ ‘ MonitoringFireSensors ®
_do/ initializeFireSensor _do/ monitorFireSensor
(-y . . . - \ (\ H
. InitializingSecuritySensors @ ’ MonitoringSecuritySensors intruder
\ __ do/ initializeSecuritySensor / \ | do/ monitorSecuritySensor) j@

© Clear View Training 2010 v2.6 65

Simple composite states

ISPDialer)

DialingISP

/

entry/ offHook

‘7(0"61' }[WaitingForDialtone}[dialtone] {olljoi?:zil?jISP} {WaitingForCarrier}

entry _ . |
pseudo after(20 secopds)/ noDialtone after(20 seconds)/ hoCarrier |[carrier]
state [
_ :
notConnecteg9
cancel exit pseudo-state connected
\ / -
(NotConnected Connected w
L entry/ onHook) /

the nested states inherit the cancel transition

exit/ onHook
\do/ useConnection

© Clear View Training 2010 v2.6

66

Key points

<> Behavioral and protocol state machines

<> States

= |nitial and final
= EXit and entry actions, activities

< Transitions
= Guard conditions, actions

< Events
= Call, signal, change and time

<> Composite states
= Simple and orthogonal composite states

© Clear View Training 2010 v2.6 67

