3 CoCoME - The Common Component
Modeling Example

Sebastian Herold!, Holger Klus®, Yannick Welsch!, Constanze Deiters?,
Andreas Rausch!, Ralf Reussner?, Klaus Krogmann?, Heiko Koziolek?,
Raffaela Mirandola?, Benjamin Hummel*, Michael Meisinger?,
and Christian Pfaller*

L' TU Clausthal, Germany
2 Universitit Karlsruhe, Germany
3 Politecnico di Milano, Italy
4 Technische Universitat Miinchen, Germany

3.1 Introduction and System Overview

The example of use which was chosen as the Common Component Modeling
Example (CoCoME) and on which the several methods presented in this book
should be applied was designed according to the example described by Larman
in [I]. The description of this example and its use cases in the current chapter
shall be considered under the assumption that this information was delivered
by a business company as it could be in the reality. Therefore the specified
requirements are potentially incomplete or imprecise.

The mentioned example describes a Trading System as it can be
observed in a supermarket handling sales. This includes the processes at a single
Cash Desk like scanning products using a Bar Code Scanner or paying by credit
card or cash as well as administrative tasks like ordering of running out prod-
ucts or generating reports. The following section gives a brief overview of such
a Trading System and its hardware parts. Its required use cases and software
architecture are described later in this chapter.

The Cash Desk is the place where the Cashier scans the goods the Customer
wants to buy and where the paying (either by credit card or cash) is executed.
Furthermore it is possible to switch into an express checkout mode which allows
only Costumer with a few goods and also only cash payment to speed up the
clearing. To manage the processes at a Cash Desk a lot of hardware devices are
necessary (compare figure [I]).

Using the Cash Box which is available at each Cash Desk a sale is started
and finished. Also the cash payment is handled by the Cash Box. To manage
payments by credit card a Card Reader is used. In order to identify all goods
the Customer wants to buy the Cashier uses the Bar Code Scanner. At the
end of the paying process a bill is produced using a Printer. Each Cash Desk
is also equipped with a Light Display to let the Costumer know if this Cash
Desk is in the express checkout mode or not. The central unit of each Cash Desk
is the Cash Desk PC which wires all other components with each other. Also the

A. Rausch et al. (Eds.): Common Component Modeling Example, LNCS 5153, pp. 16-[B3] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Fig. 2. An overview of entities in a store

CoCoME - The Common Component Modeling Example

Cash Desk

e

Bar Code
Scanner

Cash Box

- N Printer
e 4

Card Reader ;‘\ =3

— \;\i/
T]

/ Light Display

/

Cash Desk PC

Fig. 1. The hardware components of a single Cash Desk

Bank

Store

Cash Desk Line

Cash Desk
Cash Desk

Cash Desk

Cash Desk

s

Store Server

l Store Client

Enterprise

Store
Store

Store

Store

ki

Enterprise
Server

Enterprise Client

17

which are relevant for the Trading System

Fig. 3. The enterprise consists of several stores, an enterprise server and an enterprise

client

18 S. Herold et al.

software which is responsible for handling the sale process and amongst others
for the communication with the Bank is running on that machine.

A Store itself contains of several Cash Desks whereas the set of Cash Desks is
called Cash Desk Line here. The Cash Desk Line is connected to a Store Server
which itself is also connected to a Store Client (compare figure 2)). The Store
Client can be used by the manager of the Store to view reports, order products
or to chance the sales prices of goods. The Store Server also holds the Inventory
of the corresponding Store.

A set of Stores is organized in an Enterprise where an Enterprise Server exists
to which all Stores are connected (compare figure[]). With the assistance of an En-
terprise Client the Enterprise Manager is able to generate several kinds of reports.

3.2 Functional Requirements and Use Case Analysis

In this section the considered use cases of the Trading System are introduced
which are depicted in figure @l with the involved actors. Each use case is de-
scribed using a uniform template which includes a brief description of the use
case itself, the standard process flow and its alternatives. Moreover, informa-
tion like preconditions, postconditions and the trigger of the use cases are given.
In the description of the use cases the codes in the squared brackets refer to
extra-functional properties in section

<<system>>

Bank Printer CardReader CashBox BarCodeScanner LightDisplay

\
I

Customer

UC 1:ProcessSale

_ UC 2:ManageExpressCheckout
ManageExpressCheckout

Condition:
{50% of all sales during the last 60 minutes meet th
requirements of an express checkout

- up to 8 products per sale

- customer pays cash}

extension point:

ManageExpressCheckout

UC 3:OrderProducts
UC 7:ChangePrice

Fig. 4. An overview of all considered use cases of the Trading System

]

StockManager

UC 4: ReceiveOrderedProducts
Cashier

UC 5:ShowStockReports

UC 6:ShowDeliveryReports

B

EnterpriseManager

UC 8: ProductExchange

StoreManager

CoCoME - The Common Component Modeling Example 19

UC 1 - Process Sale

Brief Description. At the Cash Desk the products a Customer wants to buy are
detected and the payment - either by credit card or cash - is performed.

Involved Actors. Customer, Cashier, Bank, Printer, Card Reader, Cash Box, Bar
Code Scanner, Light Display.

Precondition. The Cash Desk and the Cashier are ready to start a new sale.

Trigger. Coming to the Cash Desk a Costumer wants to pay his chosen product
items.

Postcondition. The Customer has paid, has received the bill and the sale is
registered in the Inventory.

Standard Process

1. The Customer arrives at the Cash Desk with goods to purchase. [arrl]

2. The Cashier starts a new sale by pressing the button Start New Sale at the
Cash Box. [t12-1]

3. The Cashier enters the item identifier. This can be done manually by using
the keyboard of the Cash Box [p13-1, t13-1] or by using the Bar Code Scanner
[p13-2, t13-2].

4. Using the item identifier the System presents the corresponding product
description, price, and running total. [t14-1]

The steps 3-4 are repeated until all items are registered. n11-2]
5. Denoting the end of entering items the Cashier presses the button Sale Fin-

ished at the Cash Box. [t15-1]
(a) To initiate cash payment the Cashier presses the button Cash Payment

at the Cash Box. [p15-1,t15a-1]
i. The Customer hands over the money for payment. [t15al-1]

ii. The Cashier enters the received cash using the Cash Box and con-
firms this by pressing Enter. [t15a2-1]

iii. The Cash Box opens. [t15a3-1]

iv. The received money and the change amount are displayed [t15a4-1],
and the Cashier hands over the change. [t15a4-2]

v. The Cashier closes the Cash Box. [t15a5-1]
(b) In order to initiate card payment the Cashier presses the button Card

Payment at the Cash Box. [p15-2, t15b-1]
i. The Cashier receives the credit card from the Customer [t15b1-1]
and pulls it through the Card Reader. [t15b1-2]
ii. The Customer enters his PIN using the keyboard of the card reader
and waits for validation. [t15b2-1]
The step 5.b.ii is repeated until a successful validation or the Ca-

shier presses the button for cash payment. [t15b2-2, n15b2-1]
6. Completed sales are logged by the Trading System and sale information are

sent to the Inventory in order to update the stock. [t16-1]

7. The Printer writes the receipt and the Cashier hands it out to the Costumer.
[617-1]

8. The Customer leaves the Cash Desk with receipt and goods.

20 S. Herold et al.

Alternative or Exceptional Processes

— In step 3: Invalid item identifier if the system cannot find it in the Inventory.
[p13-4]
1. The System signals error and rejects this entry. [t13-3]
2. The Cashier can respond to the error as follows:
(a) It exists a human-readable item identifier: [p13-5]
i. The Cashier manually enters the item identifier. [t13-4]
ii. The System displays the description and price. [t14-1]
(b) Otherwise the product item is rejected. [p13-6]
— In step 5.b: Card validation fails. [p15b2-2]
1. The Cashier and the Customer try again and again.
2. Otherwise the Cashier requires the Customer to pay cash.
— In step 6: Inventory not available. [p16-1]
The System caches each sale and writes them into the Inventory as soon as
it is available again. [t161-1]

UC 2 - Manage Express Checkout

Brief Description. If some conditions are fulfilled a Cash Desk automatically
switches into an express mode. The Cashier is able to switch back into normal
mode by pressing a button at his Cash Desk. To indicate the mode the Light
Display shows different colors.

Involved Actors. Cashier, Cash Box, Light Display, Card Reader.

Precondition. The Cash Desk is either in normal mode and the latest sale was
finished (case 1) or the Cash Desk is in express mode (case 2).

Trigger. This use case is triggered by the system itself.

Postcondition. The Cash Desk has been switched into express mode or normal
mode. The Light Display has changed its color accordingly.

Standard Process

1. The considered Cash Desk is in normal mode [p2-1] and just finished a sale
which matches the condition of an express checkout sale. Now 50% of all
sales during the last 60 minutes fulfill the condition for an express checkout.
(a) This Cash Desk, which has caused the achievement of the condition, is
switched into express mode. [t21a-1]

(b) Furthermore the corresponding Light Display is switched from black into
green to indicate the Cash Desk’s express mode. [t21b-1]

(¢) Paying by credit card is not possible anymore. [t21c-1]

(d) The maximum of items per sale is reduced to 8 and only paying by cash
is allowed. [t21d-1]

2. The Cash Desk is in express mode [p2-2] and the Cashier decides to change
back into normal mode.

(a) The Cashier presses the button Disable Express Mode. [t22a-1]
(b) The color of the Light Display is changed from green into black color.
[t22b-1]

CoCoME - The Common Component Modeling Example 21

(¢) Cash and also card payment is allowed and the Costumer is allowed to
buy as much goods as he likes. [t22¢-1]

UC 3 - Order Products

Brief Description. The Trading System provide the opportunity to order product
items.

Involved Actors. Store Manager.

Precondition. An Overview over the Inventory is available and the Store Client
was started.

Trigger. The Store Manager decided to buy new product items for his store.

Postcondition. The order was placed and a generated order identifier was pre-
sented to the Store Manager.

Standard Process

1. A list with all products [n3-1] and a list with products running out of stock
are shown. [n3-2, p3-1, t31-1]

2. The Store Manager chooses the product items to order and enters the cor-
responding amount. [t32-1]

3. The Store Manager presses the button Order at the Store Client’s GUI.
[t33-1]

4. The appropriate suppliers are chosen and orders for each supplier are placed.
An order identifier is generated for each order and is shown to the Store
Manager. [t34-1, t34-2, t34-3]

UC 4 - Receive Ordered Products

Brief Description. Ordered products which arrive at the Store have to be checked
for correctness and inventoried.

Involved Actors. Stock Manager.

Precondition. The Store Client was started and the part Inventory of the Trading
System is available.

Trigger. The ordered products arrive at the Store.

Postcondition. The Inventory is updated with the ordered products.

Standard Process

1. Ordered products arrive at the stock attached by an order identifier which
has been assigned during the ordering process. [n4-1]

2. The Stock Manager checks the delivery for completeness and correctness.
[p4-1, t42-1]

3. In the case of correctness, the Stock Manager enters the order identifier and
presses the button Roll in received order. [t43-1]

4. The Trading System updates the Inventory. [t44-1]

22 S. Herold et al.

Alternative or Exceptional Processes

— In step 2: Delivery not complete or not correct. [p4-2]
The products are sent back to the supplier and the Stock Manager has to
wait until a correct and complete delivery has arrived. This action does not
recognized by the System.

UC 5 - Show Stock Reports

Brief Description. The opportunity to generate stock-related reports is provided
by the Trading System.

Involved Actors. Store Manager.
Precondition. The reporting GUI at the Store Client has been started.
Trigger. The Store Manager wants to see statistics about his store.

Postcondition. The report for the Store has been generated and is displayed on
the reporting GUIL.

Standard Process

1. The Store Manager enters the store identifier and presses the button Create
Report. [t51-1]
2. A report including all available stock items in the store is displayed. [t52-1]

UC 6 - Show Delivery Reports

Brief Description. The Trading System provides the opportunity to calculate
the mean times a delivery from each supplier to an considered enterprise takes.

Involved Actors. Enterprise Manager
Precondition. The reporting GUI at the Store Client has been started.
Trigger. The Enterprise Manager wants to see statistics about the enterprise.

Postcondition. The report for the Enterprise has been generated and is displayed
to the Enterprise Manager.

Standard Process

1. The Enterprise Manager enters the enterprise identifier and presses the but-
ton Create Report. [t61-1]
2. A report which informs about the mean times is generated. [t62-1]

UC 7 - Change Price

Brief Description. The System provides the opportunity to change the sales
price for a product.

Involved Actors. Store Manager.
Precondition. The store GUI at the Store Client has been started.

CoCoME - The Common Component Modeling Example 23

Trigger. The Store Manager wants to change the sales price of a product for his
store.

Postcondition. The price for the considered product has been changed and it
will be sold with the new price now.

Standard Process

1. The System presents an overview over all available products in the store.
[t71-1]

2. The Store Manager selects a product item [t72-1] and changes its sales price.
[672-2]

3. The Store Manager commits the change by pressing ENTER. [t73-1]

UC 8 - Product Exchange (on Low Stock) among Stores

Brief Description. If a store runs out of a certain product (or a set of products;
“required good”), it is possible to start a query to check whether those products
are available at other Stores of the Enterprise (“providing Stores”). Therefore
the Enterprise Server and the Store Servers need to synchronize their data on
demand (one scheduled update per day or per hour is not sufficient). After a
successful query the critical product can be shipped from one to other Stores. But
it has to be decided (using heuristics to compute the future selling frequency),
whether the transportation is meaningful. For example, if the product is propably
sold out at all Stores within the same day, a transportation does not make sense.

Expressed in a more technical way one Store Server is able to start a query at
the Enterprise Server. The Enterprise Server in turn starts a query for products
available at other Stores. As the Enterprise Server does not have the current
global data for Stores at any time (due to a write caching latency at the Store
Servers) the Enterprise Server has to trigger all Store Servers to push their local
data to the Enterprise Server.

Involved Actors. This use case is not an end-user use case. Only servers are
involved.

Precondition. The Store Server with the shortage product is able to connect to
the Enterprise Server.

Trigger. This use case is triggered by the system itself.

Postcondition. The products to deliver are marked as incoming or unavailable,
respectively, in the according Stores.

Standard Process

1. A certain product of the Store runs out.

2. The Store Server recognizes low stock of the product. [t82-1]

3. The Store Server sends a request to the Enterprise Server (including an
identification of the shortage products, and a Store id) [t83-1]

4. The Enterprise Server triggers all Stores that are “near by” (e. g. ;300 km)
the requiring store, to flush their local write caches. So the Enterprise Server
database gets updated by the Store Server. [t84-1, t84-1]

24 S. Herold et al.

5. The Enterprise Server does a database look-up for the required products to
get a list of products (including amounts) that are available at providing
Stores. [t85-1]

6. The Enterprise Server applies the “optimization criterion” (specified above)
to decide, whether it is meaningful to transport the shortage product from
one store to another (heuristics might be applied to minimize the total costs
of transportation). This results in a list of products (including amounts) per
providing store that have to be delivered to the requiring Store. [t86-1]

7. The Store Server, initially sending the recognition of the shortage product,

is provided with the decision of the Enterprise Server. [t87-1]
(a) The required product is marked as incoming. [t87-2]
8. The Store Server of a near by Store is provided with information that it has

to deliver the product. [t88-1]
(a) The required product is marked as unavailable in the Store. [t88-2]

Alternative or Exceptional Processes

— The Enterprise Server is not available: The request is queued until the En-
terprise Server is available and then is send again.

— One or more Store Servers are not available: The Enterprise Server queues the
requests for the Store Servers until they are available and then resend them.
If a Store Server is not available for more than 15 minutes the request for
this Server is canceled. It is assumed, that finally unavailable Store Servers
do not have the required product.

Extension on Use Case 8 - Remove Incoming Status

Brief Description. If the first part of use case 8 (as described above) has passed,
for moved products an amount marked as incoming remains at the Inventory of
the Store receiving the products. An extension allows to change that incoming
mark via a user interface at the Store Client if the moved products arrive at a
Store.

Precondition. The Inventory is available and the Store Client has been started.
Trigger. The moved products (according to UC8) arrive at the Store.
Postcondition. For the amount of incoming products the status “incoming” is
removed in the Inventory.

Standard Process

1. The products arrive at the stock of the Store.

2. For all arriving products the Stock Manager counts the incoming amount.

3. For every arriving product the Stock Manager enters the identifier and its
amount into the Store Client.

4. The system updates the Inventory.

Alternative or Exceptional Processes

— If the entered amount of an incoming product is larger than the amount
accounted in the Inventory, the input is rejected. The incoming amount has
to be re-entered.

CoCoME - The Common Component Modeling Example 25

3.3 Extra-Functional Properties

The following table includes CoCoME’s extra-functional properties in terms of
timing, reliability, and usage profile related information. They can be seen as
guiding values when conducting QoS-analysis with CoCoME. The results from
different methods can be compared more adequately if they are based on the
same extra-functional properties.

Table 1. CoCoME - Extra-functional Properties

CoCoME Overall
n0-1: Number of stores
200

n0-2: Cash desks per store
8

UC1 - Process Sale

arrl: Customer arrival rate per store

PAopenLoad.PAoccurrence = (‘unbounded’, (‘exponential’, 320.0, ‘hr’))
nll-1: Number of open cash desks per store

(‘assm’, ‘dist’, (‘histogram’, 0, 0.1, 2, 0.2, 4, 0.4, 6, 0.3, 8, ‘#Open Cash Desks’))
nl11-2: Number of goods per customer

(‘assm’, ‘dist’, (‘histogram’, 1, 0.3, 8, 0.1, 15, 0.15, 25, 0.15, 50, 0.2, 75, 0.1,
100, ‘#Goods per Customer’))

t12-1: Time for pressing button ”Start New Sale”

PAdemand = (‘assm’, ‘mean’, (1.0, ‘s’))

t13-1: Time for scanning an item

PAdemand = (‘assm’, ‘dist’, (‘histogram’, 0.0, 0.9, 0.3, 0.05, 1.0, 0.04, 2.0, 0.01,
5.0, ‘"))

t13-2: Time for manual entry

PAdemand = (‘assm’, ‘mean’, (5.0, ‘s’))

t13-3: Time for signaling error and rejecting an ID

PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t13-4: Time for manually entering the item identifier after error

PAdemand = (‘assm’, ‘mean’; (5.0, ‘s’))

p13-1: Probability of using the bar code scanner per item

0.99

pl3-2: Probability of manual entry per item

0.01

p13-3: Probability of valid item ID

0.999

p13-4: Probability of invalid item ID

0.001

p13-5: Probability of human-readable item 1D

0.9

26 S. Herold et al.

Table 1. (continued)

pl3-6: Probability of rejecting an item

0.1

t14-1: Time for showing the product description, price, and running total
PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t15-1: Time for pressing button “Sale Finished”

PAdemand = (‘assm’, ‘mean’, (1.0, ‘s’))

t15a-1: Time for pressing button “Cash Payment”

PAdemand = (‘assm’, ‘mean’, (1.0, ‘s’))

t15al-1: Time for handing over the money

PAdemand = (‘assm’, ‘dist’, (‘histogram’, 2.0, 0.3, 5.0, 0.5, 8.0, 0.2, 10.0, ‘s))
t15a2-1: Time for entering the cash received and confirming
PAdemand = (‘assm’, ‘mean’, (2.0, ‘s’))

pl5-1: Probability of cash payment

0.5

pl5-2: Probability of credit card payment

0.5

n15b2-1: Number of times a customer has to enter the PIN

(‘assm’, ‘dist’, (‘histogram’, 1, 0.9, 2, 0.09, 3, 0.01, 4, ‘times entering PIN’))
pl5b2-1: Probability of valid CC id

0.99

pl5b2-2: Probability of invalid CC id

0.01

t15a3-1: Time for opening the cash box

PAdemand = (‘assm’, ‘mean’, (1.0, ‘s’))

t15a4-1: Time until displaying received money and change amount
PAdemand = (‘req’, ‘mean’, (10, 'ms’))

t15a4-2: Time for handing over the change

PAdemand = (‘assm’, ‘dist’, (‘histogram’, 2.0, 0.2, 3.0, 0.6, 4.0, 0.2, 5.0, ‘s’))
t15ah-1: Time for closing the cash box

PAdemand = (‘assm’, ‘mean’, (1.0, ‘s’))

t15b-1: Time for pressing button “Card Payment”

PAdemand = (‘assm’, ‘mean’, (1.0, ‘s’))

t15b1-1: Time for receiving the credit card

PAdemand = (‘assm’, ‘dist’, (‘histogram’, 3.0, 0.6, 4.0, 0.4, 5.0, ‘s’))
t15b1-2: Time for pulling the credit card through the reader
PAdemand = (‘assm’, ‘mean’, (2.0, ‘s’))

t15b2-1: Time for entering the PIN

PAdemand = (‘assm’, ‘dist’, (‘uniform’, 1.0, 5.0, ‘s’))

t15b2-2: Time waiting for validation

PAdemand = (‘assm’, ‘dist’, (‘histogram’, 4.0, 0.9, 5.0, 0.1, 20.0, ‘s’))
t16-1: Time for sending sale information and updating stock
PAdemand = (‘req’, ‘mean’, (100, ‘ms’))

CoCoME - The Common Component Modeling Example

Table 1. (continued)

t161-1: Time for writing cached sales logs after inventory is back up
PAdemand = (‘req’, ‘mean’, (2, ‘s’))

pl6-1: Probability of Failure on Demand of Inventory System

0.001

t17-1: Time for printing the receipt and handing it out

PAdemand = (‘assm’, ‘mean’, (3.0, ‘s’))

UC2 - Manage Express Checkout

arr-2: Manage Express Checkout arrival rate
PAopenLoad.PAoccurrence = (‘unbounded’; (‘exponential’; 1, ‘hr’))
p2-1: Probability of being in normal mode

0.8

p2-2: Probability of being in express mode

0.2

t21a-1: Time for switching to express mode

PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t21b-1: Time for switching light display

PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t21c-1: Time for deactivating credit card payment
PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t21d-1: Time for setting the maximum number of items
PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t22a-1: Time for pressing button “Disable Express Mode”
PAdemand = (‘assm’, ‘mean’, (1.0, ‘s’))

t22b-1: Time for switching light display

PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t22c¢-1: Time for reactivating credit card payment
PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

UC3 - OrderProducts

arr-3: Order arrival rate

PAopenLoad.PAoccurrence = (‘unbounded’, (‘exponential’; 1, ‘days’))
n3-1: Number of all products

5000

n3-2: Number of products running out of stock

27

(‘assm’, ‘dist’, (‘histogram’, 100, 0.25, 200, 0.25, 300, 0.25, 400, 0.25, 500

‘#Goods out of stock’))

p3-1: Percentage of out of stock products being reordered

0.98

t31-1: Time until showing the lists of all products and missing products
PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t32-1: Time for choosing the products to order and entering the amount
PAdemand = (‘assm’, ‘mean’, (10, ‘s’))

28 S. Herold et al.

Table 1. (continued)

t33-1: Time for pressing button “Order”
PAdemand = (‘assm’, ‘mean’; (1, ‘s’))

t34-1: Time for querying the inventory data store
PAdemand = (‘req’, ‘mean’, (20, ‘ms’))

t34-2: Time for creating a new order entry
PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t34-3: Time for creating a new product order
PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

UC4 - Receive Ordered Products

arr-4: Order arrival rate

PAopenLoad.PAoccurrence = (‘unbounded’, (‘exponential’; 1, ‘days’))
n-4: Number of products arriving

(‘assm’, ‘dist’, (‘histogram’; 100, 0.25, 200, 0.25, 300, 0.25, 400, 0.25, 500
‘#Goods arriving’))

p4-1: Probability of complete and correct order

0.99

p4-2: Probability of incomplete or incorrect order

0.01

t42-1: Time for checking completeness of order

PAdemand = (‘assm’, ‘mean’, (30, ‘min’))

t43-1: Time for pressing button “Roll in received order”

PAdemand = (‘assm’, ‘mean’, (1, ‘s’))

t44-1: Time for updating the inventory

PAdemand = (‘assm’, ‘mean’, (100, ‘ms’))

UCS5 - Show Stock Reports

arr-5: Show Stock Reports arrival rate

PAopenLoad.PAoccurrence = (‘unbounded’; (‘exponential’; 3, ‘hr’))
t51-1: Time for entering store id and pressing button “Create Report”
PAdemand = (‘assm’, ‘mean’; (1, ‘s’))

t52-1: Time for generating the report

PAdemand = (‘req’, ‘mean’, (0.5, ‘s’))

UCG6 - Show Delivery Reports

arr-6: Show Delivery Reports arrival rate

PAopenLoad.PAoccurrence = (‘unbounded’, (‘exponential’, 1, ‘days’))
t61-1: Time for entering store id and pressing button “Create Report”
PAdemand = (‘assm’, ‘mean’; (1, ‘s’))

t62-1: Time for generating the report

PAdemand = (‘req’, ‘mean’, (0.5, ‘s’))

CoCoME - The Common Component Modeling Example

Table 1. (continued)

UCT7 - Change Price

arr-7: Change Price arrival rate

PAopenLoad.PAoccurrence = (‘unbounded’, (‘exponential’, 3, ‘hr’))
t71-1: Time for generating the overview

PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t72-1: Time for selecting a product item

PAdemand = (‘assm’, ‘mean’; (5, ‘s’))

t72-2: Time for changing the sales price

PAdemand = (‘assm’, ‘mean’, (5, ‘s’))

t73-1: Time for pressing button “Enter”

(o?

PAdemand = (‘assm’, ‘mean’, (1, ‘s’))

UCS8 - Product Exchange

arr-8: Show Stock Reports arrival rate

PAopenLoad.PAoccurrence = (‘unbounded’, (‘exponential’; 1, ‘days’))
n8-1: Number of stores nearby for a store server

(‘assm’, ‘dist’, (‘histogram’, 10, 0.7, 20, 0.3, 30 ‘#Shops nearby’))
p8-1: Probability of failure on demand (enterprise server)

0.0001

p8-2: Probability of failure on demand (store server)

0.001

t82-1: Time for store server to detect low stock

PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t83-1: Time for store server to query enterprise server

PAdemand = (‘assm’, ‘dist’, (‘histogram’, 0.0, 0.5, 0.5, 0.5, 1.0, ‘s’))
t84-1: Time for enterprise server to query one store server
PAdemand = (‘assm’, ‘dist’, (‘histogram’, 0.0, 0.5, 0.5, 0.5, 1.0, ‘s’))

29

t84-2: Time for flushing the cache of one store server and returning the result

PAdemand = (‘assm’, ‘dist’, (‘histogram’; 0.0, 0.5, 0.5, 0.5, 1.0, ‘s”))
t85-1: Time for database lookup at enterprise server

PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t86-1: Time for determining which store to deliver from

PAdemand = (‘req’, ‘mean’, (1, ‘s’))

t87-1: Time for returning the result to the store server

PAdemand = (‘assm’, ‘dist’, (‘histogram’, 0.0, 0.5, 0.5, 0.5, 1.0, ‘s’))
t87-2: Time for marking goods as incoming at store server
PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

t88-1: Time for sending delivery request to store server

PAdemand = (‘assm’, ‘dist’, (‘histogram’, 0.0, 0.5, 0.5, 0.5, 1.0, ‘s’))
t88-2: Time for marking good as unavailable

PAdemand = (‘req’, ‘mean’, (10, ‘ms’))

30 S. Herold et al.

The extra-functional properties map to certain steps in the use cases and have
labels to illustrate the relationship (e.g., t12-3 stands for “use case 1 step 2, time
no. 3”). As a notation for the values, we have used the tagged value language from
the OMG UML Profile for Schedulability, Performance, and Time [2]. We have
used the tags PAperfValue [2], p.7-21] for timing values and RTarrivalPattern
[2, p.4-35] for customer arrival rates, as they allow a fine-grained specification
of probability distributions. Note for histogram specifications: “The histogram
distribution has an ordered collection of one or more pairs that identify the start
of an interval and the probability that applies within that interval (starting from
the leftmost interval) and one end-interval value for the upper boundary of the
last interval” 2 p.4-34].

The values in the table are either assumed (‘assm’) by us or required (‘req’)
from the system as part of the specification. We estimated most of the values
based on statistics for typical German super markets, and our own experience.
The values should be understood as guiding values and should not restrict Co-
CoME modelers from using their own extra-functional properties for CoCoME.

3.4 Architectural Component Model

In this section, the architecture of the Trading System is described in more
detail using UML 2.0 ([2]) with additional own notations like multiplicities at
ports. After an overview of the structure of the system which introduces single
parts, like interfaces and connections between them, an overview of the behav-
ior is given. To show the structure the single components beginning with the
topmost, namely the component Trading System, and going on with the inner,
more detailed components are beheld. For every use case the behavior of the sys-
tem is visualized by sequence diagrams. Additional, a prototype of the system
was implemented. As far as the real subject is meant, the name of it is written
separately. The names of software components are written in one word.

Structural View on the Trading System. The structure of the Trading Sys-
tem is designed to integrate an embedded system based on a bus-architecture
and an information system based on a layered architecture. Figure [shows
the super-component Trading System and the two components Inventory and
CashDeskLine Trading System consists of.

The information system is represented by the component Inventory, while the
component CashDeskLine represents the embedded system. For each instance of
Trading System exists respectively one instance of Inventory and CashDeskLine
which is indicated by the number in the upper left of the components. Also visible
is the fact that the communication between the components CashDeskLine and
Inventory is handled by the interfaces CashDeskConnectorlf and SaleRegistere-
dEvent. The interface CashDeskConnectorlf defines a method for getting product
information like description and price using the product bar code. Events like start-
ing a new sale are registered at an asynchronous event channel. To handle these
events the event SaleRegisteredEvent is used. Furthermore, CashDeskLine is con-
nected to the bank via an interface BankIf in order to handle the card payment.

CoCoME - The Common Component Modeling Example 31

«component»

g]

TradingSystem

1 ecomponents]

:Inventory

i

«component»

CashDeskC

Bank

Bankif HF}

:CashDeskLine

Fig. 5. Trading System and its two components Inventory and CashDeskLine

Structural View on the Component Inventory. As already mentioned, the
component Inventory represents the information system and is organized as a
layered architecture. As shown in figure[@ these layers are GUI, Application and
Data which are completed by a component Database.

For each instance of Inventory exists only one instance of the component
Database where all data is stored. Because of the case having only one instance
of Inventory in TradingSystem there in all exists only one instance of Database
per instance of TradingSystem. The component Data representing the data layer
of a classical three-layer-architecture hides details of the database and provides
data access to the application layer represented by the component Application.
The communication between the components Database and Data is managed by
JDBC ([3]) in connection with Hibernate ([4]), an implementation of the Java

Persistence APT ([5]).

ComplexOrderEntryTO
ComplexOrderTO
OrderEntryTO

OrderTO

ProductTO
ProductWithStockltemTO

«component»

TradingSystem::Inventory

gl

ProductWithSupplierAndStockltemTO * «component» $:|
ProductWithSupplierTO .
SaleTO Gul
StockltemTO ;J\ ;J\ StoreTO
StoreWithEnterpriseTO . EnterpriseTO
SupplierTO P Storelf Reportinglf | { Reportto
CashDesk 1 1
CashDesk 1 Connectorlf
Connectorlfoi * «component» {l
SaleRegistered } - = } ‘Application
Event g T
Event ;L 1 ;L
EnterpriseQuery! Persistencel
i StoreQuerylf
TradingEnterprist %1) i
ProductSupplier
* «component»
OrderEntry
:Data ProductOrder
| Py Stockltem
Store
Product

@JDBC
1

«component»

:Database

Fig. 6. The inner structure of the component Inventory. The notes show the data types
which are relevant for the corresponding interface.

32 S. Herold et al.

TradingEnterpris! «component» El
ProductSupplier TradingSystem::Inventory::Data

EnterpriseQuerytf O—{_ 1T ccomponents g
1 EnterpriseQuerylf ‘Enterprise
1 «component»
Persistencelf O—EH ‘ g]
1 . :Persistence
«component»
1 StoreQuerylf 1 P {I
StoreQuerylf O—E ; :Store

OrderEntry B

ProductOrder
Stockltem
Store
Product

Fig. 7. The inner structure of the data layer of the component Inventory

The component Data provides the three interfaces EnterpriseQuerylf, Store-
Querylfand Persistencelf. To get a persistence context the interface Persistencelf
offers an appropriate method. The interface EnterpriseQuerylf contains queries
like the mean time to delivery by taking all stores of an enterprise into account.
StoreQuerylf defines methods required at a Store like changing the sales price
of a product or managing the Inventory.

The component Application contains the application logic. It uses the in-
terfaces defined by the component Data in order to send queries or changes
to the database and provides the interfaces Storelf and Reportinglf to deliver
results of database queries to the component GUI. Between the components
Application and Data object-oriented interfaces and between Application and
GUI services-oriented interfaces are used (EnterpriseQuerylf and StoreQueryIf
respectively Storelf and Reportinglf). As it is determined as a property of a
service-oriented interfaces via the interfaces between Application and GUI no
references are passed. Instead, so called Transfer Objects (TO) are defined which
are used for the data transfer. The component Application itself has references
on data objects located in the component Data in order to receive required data.

Data Layer. Figure [0 shows an overview of the component Data with its three
subcomponents Enterprise, Store and Persistence. These components implement
the similar named interfaces EnterpriseQuerylf, Persistencelf and StoreQuerylIf.
In figure [the various data types the interfaces deal with are shown as notes
whereas figure [} gives a more detailed overview of the data model with attributes
and possible navigation paths.

Application Layer. The component Application representing the application layer
consists of the three components Reporting, Store and ProductDispatcher as
shown in figure[d The component Reporting implements the interface Reportinglf
whereas the component Store implements the interfaces CashDeskConnectorlf
and Storelf. It also requires the interfaces SaleRegisteredEvent and ProductDis-
patcherlf. The latter defines a method for the Enterprise Server to search for a
product at another Store.

CoCoME - The Common Component Modeling Example 33

TradingSystem::Inventory::Data::Enterprise |

Product
TradingEnterprise ProductSupplier

has p offers P -
R P; | -id:long
-id : long 0. 0.7]-id : long 1 0.. -barcode : int
-name : String -name : String -purchasePrice : double
1 -name : String
* <
1 rS) 1
<
TradingSysterfi::Inventory::Data::Store @
Q
g
o / o g
2 g
OrderEntry &
v
v ProductOrder nas 7
0] -id : long
-id : long 1 -amount : int 0.*
0.” places, 7| -deliveryDate : Date
/}ﬁ -orderingDate : Date Stockitem
Store 1
-id : long
-id : long owns P -salesPrice : double
-name : String 1 0" -arTlount : mt
-location : String o -minStock : |p(
-maxStock : int

Fig. 8. The data model of the TradingSystem

While the communication between Data and Application is realized by passing
references of persistent objects to the Application, the Application uses PoJOs
(Plain old Java Objects) or Transfer Objects (TO) to pass information to the GUI
and to the CashDeskLine. An overview of all Transfer Objects and their relation
between each other is shown in figure [0l

GUI Layer. Asshown in figure[[Tlthe component GUI has the two subcomponents
Reporting and store. The component Reporting implements the visualization of
various kinds of reports using the interface Reportinglf to get the data. Whereas
the component Store offers the user interface for the Store Manager in order to do
managing tasks like ordering products or changing the sale prices.

Structural View on the Component CashDeskLine. The component Cash
DeskLine represents the embedded part. It is responsible for managing all Cash
Desks, their hardware, and the interaction between Cash Desks and between the
devices connected with each Cash Desk. The main communication is done using
events which are sent through event channels.

Figure[I2 gives an overview of the structure of the component CashDeskLine.
It is shown that CashDeskLine consists of several instances of CashDesk and a
component EventBus which manages two instances of FventChannel, namely cash
DeskChannel and ext CommChannelwhich are shared by all instances of CashDesk.
The channel cashDeskChannel is used by the CashDesk to enable communication
between all device controllers which are connected to a CashDesk, like CashDesk
Application, LightDisplayController or CashDeskG UI Each controller itself is con-
nected to the according hardware device and so builds the bridge between the

34 S. Herold et al.

StoreTO
EnterpriseTO
ReportTO

«component» {l TradingEnterpris
" s ProductSupplier
TradingSy yiA
]—4(EnterpriseQuerylf

]—1< Persistencelf

Reportinglf | 4 «component» {l

:Reporting

ARARKR

CashDesk
Connectorlf

SaleRegisteredEvent 0..1 «component» {l 1 :
Storelf :Store
1 —C StoreQuerylf
Storelf 1

ComplexOrderEntryTO B OrderEntry
ComplexOrderTO * ;’roduclOrder
OrderEntryTO ProductDispatcherlf S:ockltem
OrderTO ? 1 5 oge
ProductTO 1 roduct
ProductWithStockltemTO «component» {l —C
ProductWithSupplierAndStockltemTO . 1
ProductWithSupplierTO :ProductDispatcher —C
SaleTO 1
StockltemTO _C
StoreWithEnterpriseTO
SupplierTO

Fig. 9. The inner structure of the application layer of the component Inventory

reporting |

ReportTO EnterpriseTO StoreTO
et #id : long #id : long
HreportText : String fmame - String ¥name - String
#location : String
AN
org::cocome::tradingsystem: inventory::store
OrderTO OrderEntryTO SupplierTO ProductTO StoreWithEnterpriseTO
#id - long #d: long #id : long
#deliveryDate : Date #amount : long #name : String #barcode : long
#orderingDate : Date i double
#name : String
[1
] [] [o

|) ol SaleTO

T #date : Date
o

#id : long
#salesPrice : double
#amount : long
#minStock : long
#maxStock : long

Fig. 10. The transfer objects used for data exchange between the application layer and
the GUI layer

hardware and the middleware. The channel extCommChannel is used by the com-
ponent CashDeskApplication to write the information about completed sales into
the Inventory. Additionally, this channel is used for the communication between
the components Coordinator and CashDesk. The Coordinator itself is responsible

CoCoME - The Common Component Modeling Example 35

for dealing with managing express checkouts, whereas its task is to decide if a Cash
Desk has to be switched into express mode (see use case 2).

As shown in figure[I2] the component CashDesk Application requires the inter-
face CashDeskConnectorlf. This interface is provided by the component Inventory
and is used to get the product description and sales price by transferring the bar
code of a product. These information are required during the scanning of product
items the customer wants to buy (see use case 1).

Figure I3l shows again the components CashDesk consists of and, in addition,
the events each component sends and for which types of events each component is
registered at the channel. The semicircles indicate events the component can han-
dle while the circles indicate events which are sent by the component. For example,
the controller CardReaderController handles the event FxpressModeEnabled Event
while sending the events CreditCardScannedEvent and PINEnteredEvent.

Deployment View on the Trading System

The deployment view of the Trading System zooms in on which devices are con-
sidered and where the different components are instantiated. Each Cash Desk is
linked to an own Cash Desk PC. This Cash Desk PC is connected to several de-
vices like Bar Code Scanner or Card Reader. The controllers of these devices run
on the component CashDeskPC' as well as all other subcomponents of the compo-
nent CashDesk shown in figure [I4l Furthermore, on each CashDeskPC an event
channel is established which is used for the communication between the peripheral
devices.

In each Store exists one Store Server to which all Cash Desk PCs in this Store
are connected. At the component StoreServer the four components Coordinator,
extCommChannel, Application and Data and their subcomponents are located.
The first two components were presented in the section before and are responsi-
ble for managing the express checkout respectively for the communication. The
component Data representing the data layer is connected via JDBC to the com-
ponent Database which is placed at the component EnterpriseServer. Represent-
ing the application layer the component Application is communicating with the
component Inventory::GUI deployed at the component StoreClient. In addition
to the component Database, the component Data and the component Reporting

«component» {l
TradingSystem::Inventory::GUI

Reportinglf 1

1 «component»
Reportinglf HD'I_) {l
:Reporting
Storelf
1 0..1 «component» {l
Storelf)—[HD—
1 :Store

Fig. 11. The inner structure of the GUI layer of the component Inventory

36 S. Herold et al.

«component» g]
TradingSystem::CashDeskLine
‘«component» E
:CashDesk
1 1 1
i gal[3l g g gal[gl sj‘
; ccomfonerts D)\
/' «componenty 9)
L ‘cashDeskChannel:EventChannel
/1 «component» E3)
‘ ‘extCommChannel:EventChannel
1 «componenty &
:Coordinator

Used o accoss "‘Z'""E"‘“’V CashDesk Events for finished AN
o get the product description Connectorf sales are sent through

of the currently scanned product this nterface to the Inventory.
using the barcode.

Fig. 12. The inner structure of the component CashDeskLine

are deployed at EnterpriseServer. The component Data is also connected to the
component Database.

Behavioral View on the Trading System

This section provides a more detailed view of the realization of each use case in-
troduced before by using UML 2.0 sequence diagrams which show the interaction
between actors and components. First an important notation aspect is pointed
out because of changes in the notation for sequence diagrams in UML 2.0. This

<component» g]
TradingSystem::CashDeskLine::CashDesk

/F}.
L &

t
‘CashBoxClosedEvent

ProduciBarcode
SaleSuccessEvent
‘SaleStartedEvent

Fig.13. A more detailed view on the component CashDesk and its published and
subscribed events

CoCoME - The Common Component Modeling Example 37

StoreClient EnterpriseClient
«component» {l «component» {l
:TradingSystem::Inventory::GUI :TradingSystem::Inventory::GUI::Reporting
" *
<<RMI>> <<RMI>>
1 1
StoreServer EnterpriseServer
«component» El «component» E
T y ventory::Applicati :Tradi y::Application::Reporting
«component» {l «component»
:TradingSystem::Inventory::Data <<JDBC>> 1 :TradingSystem::Inventory::Data
*
«component» El «component» {l
:TradingSy ashDeskLine::Coordi “Tradi ! Yy
«component» {l
extCommChannel:
Tradi :CashDeskLine:: ::EventChannel
1
<<RMI>>
*
1 <<RS8232>>
CashDeskPC 7 CardRead
«component» {l 1 <<RS232>> . |
LightDisplay
cashDeskChannel: 1
Tradil :CashDeskLine::EventBus::EventChannel
1 <<RS8232>>
1 BarC
«component»
:Tradi CashDeskLine::CashDesk
1 <<RS8232>> .
Printer
1
1 <<RS8232>>
1 CashBox
* <<RMI>>
* Bank

Fig. 14. The deployment of the Trading System

considers the notation for synchronous and asynchronous method calls where syn-
chronous method calls are depicted using filled arrowheads, compared to asyn-
chronous method calls which are depicted using unfilled arrowheads.

Behavioral View on UC 1 - Process Sale. The sequence diagrams in figures
I3 M6l and T show the sale process including the communication between the var-
ious involved components. The sale process starts when the Cashier presses the

S. Herold et al.

38

(1 D) sseo01d ofes urew o1} Jo wreIderp oouenbog ‘g1 31

JuswAedpiepbag
e
T T T T T T T E—
| | | | | | | pies* uoNng ssaid
e __ el __ e __ o __ N ___ L __ _tefibon fases o suen subinol |
JuswAhedysegbag

ewEg
yseo* uopng ssaid
[uses Aed oy syuem sauboisno]

1210} ud

(hueagpaysiuieles

01 Buiuuna signop * id a1qnop Buing

janop ‘sweNIoNpoid Buis
JueazpeBueyDieloL ujuuny

2101 Buuuns aleinofeo

OLWRINOASUIMINPOI

(apooueq Buo L___xuo_mr__?s:ven:mm

U "

(- hueAgpeuueOSEapoo.BEionpoIdpUSS

bsepooiegionpoid

~PoUSIUT
ojeg” uonng ssaid

[ueds oy sway aow 4

Jeq pnpoid uess

oreg:

S MeN
VielS* uopng sseig

Kiowenup:wersksBuipes L :

Jajjosu0; QUseD::auITISaqUse; 1L

Tisaquse;

sles §$8001d:} DN

39

CoCoME - The Common Component Modeling Example

(1 ON) yemded ysed jo ssedoid a1y Jo wreiserp edouenbag 9T “S1.q

(HSVO ‘d oLy K F
. L '
(OL8leShupAZIRSIUNCOOY

(huengsseoongejes

(hueagsseoongees | 000 pr———————— |

(uangp:

xogysep 8soj)

Junowe obueyo
SonB08) JalUSED

(xoguseouado

BRI

junowse sBueyo sjeinojed

(indujfeuy ues|oog ‘unowe o)

jop)iusagpaIBlUTIUNOWYYSE:

(3ndujieuy uesjooq ‘Junowe sjfop)jueagpaieuiunowyyse)

<

1Skl
JeAFPeIRUTIUNOWYUSEDPUSS

uonnq ybp sseid |

|
|
|
|
|
_ [possoid uanng-43YN3]
|

INDYSOQUSED:HSBQUSED::BUIHSAAYSE: l 'd:HSOQYSED: BUIPISAUSE:

I0JBUIPIO0D::BUITASBUSE 1L

o SR—— v __ SP— _ — __ o _

\ JuBLIAeySED 0[eSSSe00id |} 0N PS

S. Herold et al.

40

(1 On) ymemded pred jo sseooxd a1y Jo wreiserp eduenboag AT “S1q

owenodo]

(OLoSuaAaresIIN00Y]

L] [P D Ouenaspeoonsoles_ _ _ _ _ _ _ 122 Qwenzsseoonseres _ (4o |
[I | | |
_ " " _ (iongpieoUPeIOPIEAU N
H 1 | [AINOW {19N1ONALON 1990=20110 YA LON” I NOLLOVSNVaiL 1aofltoiul
1 1 I I e
|||||| [R | I
| | | (puopesuen)pieougep | (o5l
|||||||||||| i S S | RN
(e em— borssueal
"

pas)pieaiepien |
|

L
(ud udorgpeseluaNId
I

(opupoio Bums):

L
|
|
1
|
|
|
|
|
I

9A3IPaULEISPIEDIPRID |

|

13pEpipIED UENOA) PIED I
|

[
1
1

woesues pun]

bbb ———

(U5 3PON

Iwewked)usngopopusuiked

(-~ nuengepopuewkedpuas

Pisequs

H

|

|

Disequs

=]

ewAedpieO-B1eSsa00Id 1L 0N PS.

CoCoME - The Common Component Modeling Example 41

button Start Sale at his Cash Box. Then the corresponding software component
CashBox calls a method at the component CashBoxController which publishes
the SaleStartedEvent using the cashDesk Channel (compare figure[I2]). The three
components CashDeskApplication, PrinterController and CashDeskGUI react to
events of the kind SaleStartedEvent. In order to receive these they have to register
themselves at the channel cashDesk Channel for these events and implement the
according event handlers. These event handlers are called by the messaging mid-
dleware which JMS ([6]) is in the implementation of the prototype. At the Cash
Desk the Printer starts printing the header of the receipt initiated by the compo-
nent PrinterController and initiated by the component CashDeskGUT a text at the
Cash Desk indicates the start of a new sale. Some components connected with the
channel cashDeskChannel implement a finite state machine, like CashDesk Ap-
plication or PrinterController in order to react appropriately on further incoming
events. In the next phase of the selling process the desired products are identified
using the Bar Code Scanner which submitts the data to the corresponding con-
troller ScannerController which in turn publishes the event ProductBarCode
ScannedFvent. The component CashDeskApplication gets the product descrip-
tion from the Inventory and calculates the running total and announces it on the
channel. After finishing the scanning process, the Cashier presses the button Sale
Finished at the Cash Box. Now the Cashier can choose the payment method based
on the decision of the costumer by pressing the button Cash Paymentor Card Pay-
ment at his Cash Desk.

Figure[I6and [T illustrate the sequences for each payment method which shall
not described in detail here.

Behavioral View on UC 2 - Manage Express Checkout. The basic idea be-
hind the process of managing express checkouts is to hold a statistic about sales us-
ing the component Coordinator. If the condition for an express checkout is
fulfilled, the Coordinator releases the event ExpressModeEnabledEvent and due
to this a Cash Desk will change into express mode. The Cashier is allowed to decide
to switch back into normal mode by simply pressing the button Disable Express
Mode at his Cash Desk. This causes the event EzpressModeDisabled Event which
forces the devices to switch back into normal mode. The sequence diagram in
figure [[8 shows the described process in more detail.

Behavioral View on UC 3 - Order Products. This use case deals with order-
ing products from a supplier if they are running out of stock at a store. To initiate
an order, the Store Manager can select the products which have to be ordered in
the desired amount and then presses the button Order at the Store-GUI. As result
of this use case the Store Manager gets a set of order identifiers. Not only one iden-
tifier is returned, because one order can be split and placed at different suppliers.
These identifiers are used by the Stock Manager in use case 4 while receiving and
accounting the products. Figure [[9 shows the sequence diagram of this process
with more details.

S. Herold et al.

42

(z D) Anreuonouny nospato ssaxdxe o1) Surdeuew jo weIderp souenbog QT 31

Japea pied ajenoy

(uerzpoigeuzeponssedxg |

9pOW [BULIOU MOYS

c.:o>mvo_n+»_nova:mmenxm

(usAzpa|qesigapopssaIdx;

)usAIpalqes|qepossaidx

Japeai pied ajeAloReq

(wenzpeiqeus)

Wsseidxa

I P

spows ssaidxe Moyg

(JuerzpalqeuzepoNssaidxy

(husgpeladuzepopssaidxa

(husgpaiqeuzepossadxs

?_e popaaNepoNssaidxa]

e

| oy
| 'sseidx3 alqesiq

| | uopng ssaid

| | |
|

[4pows ssaidxs u s ysaaliseo]

fepou ewsiou i 1 ¥saquseo)

! (T

()sonsneisajepdn

Jelysed:

(huengpaigy:
Il

16oy0les

xogused:

)

0:)S8QUSED:BUITHSOQUSE! 19%83qUSED:HSaUseD:

UITiSaquse: 1:

iddyisaquseD:Hsaayise;

urpisaquse:

J1103U0OARIdSIQIUBIT:HSOQUSED: BUIISaQUSED WalsASBUpELL

J0JUIPI00D Ul PISAQUSED: WalSASBUPEIL:

\ InoxoeypssaidxgeBeuB:Z ON

ps

CoCoME - The Common Component Modeling Example 43

sd UC 3:OrderProducts J

TradingSystem: Inventory::Application::Store

‘TradingSystem: Inventory::Data: Persistence |

“TradingSystem:Inventory::Data: Store

T entory::GUI::Store |

Select products and amount to

Press bution ,Order” orderProducts(ComplexOrderTO
omplexOrde

loop

{foreac| EomplexOrderEntryTO coeto in cof SlexOrder.getOrderEntryTO()]
queryProductByld(...)

Product p

get supplier and add
order entry to that supplier

loop

[foreacpirderEntry(] loe in ordersuppl.valugsh)

new
220 o orer |

setOrderEntries(loe) T

queryStoreByld(.)

R
>
e _____ T — L_____ g

Fig. 19. Sequence diagram of ordering products (UC 3)

Behavioral View on UC 4 - Receive Ordered Products. If the Stock Man-
ager has ordered products, they will arrive at the Store. To roll in the product
items the StockManager enters the order identifier assigned during ordering and
presses the button Roll in received order. This results in system actions like setting
the order’s delivery date and rising the amount of the stored products as it can be
tracked in the sequence diagram in figure 201

Behavioral View on UC 5 - Show Stock Reports. If the Store Manager
wants to see if products are running out of stock in his store, he can get the accord-
ing information using the component GUI::Reporting. The Store Manager there-
fore simply enters the store identifier and presses the button Create Report. Then
the method getStockReport() is called at the component Application::Reporting
which itself accesses the data layer component Data::Store in order to get the re-
quired information and to create the report as depicted in figure[ZIl The result is a
object ReportTO which is then sent to the component GUI::Reporting and shown
to the Store Manager at the GUI.

44 S. Herold et al.

sd UC 4:ReceiveOrderedProducts J

Enter Order ID (received
during product ordering

Press button ,Roll in received
order"

| > ComplexOrderTO order

T
|
|
|
|
|
|
|
= new ComplexOrderTO() :
|
|

order setid(orderld)

rollinReceivedOrder(order)

getTransactipnContext()

po.setDeliveryDate(new Date())

queryStockitem(storeid,
oe getProduct() getBarCode

OrderEntry oe in po.getOrderEntries()]

si.setAmount(se.getAmount()
+ oe.getAmount()

L™ tecommit)

Fig. 20. Sequence diagram of receiving ordered products (UC 4)

Behavioral View on UC 6 - Show Delivery Reports. This use case is very
similar to use case 5 but in this case the Enterprise Manager wants to know the
mean time to the delivery of certain products. The Enterprise Manager therefore
enters an enterprise identifier and presses the button Create Report. As depicted
in figureP2this report is created using the data layer component Data::Enterprise
to get the required information.

Behavioral View on UC 7 - Change Price. The Store Manager is able to
change the sales price using the Store GUI at the Enterprise Client. Therefor the
Store Manager simply selects the desired product and changes the price in the
shown table. After pressing Enter, the new price will persistently be written into
the database as described in figure 23

Behavioral View on UC 8 - Product Exchange among Stores. The main
aspect of use case 8 is a more complex interaction of distributed components
and servers. If the stock of a certain product or a number of products of a Store
runs low, the application Inventory of the Store Server can start a request for
that product. The component ProductDispatcher of the application running on
the Enterprise Server initiates a cache flush of all Store Servers to update the
central database at the Enterprise Server with the latest stock data of all Stores.
The component ProductDispatcher is also responsible for calculating an optimal
solution for transporting the required products from a number of Stores to the

CoCoME - The Common Component Modeling Example

45

sd UC 5:ShowStockReports J

Data::Store

' StoreTO store = new StoreTO()

' store.setld(storeld)

getStockReport(store)

g

ReportTO result = new ReportTO()

emansa:cnono

tx beginTransaction()
queryStoreByld(store.getld())
Store store

queryAllStockitems(store.getid()

Stockitem{] stockitems

»
»

tTrangaction
____________ H——m e ————

loop

[foreach Stockltem si in stockitems]

append si.getld(), si.getProduct().getName(),
si.getAmount(), si.getMinStock() and
si.getMaxStock() to reportText

ReportTO result

tx.commit()

result setReportText(reportText)

Fig. 21. Sequence diagram of getting stock reports (UC 5)

sd UC 6:ShowDeliveryReports J

Enter enterpriseld

Press button ,Create Report”

| ™ EnterpriseTo ep = new EnterpriseTo()

| > cpsetid(epla)

getMeanTimeToDeliveryReport(ep)

ReportTO result = new ReportTO()

gemans%niun(i

txbeginTransaction()

queryEnterpriseByld(ep) getid()

tx:Trandaction
______________ e —————————

TradingEnterprise enterprise

Toop

[foreach supplier]

getMeanTimeToDelivery(supplier, enterpri

ise)

long mtdelivery

and mtdelivery to reportText

append supplier.getid, supplier.getName()

= [S

ReportTO result

result setReportText(reportText)

tx.commit()

Fig. 22. Sequence diagram of getting delivery reports (UC 6)

46 S. Herold et al.

sd UC7:ChangePrice J

T T
read selected product
into stockltemTO:StockltemTO

|
changePrice(stockltemTO)

T ersistence

Select product and enter new

I
ge(Trans%cuon()

».
»
tx:Trangaction _‘
_____________ F—————————-—-—--

t peginTransaction

|
|
|
queryStockltemByld(stockitemTO.getld()) |

si:Stockltem

si setSalesPrice(
stockltemTO.getSalesPrice())

result=fillProductWithStockltemTO(si)

tx.commit()
result:ProductWithStockitemTO

Fig. 23. Sequence diagram of changing the sales price of a product (UC 7)

requesting Store. To determine the optimal solution only the stocks of Stores are
searched which are chosen by a heuristic for effort and costs. If a cost-effective
solution is found, the transportation of the required goods is initiated and the
requesting Store is informed about the results of its query. The sequence diagram
in Figure 24 gives an overview on the dynamics in use case 8.

3.5 Implementation

In this section some important implementation aspects are briefly introduced.
This includes the code design and structure as well as some hints for how to
start the prototype of the Trading System.

Design

The code follows a specific structure in order to identify software components
easily. A component is mapped to a Java package. The interfaces a component
supports is located in that package. The implementation classes of the interfaces
are located in a subpackage called impl. In that way the diagrams presented in
this chapter can be mapped to their corresponding code in the implementation
of the Trading System.

How to Start the Trading System?

The prototype can be started using Ant ([7]). The required targets are located in
a file named build.xml. Furthermore a configuration file tradingsystem.properties
exists where, for example, the number of Stores or Clients can be maintained.
Further and detailed information can be found in the file readme.txt and in the
code comments.

CoCoME - The Common Component Modeling Example

47

SD: UC8 J

StoreServer A s

Are connected
via RMI

EnterpriseServer

Are connected
via RMI

n other
distributed
StoreServers

:TradingSystem
“Inventory::Application

:TradingSystem
Inventory::Data

ProductDi

‘inventory::application::
productdispatcher::

:TradingSystem

ispatcher “Inventory::Application

:TradingSystem
::Inventory::Data

queryLowStockltems -

returnLowStockltems

orderPro

searchForStoresinTheRegion
(Heuristics for effort and costs...)
=

loop
for each store in region

)

triggerDatabaseWrite

‘ gerD: "

ref

Sub-UC X: Trigger Database Write

A

TimeoutlfStoreUnavailable

1

boolean:getShouldDeliver()
S

alt
should
==true

Deliver

getStoreProductCombinations() = (Store, ComplexOrderEntry[])]
S—

loop
for each store

Delivery(Pr TO) —> (product / amount)

markProductsUnavailablelnStoc

returnRequiredProductsAvailable|

= ComplexOrderEntry[]

I

markProductsincoming(ComplexOrderE:

ntry[])

[should

alse

Deliver

retumRequiredProductsAval

ilable = ComplexOrderEntry[] (qua

Fig. 24. Sequence diagram

of exchanging products

among stores (UC 8)

48 S. Herold et al.

Ell.'g‘J Cocome
E@ Sre
EIEE arg,cocome, tradingsystem
EE‘ cashdeskline
EE exkernal
ElEEl imvenkory
ElEE application
ElEH produckdispatcher
E‘H?f impl
m Amplstarter.java
m ProductDispatcher . jawva
m CptimisationSalverIF java
m ProductDispatcherIf.jawva
reparking
1 impl

m FeportingImpl.java

o

m EnkerpriseTO. java
m ReportingIf.java
m ReportTO java
m SkoreTO . java

#H- £ store

- F3 wti

m ApplicationFactary. java

- H data

Fig. 25. Excerpt of classes and packages to depict the code structure

3.6 System Tests

In this section an overview of the system testing framework for the Trading
System is given. The system tests are intended to be used in two ways: First
to further detail certain aspects of the system and second to allow the different
modeling teams to test their resulting implementation with a common set of
(preferably automated) tests.

Test Architecture and Organisation

For a precise specification of the test scenarios and an easy way for automation of
test execution it was decided to write the test cases using the Java programming

49

CoCoME - The Common Component Modeling Example

wa)sAg Buipel] jo
u uonejuawsajdwy

JIomaurely SuIpse) WOISAS oY) JO 9INIINIYDIY "9Z “S1.4

waysAg Buipel] jo
Z uonejuswajdwi

0] sjjeo sdew

u Co_umﬂcmEm_QE_ 10}
JaAuQ 1SaL

wajsAg buipel] jo
| uonejuawsajdwy

0] s|jeo sdew

2Z uonejuswsaldwi 1oy
1aAuQ 1saL

sjuswedwi

Y

JoAUQISa L
Aeidsigiesn
Od?dl01s
Jonpoid
J8puLd

18pI0

wa)sAg Buipel] jo
uonejuawsajdwy|
aoualajey

0] s|jeo sdew

1 uopejuswaldwy 1oy
J9ALI(Q 1S9

sjusws|dwi

\ 4

0] sjjeo sdew

uonejuswa|dw
20UBI9)RY 10}
J9ALIQ 1S9L

sjusws|dwi

Y

Loty

Aeydsigsiybry
osudisjug
xogysen

19pesypIeD

leuueoSaposieg

sjuswsjduit

A

Jqueg

woajsAg Buipes] jo
aoeyIau| 1sa]

sosn

salo)gbuowyabueyox31onpoid _

S1ONPOI4BAI808HPUYIEPIO _

noxoeynssaidxgabeuepy _

PIWS}PIEAUIBIES SS90 _

PIBDIIPBIDBIESSS8001d _

JUBLINOUODS[ESSSBI0Id _

_
_
_
_ pajie4pied}ipail)a|esSssad0id _
_
_
_
_

yseDo[eSSse00.d _

wa)sAg Buipe] o}
s)sa] walsAs

50 S. Herold et al.

language and the JUnit ([8]) testing framework as far as possible. Even when
specifying the test scenarios in Java these were specified using self-explanatory
identifiers and method names thus the test scenarios are also easily human read-
ably and understandable.

Not for all of the before described use cases it was considered useful to specify
a precise test scenario. Where the test conditions are not described detailed
enough to judge the outcome of a test programmatically, an informal textual
test script is provided instead.

The provided testing framework consists of different layers as shown in
figure The system tests use a common testing interface. This interface is
implemented by test drivers for each implementation. The test drivers map the
calls from the tests to the respective implementation.

To enable reusing the tests for several implementations of the same system,
the test scenarios are implemented only against a set of interfaces describing the
interactions of the Trading System with its environment. For example there is
an Interface for the Bar Code Scanner defining a scanBarcode method, which
is used for simulating the scanning of a product’s bar code, while the interface
for the user display provides a isPriceShown method which is used to check if
the correct price is actually presented to the customer.

The link to the system’s implementation is built by an implementation-specific
test driver implementing these interfaces and mapping all interface calls to cor-
responding system actions. This configuration allows the tests to work with
unknown realizations of the system, as the knowledge about the actual imple-
mentation (which messages to send and how to identify the current state) is
encapsulated in the test driver, which in turn needs to be adapted to the used
implementation. Thus if the resulting implementation of a participating team
should be tested, only an appropriate test driver is required, i.e., a suitable
implementation of the test interfaces. The specified test scenarios will remain
unchanged and may potentially be executed against any trading system imple-
mentation.

As a proof-of-concept a test driver for the reference implementation of the
trading system is provided. Further details on the testing system and how to
write a specific test driver may be found in the corresponding source code and
the JavaDoc documentation which comes with the source code.

Test Scenarios

The single test scenarios are based on the description of the use cases of the
trading system. It was not intended to fulfill any coverage criteria or completeness
in testing but rather to give examples of how such tests could look like and to
provide a formalization of the use cases.

Basically there are two kinds of test scenarios: Formally described test cases
written as executable Java test classes and informal descriptions of tests. The
choice of the representation of a test case depends on the kind of use case.

The use cases consisting of a sequence of executions steps with a defined re-
sult are given as Java test classes using the test interfaces. These test cases

CoCoME - The Common Component Modeling Example 51

could be executed automatically (by means of JUnit) for a specific implemen-
tation. However, the source code of these tests can also be interpreted as a
formalized test plan which could be followed manually. The remaining use cases
which were not explicit enough but mainly set up a requirement for an entire
piece of functionality (such as use case 5) were treated by describing the test
case informally. Test cases of this form are intended to be checked manually. In
table 2] the pass and fail conditions for these tests are specified.

Table[2 describes the single test cases. It states from which use case the test is
derived and labels each test case with an identifier (this refers to the respective
Java class of the test). For the test cases specified in Java a short description of
the scenario is given. For details the reader may consult the source code of the
test scenarios. For the informal stated test cases the pass and fail criteria are
given instead.

Table 2. Test Scenarios for Trading System

Use Test Case Id Type Description
Case
1 ProcessSaleCash Java Purchase of some goods and cash

payment, no exceptions.

1 ProcessSale Java Concurrent purchase of some goods
Concurrent at n different cash desks, no
exceptions.
1 ProcessSale Java Purchase of some goods and credit
CreditCard card payment, no exceptions.
1 ProcessSale Java Invalid item id read, manual entry
InvalidltemlId of item id.

(Exception in step 3 of use case 1)

1 ProcessSale Java Wrong PIN entry for credit card;
CreditCardFailed card validation fails.
(Exception in step 5.2 of use case 1)
2 ManageExpress Java System switches to express mode.

Checkout Express mode is shown at cash desk,
credit card payment not possible.

52

S. Herold et al.

Use Test Case Id

Case
3 ShowProducts

ForOrdering

3,4 OrderAnd

ReceiveProducts

5 ShowStockReports

6 ShowDeliveryRe-

ports

Table 2.

(continued)

Type Description

infor-

mal

Java

infor-

mal

infor-

mal

Store shall provide functionality to

generate a report about products
which are low on stock.

Test: Check if System offers
functionality for reporting products
low on stock.

PASS: Generation of report with
products low on stock possible
FAIL: Generation of report with
products low on stock NOT possible
Products low on stock will be

ordered and correct delivery will be
recorded in the inventory.

System shall provide functionality

to present a report including all
available stock items in store or a
report of cumulated available
product items of a specified
enterprise.

Test: Check if System offers
functionality for generation of stock
reports

PASS: Generation of stock reports
possible

FAIL: Generation of stock reports
NOT possible

System shall provide functionality

to present a report showing mean
time to delivery for each supplier of
a specific enterprise.

Test: Check if System offers
functionality for generation of a
delivery report

PASS: Generation of delivery
report possible

FAIL: Generation of delivery report
NOT possible

CoCoME - The Common Component Modeling Example

Table 2.
Use Test Case Id Type
Case
7 ChangePrice infor-

mal

8 ProductExchange Java

AmongStores

References

(continued)

Description

System shall provide functionality

to change sales price of a product.
Test: Check if System offers
functionality for change sales price
of a product

PASS: Change of sales price for
product item possible

FAIL: Change of sales price for
product item NOT possible

After a sale which leads to a

product being low on stock of the
store, product exchange between
stores should take place.

53

. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3rd edn. Prentice-Hall, Englewood

Cliffs (2004)

. OMG, Object Management Group: UML Profile for Schedulability, Performance
and Time (2005), http://www.omg.org/cgi-bin/doc?formal/2005-01-02
. SUN Microsystems: The Java Database Connectivity (JDBC),
http://java.sun.com/javase/technologies/database/index. jsp

. JBoss (Red Hat Middleware): Hibernate, http://www.hibernate.org

. SUN Microsystems: Java Persistence API,
http://java.sun.com/javaee/technologies/persistence. jsp

. SUN Microsystems: Java Message Service, http://java.sun.com/products/jms/
. Apache: The Apache Ant Project, http://ant.apache.org

. JUnit: JUnit, http://wuw. junit.org

http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://java.sun.com/javase/technologies/database/index.jsp
http://www.hibernate.org
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/products/jms/
http://ant.apache.org
http://www.junit.org

	CoCoME - The Common Component Modeling Example
	Introduction and System Overview
	Functional Requirements and Use Case Analysis
	Extra-Functional Properties
	Architectural Component Model
	Implementation
	System Tests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

