
Lecture 6

HIGH-LEVEL DESIGN

PB007 Software Engineering I
Faculty of Informatics, Masaryk University

Fall 2020

1© Barbora Bühnová

© Clear View Training 2010 v2.6 2

Purpose of system design

 Refine how the system's functions are to be

implemented and how non-functional requirements are

to be ensured

 Decide on strategic design issues such as concurrency,

redundancy, persistence, distribution etc. to end with a

design satisfying both functional and non-functional

requirements

 Create policies to deal with tactical design issues

Design best practices

 A system design consists of a collection of decisions

that help to control different attributes of software quality.

▪ The design aims to ensure achievement of system functionality,

but whenever there are different ways to achieve the

functionality, the impact of each design decision on software

quality becomes the issue.

 Quality-driven design decisions are often known as

tactics, which isolate and describe design best practices

with respect to a specific quality attribute.

▪ Design patterns are a specific and very popular tactic used

during low-level design.

3Chapter 7 Design and implementation

Outline

 Design for reliability and availability

 Design for security

 Design for performance, modifiability and usability

 UML Class Diagram in Design

▪ Design classes

▪ Design relationships

4Chapter 7 Design and implementation

Design for Reliability and Availability

Lecture 6/Part 1

5Chapter 13 Dependability Engineering

Software reliability and availability

 In general, software customers expect all software to be

dependable. However, for non-critical applications,

they may be willing to accept some system failures.

 Some applications (critical systems) have very high

dependability requirements and special software

engineering techniques may be used to achieve this.

▪ Medical systems

▪ Telecommunications and power systems

▪ Aerospace systems

6Chapter 13 Dependability Engineering

Dependability achievement

 Fault avoidance

▪ The development process is organised so that faults in the
system are detected and repaired before delivery to the
customer.

▪ Verification and validation techniques are used to discover and
remove faults in a system before it is deployed.

 Fault detection

▪ Run-time techniques to detect faults and failures, such as
acceptance tests, ping/echo, heartbeat.

 Fault tolerance

▪ The system is designed so that faults in the delivered software
do not result in system failure.

7Chapter 13 Dependability Engineering

Dependable processes for fault avoidance

 To ensure a minimal number of software faults, it is

important to have a well-defined, repeatable software

process.

 The process should not depend entirely on individual

skills; rather can be enacted by different people.

 QA engineers use information about the process to

check if good software engineering practice has been

used.

 It is clear that the process activities should include

significant effort devoted to verification and validation.

8Chapter 13 Dependability Engineering

Fault discovery and its costs

9Chapter 13 Dependability Engineering

Run-time fault detection tactics

 Monitoring and event processing. Collection, logging

and processing of events that may signal problems.

 Acceptance tests. Acceptance checking for individual

methods and code fragments, raising signals for fault

handling (possibly with an exception).

 Ping/echo. One component issues a ping and expects

to receive back an echo, within a predefined time.

 Heartbeat (dead man timer). In this case one

component emits a heartbeat message periodically and

another component listens for it. If the heartbeat fails, the

fault correction component is notified.

10
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Fault tolerance

 In critical situations, software systems must be
fault tolerant.

▪ Fault tolerance is required where there are high availability
requirements or where system failure costs are very high.

 Fault tolerance means that the system can continue in
operation in spite of software failure.

▪ Even if the system has been proved to conform to its
specification, it must also be fault tolerant as there may be
specification errors or the validation may be incorrect.

 Dependable systems architectures are used in
situations where fault tolerance is essential.

▪ These architectures are generally all based on redundancy and
diversity.

11Chapter 13 Dependability Engineering

Diversity and redundancy

 Redundancy

▪ Keep more than 1 version of a critical component available so
that if one fails then a backup is available.

▪ E.g. switch to backup servers automatically if failure occurs.

 Diversity

▪ Provide the same functionality in different ways so that they will
not fail in the same way.

▪ E.g. different servers may be implemented using different
operating systems (e.g. Windows and Linux).

 However, adding diversity and redundancy adds
complexity and this can increase the chances of error.

▪ Some engineers advocate simplicity and extensive V & V is a
more effective route to software dependability.

12Chapter 13 Dependability Engineering

Fault tolerance and recovery tactics (1)

 Exception handling

▪ Detection, signaling and propagation of the information about

system faults, including the handling on an appropriate place.

▪ Decide well on the responsibilities in the system.

 Checkpoint/rollback

▪ Recording of a consistent state (either periodically or in response

to specific events), to which the system can be restored.

 Recovery capabilities

▪ The system should be able to perform a clean-up after a major

failure, so that no disturbances remain in the system.

13
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Fault tolerance and recovery tactics (2)

 Active redundancy (hot restart)

▪ All redundant components respond to events in parallel.

Consequently, they are all in the same state. The response from

only one component is used (usually the first to respond).

 Passive redundancy (warm restart/dual redundancy)

▪ One component (the primary) responds to events and informs

the other components (the standbys) of state updates they must

make.

 Voting

▪ Processes running on redundant processors each take

equivalent input and compute a simple output value that is sent

to a voter to choose non-deviant result.

14
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

N-version programming pattern

 Multiple versions of a software system carry out

computations at the same time.

▪ The versions should be designed and implemented by different

teams, to avoid repeating the same mistake.

 The results are compared using a voting system and the

majority result is taken

to be the correct result.

Which of the tactics

are involved here?

Chapter 13 Dependability Engineering 15

Protection systems

 A specialized monitoring and control system that is

associated with another system, which can take

emergency action if a failure occurs.

▪ System to stop a train if it passes a red light

▪ System to shut down a reactor if temperature is too high

 Protection systems are redundant because they include

monitoring and control capabilities that replicate those in

the controlled software.

 Protection systems should be diverse and use different

technology from the controlled software.

Chapter 13 Dependability Engineering 16

Key points

 Reliability and availability achievement

▪ Fault avoidance, fault detection and fault tolerance

 Fault avoidance

▪ Repeatable software development process

▪ Testing

 Fault detection

▪ Monitoring, acceptance tests, ping/echo, heartbeat

 Fault tolerance

▪ Redundancy and diversity

▪ N-version programming

Chapter 13 Dependability Engineering 17

Design for Security

Lecture 6/Part 2

Chapter 14 Security Engineering 18

Design for security

 Two fundamental issues have to be considered when

designing an architecture for security.

▪ Protection

• How should the system be organised so that critical assets can be

protected against external attack?

▪ Distribution

• How should system assets be distributed so that the effects of a

successful attack are minimized?

 These are potentially conflicting

▪ If assets are distributed, then they are more expensive to protect.

If assets are protected, then usability and performance

requirements may be compromised.

Chapter 14 Security Engineering 19

Protection

 Platform-level protection

▪ Top-level controls on the platform on which a system runs.

 Application-level protection

▪ Specific protection mechanisms built into the application itself

e.g. additional password protection.

 Record-level protection

▪ Protection that is invoked when access to specific information is

requested

 These lead to a layered protection architecture

Chapter 14 Security Engineering 20

A layered protection architecture

Chapter 14 Security Engineering 21

Distribution

 Distributing assets means that attacks on one system do

not necessarily lead to complete loss of system service

 Each platform has separate

protection features and may

be different from other platforms

so that they do not share a

common vulnerability

 Distribution is particularly

important if the risk of denial

of service attacks is high

Chapter 14 Security Engineering 22

Security guidelines

Security tactics

Base security decisions on an explicit security policy

Avoid a single point of failure

Fail securely

Balance security and usability

Log user actions

Use redundancy and diversity to reduce risk

Compartmentalize your assets

Design for recoverability

Design for deployment

Validate all inputs

Chapter 14 Security Engineering 23

Security guidelines 1-3

 Base decisions on an explicit security policy

▪ Define a security policy for the organization that sets out the

fundamental security requirements that should apply to all

organizational systems.

 Avoid a single point of failure

▪ Ensure that a security failure can only result when there is more

than one failure in security procedures. For example, have

password and question-based authentication.

 Fail securely

▪ When systems fail, for whatever reason, ensure that sensitive

information cannot be accessed by unauthorized users even

although normal security procedures are unavailable.

Chapter 14 Security Engineering 24

Security guidelines 4-6

 Balance security and usability

▪ Try to avoid security procedures that make the system difficult to

use. Sometimes you have to accept weaker security to make the

system more usable.

 Log user actions

▪ Maintain a log of user actions that can be analyzed to discover

who did what. If users know about such a log, they are less likely

to behave in an irresponsible way.

 Use redundancy and diversity to reduce risk

▪ Keep multiple copies of data and use diverse infrastructure so

that an infrastructure vulnerability cannot be the single point of

failure.

Chapter 14 Security Engineering 25

Security guidelines 7-10

 Compartmentalize your assets

▪ Organize the system so that assets are in separate areas and

users only have access to the information that they need rather

than all system information.

 Design for recoverability

▪ Design the system to simplify recoverability after a successful

attack.

 Design for deployment

▪ Design the system to avoid deployment problems

 Validate all inputs

▪ Check that all inputs are within range so that unexpected inputs

cannot cause problems.

Chapter 14 Security Engineering 26

System survivability

 Survivability = system ability to deliver essential services

whilst it is under attack or after part of it was damaged.

 Resistance

▪ Avoiding problems by building capabilities into the system to
resist attacks

 Recognition

▪ Detecting problems by building capabilities into the system to
detect attacks and failures and assess the resultant damage

▪ Important role of monitoring and event processing

 Recovery

▪ Tolerating problems by building capabilities into the system to
deliver services whilst under attack

Chapter 14 Security Engineering 27

Key points

 Design for security involves

▪ Protection

▪ Distribution

 Layered protection architecture

▪ Platform-level protection

▪ Application-level protection

▪ Record-level protection

 Security guidelines

 Survivability

Chapter 14 Security Engineering 28

Design for Performance, Modifiability and Usability

Lecture 6/Part 3

29
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Performance tactics

 Introduce concurrency. If requests can be processed in

parallel, the blocked time can be reduced. But it is

necessary to understand well the concurrency effects.

 Control the use of resources. This includes both

computational resources and data. Namely, balance

the load, control access, scheduling (via priority), cache,

maintain multiple copies to reduce contention.

 Increase available resources. Faster processors,

additional processors, additional memory, and faster

networks all have the potential for reducing latency.

What is the role of vertical and horizontal scalability here?

30
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Defer binding time

 Runtime registration supports plug-and-play operation

at the cost of additional overhead to manage the

registration. Publish/subscribe registration, for example,

can be implemented at either runtime or load time.

 Configuration files are intended to set parameters at

startup.

 Polymorphism allows late binding of method calls.

 Component replacement allows load time binding.

 Adherence to defined protocols allows runtime binding

of independent processes.

31
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Prevent ripple effects

 A ripple effect from a modification is the necessity of

making changes to modules not directly affected by it.

▪ For instance, if module A is changed to accomplish a particular

modification, then module B is changed only because of the

change to module A. B has to be modified because it depends,

in some sense, on A.

 Hide information. Information hiding is the

decomposition of the responsibilities for an entity (a

system or some decomposition of a system) into smaller

pieces and choosing which information to make visible.

32
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Usability tactics – Design-time tactics

 Separate the user interface from the rest of the

application. Localizing expected changes is the

rationale for semantic coherence.

 Since the user interface is expected to change frequently

both during the development and after deployment,

maintaining the user interface code separately will

localize changes to it.

33
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Usability tactics – Runtime tactics

 Maintain a model of the task. The task model is used to determine

context so the system can have some idea of what the user is

attempting and provide various kinds of assistance.

▪ For example, knowing that sentences usually start with capital letters

would allow an application to correct a lower-case letter in that position.

 Maintain a model of the user. The model determines the user's

knowledge of the system, the user's behavior in terms of expected

response time, and other aspects specific to a user or a class of

users.

▪ For example, maintaining a user model allows the system to pace

scrolling so that pages do not fly past faster than they can be read.

 Maintain a model of the system. The model determines the

expected system behavior so that appropriate feedback can be

given to the user.

34
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Quality conflicts

 Within complex systems, quality attributes can never be

achieved in isolation.

▪ The achievement of any one will have an effect, sometimes

positive and sometimes negative, on the achievement of others.

 For example, almost every quality attribute negatively

affects performance.

▪ Reliability. Redundancy together with a voting schema delays

system response.

▪ Portability. The main technique for achieving portable software is

to isolate system dependencies, which introduces overhead into

the system's execution.

© Software Architecture in Practice
by L. Bass, P. Clements and R. Kazman

35

Quality conflicts

 It is not possible for any system to be optimized for all of these

attributes.

 The quality plan should therefore define the most important quality

attributes for the software that is being developed.

36© Barbora Bühnová

UML Class Diagram in Design

Lecture 6/Part 4

37© Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 38

Design model

 Design model is a refinement of an analysis model to
such a degree that it can be implemented

▪ In MDD design models include all implementation details and
can be automatically translated into code

 In OO design models:

▪ All attributes are completely specified

▪ Analysis operations become fully specified methods

▪ Many new classes are added to include implementation details,
such as utility classes (String, Date, Time, etc.), middleware
classes (DB access, communication, etc.) or GUI classes
(Applet, Button, etc.)

 Design models are programming-language specific

▪ Multiple inheritance, templates, nested classes, collections

© Clear View Training 2010 v2.6 39

 A design model may contain 10 to 100 times as many
classes as the analysis model

▪ The analysis model helps us to see the big picture without
getting lost in implementation details

 We need to maintain both models if:

▪ It is a big system (>200 design classes)

▪ It has a long expected lifespan

▪ It is a strategic system

▪ We are outsourcing construction of the system

 Otherwise, we can make it with only a design model

Analysis vs. design model

© Clear View Training 2010 v2.6 40

Anatomy of a design class

 A design class shall have:

▪ A complete set of operations
including parameter lists, return
types, visibility, exceptions, set and
get operations, constructors

▪ A complete set of attributes
including types and default values

BankAccount

-name:String

-number:String

-balance:double = 0

+BankAccount(name:String, number:String)

+deposit(m:double):void

+withdraw(m:double):boolean

+calculateInterest():double

+getName():String

+setName(n:String):void

+getAddress():String

+setAddress(a:String):void

+getBalance():double

BankAccount

name

number

balance
deposit()

withdraw()

calculateInterest()

analysis design

«trace»

constructor

© Clear View Training 2010 v2.6 41

High cohesion, low coupling

 High cohesion

▪ Each class should have a set of operations that support the

intent of the class, no more and no less

▪ Each class should model a single abstract concept

 Low coupling

▪ A particular class should be associated with just enough

other classes to allow it to realise its responsibilities

▪ Only associate classes if there is a true semantic link

between them – never to only reuse code!

▪ Use aggregation rather than inheritance

 Primitive operations

▪ Each operation shall implement a single functionality, and

each functionality shall be implemented by single operation

Employee

Manager Programmer

john:Programmer

«instantiate»

What is wrong with

this model?

© Clear View Training 2010 v2.6 42

Aggregation vs. inheritance

 An employee has a job,

not is a job.

 An employee can have

more jobs.

just change this link at

runtime to promote john!

Job

Manager Programmer

john:Employee

Employee

:Programmer

«instantiate»

:Manager

«instantiate»

«instantiate»

0..*0..*

Employee

Manager Programmer

john:Programmer

«instantiate»

© Clear View Training 2010 v2.6 43

 With inheritance we get two things:

▪ Interface – the public operations of the
base classes

▪ Implementation – the attributes,
relationships, operations of the class

 With interface we get one thing:

▪ Interface – a set of public operations,
attributes and relationships that have
no implementation

Use interface realization when we want to

define a contract.

Inheritance vs. interface realization

Job

Manager Programmer

Job

Manager Programmer

Use inheritance when we want to inherit

implementation.

© Clear View Training 2010 v2.6 44

Key points (design classes)

 Design classes come from:

▪ A refinement of analysis classes (i.e. the business domain)

▪ From the solution domain

 Design classes must be well-formed:

▪ High cohesion

▪ Low coupling

▪ Primitive operations

 Don’t overuse inheritance

▪ Use inheritance for "is kind of"

▪ Use aggregation for "is role played by"

▪ Use interfaces rather than inheritance to define contracts

© Clear View Training 2010 v2.6 45

Design relationships

 Refining analysis associations to design associations
involves several procedures:

▪ refining associations to aggregation or composition

▪ implementing one-to-many associations

▪ implementing many-to-one associations

▪ implementing many-to-many associations

▪ implementing bidirectional associations

▪ implementing association classes

 All design associations must have:

▪ navigability

▪ multiplicity on both ends

© Clear View Training 2010 v2.6 46

Aggregation and composition

A B

A B A B

«trace» «trace»
{xor}A

n
a
ly

s
is

D
e
s
ig

n

aggregation composition

Some objects are strongly

related like a tree and its leaves

Some objects are weakly related

like a computer and its peripherals

© Clear View Training 2010 v2.6 47

Aggregation semantics

◼ The aggregate can (sometimes) exist independently of the parts

◼ The parts can (sometimes) exist independently of the aggregate

◼ It is possible to have shared ownership of the parts by several

aggregates

Computer Printer
0..* 0..*

whole or

aggregate
part

aggregation is a whole–part relationship

A Computer may be attached to 0 or more

Printers

At any one point in time a Printer is

connected to 0 or more Computers

The Printer exists even if there are no

Computers

The Printer is independent of the Computer

aggregation

© Clear View Training 2010 v2.6 48

Composition semantics

 The parts belong to exactly 1 whole at a time

 The composite has sole responsibility for the disposition of all its
parts. This means responsibility for their creation and destruction

 If the composite is destroyed, it must either destroy all its parts,
OR give responsibility for them over to some other object (the
exception above)

Mouse Button
1 1..4

composition is a strong form of aggregation

composite part
composition

always 1 (with an exception of

a transferable part, when it is 0)

The buttons have no independent

existence. If we destroy the

mouse, we destroy the buttons.

They are an integral part of the

mouse

Each button can belong to exactly

1 mouse

© Clear View Training 2010 v2.6 49

• Many-to-one relationships in
analysis imply shared ownership
and are refined to aggregations

• One-to-one associations in analysis
usually imply single ownership and
usually refine to compositions

A B
1 1

A B
1 1

«trace»

roleName

One to one

A B
0..* 1

A B
0..* 1

«trace»

roleName

Many to one

analysis

design

One-to-one and many-to-one associations

© Clear View Training 2010 v2.6 50

One-to-many and many-to-many

associations

 Collection classes instances store a
collection of object references to objects
of the target and provide methods for
operating the collection

 In Java in the java.util library

A B
1 0..*

A B

1 0..*

Vector
1 1

«trace»

Many to manyOne to many

Task Resource
0..* 0..*

AllocationTask Resource
10..*1 0..*

«trace»

 Many-to-many associations may

be (but do not have to be) refined

into intermediate design classes.

© Clear View Training 2010 v2.6 51

Bi-directional associations

 There is no commonly used OO

language that directly supports bi-

directional associations

 We must resolve each bi-directional

associations into two unidirectional

associations

 Again, we must decide which side of

the association should have primacy

and use composition, aggregation

and navigability accordingly

A B
1 0..*

A B

1
0..*

1 0..*

«trace»

this side has primacy

© Clear View Training 2010 v2.6 52

Association classes

 There is no commonly used

OO language that directly

supports association

classes

 Refine all association

classes into a design class

 Decide which side of the

association has primacy

and use composition,

aggregation and

navigability accordingly

Company Person
0..* 0..*

Job

salary:double

Company Person
Job

salary:double

0..*0..* 11

«trace»

{each Person can only have one

job with a given Company}

this side

has primacy

© Clear View Training 2010 v2.6 53

Key points (design relationships)

 In this section we have seen how we take the incompletely specified

associations in an analysis model and refine them to:

▪ Aggregation

• Whole-part relationship

• Parts are independent of the whole

• Parts may be shared between wholes

▪ Composition

• A strong form of aggregation

• Parts are entirely dependent on the whole

• Parts may not be shared

 One-to-many, many-to-many, bi-directional associations and

association classes are refined in design

