
Lecture 10

OPERATION, MAINTENANCE AND EVOLUTION

PB007 Software Engineering I
Faculty of Informatics, Masaryk University

Fall 2020

1© Barbora Bühnová



Topics covered

 Evolution processes

▪ Change processes for software systems 

 Software maintenance

▪ Making changes to operational software systems

 Refactoring and reengineering

 Legacy system management

▪ Making decisions about software change

2Chapter 9 Software evolution



Evolution Processes

Lecture 10/Part 1

3Chapter 9 Software evolution



Software change

 Software change is inevitable

▪ New requirements emerge when the software is used;

▪ The business environment changes;

▪ Errors must be repaired;

▪ New computers and equipment is added to the system;

▪ The performance or reliability of the system may have to be 

improved.

 For custom systems, the costs of software maintenance 

usually exceed the software development costs.

 A key problem for all organizations is implementing and 

managing change to their existing software systems.

4Chapter 9 Software evolution



A spiral model of development & evolution

5Chapter 9 Software evolution



DevOps

6© Papcunová

 A set of practices that combines software development (Dev) and 

operations (Ops) which aims to shorten the development life cycle 

and provide continuous delivery with high software quality

 A culture that promotes collaboration between Development and 

Operations team that makes the team more efficient

h
ttp

s
://w

w
w

.e
c
lo

u
d

v
a

lle
y
.c

o
m

/w
p

-

c
o

n
te

n
t/u

p
lo

a
d

s
/2

0
1

8
/0

8
/W

h
a

t-is
-

D
e
v
O

p
s
-1

.p
n

g



Release

7© Papcunová

 A distribution of a version of software

 At the end of each iteration in agile methodologies

 Software has to be planned, implemented, tested 

and then delivered 

to customer or

released into 

production



Deployment

8© Papcunová

 The process required for preparing a software application to run and 

operate in a specific environment

 Deployment plan to ensure changes are made the same way every 

time

 Various environments:

▪ Local

▪ Development

▪ Staging

▪ Production



Continuous Integration

9© Papcunová

 A development practice that requires developers to 

regularly integrate code into a shared repository

 The process of automating the build and

testing of code every time 

a team member commits 

changes to version control

 Process can help detect 

errors quickly and locate 

them easily 

https://iqm7l1pa7bn3d42rc278rat5-

wpengine.netdna-ssl.com/wp-

content/uploads/2020/01/image1-1.png



Evolution and servicing

10Chapter 9 Software evolution

 Evolution

▪ New functionality added, faults repaired.

 Servicing

▪ Faults repaired, no new functionality added.

 Phase-out

▪ The software still in use but no further changes are made to it.



Evolution processes

 Proposals for change are the driver for SW evolution.

▪ Should be linked with components that are affected by the 

change, thus allowing the cost and impact of the change to be 

estimated.

 Change identification and evolution continues throughout 

the system lifetime.

11Chapter 9 Software evolution



More on change implementation

 Iteration of the development process where the 

revisions to the system are designed, implemented and 

tested.

▪ May be done by a different team, not the original developers.

▪ Involves program understanding, especially if no original 

developers are involved.

▪ During the program understanding phase, one has to understand 

how the proposed change might affect the program. 

 Urgent changes may have to be implemented without 

going through all stages of the evolution process.

 Technical debt may be created and must be managed.

12Chapter 9 Software evolution



Technical debt

 Technical Debt Management

▪ Introduced by Ward Cunningham

▪ Analogy of quality degradation with financial debt 

– if not paid off, interests increase. One can get into trouble.

 Sometimes it is wise to “borrow money”

▪ When one expects to have more money in the future (start-up 

company)

▪ When one needs to act fast not to miss a market opportunity

▪ When one expects money devaluation (e.g. developers will 

become more experienced, it will be easier to understand user 

needs)

 Sometimes not

13Chapter 9 Software evolution



Agile methods and evolution

 Agile methods are based on incremental development so 

the transition from development to evolution is seamless.

▪ Evolution is simply a continuation of the development process 

based on frequent system releases.

 Automated regression testing is particularly valuable 

when changes are made to a system.

 Handover problems

▪ What if the development team is agile and the evolution team is 

not?

▪ What if the evolution team is agile and the development team is 

not?

14Chapter 9 Software evolution



Software Maintenance

Lecture 10/Part 2

15Chapter 9 Software evolution



 Modifying a program after it has been put into use.

 The term is mostly used for changing custom software. 

Generic software products are said to evolve to create 

new versions.

 Maintenance does not normally involve major 

changes to the system’s architecture.

 Changes are implemented by modifying existing 

components and adding new components to the system.

Software maintenance

16Chapter 9 Software evolution



 Corrective: Maintenance to repair software faults

▪ Changing a system to correct deficiencies in the way meets its 

requirements.

 Adaptive: Maintenance to adapt software to a different 

operating environment

▪ Changing a system so that it operates in a different environment 

(computer, OS, etc.) from its initial implementation.

 Evolutionary: Maintenance to add to or modify the 

system’s functionality

▪ Modifying the system to satisfy new requirements.

Types of maintenance

17Chapter 9 Software evolution



Maintenance effort distribution

18Chapter 9 Software evolution



Maintenance prediction and planning

19Chapter 9 Software evolution



 Usually greater than development costs (1* to 20* 

depending on the application).

▪ Experience with custom information systems shows that around 

20% of development costs needs to be allocated to maintenance 

every year (within the first five years).

 Affected by both technical and non-technical factors.

 Increases as software is maintained. Maintenance 

corrupts the software structure so makes further 

maintenance more difficult.

 Ageing software can have high support costs 

(e.g. old languages, compilers etc.).

1. Predicting maintenance costs

20Chapter 9 Software evolution



Development and maintenance costs

21Chapter 9 Software evolution



 Team stability

▪ Maintenance costs are reduced if the same staff are involved 
with them for some time.

 Contractual responsibility

▪ The developers of a system may have no contractual 
responsibility for maintenance so there is no incentive to design 
for future change.

 Staff skills

▪ Maintenance staff are often inexperienced and have limited 
domain knowledge.

 Program age and structure

▪ As programs age, their structure is degraded and they become 
harder to understand and change.

Maintenance cost factors

22Chapter 9 Software evolution



2. Predicting system changes

 Predicting the number of changes requires an 

understanding of the relationships between the 

system and its environment.

 Tightly coupled systems require changes whenever the 

environment is changed.

 Factors influencing this relationship are

▪ Number and complexity of system interfaces;

▪ Number of inherently volatile system requirements;

▪ The business processes where the system is used.

23Chapter 9 Software evolution



Complexity metrics

 Predictions of maintainability can be made by assessing 

the complexity of system components.

 Studies have shown that most maintenance effort is 

spent on a relatively small number of system 

components.

 Complexity depends on

▪ Complexity of control structures;

▪ Complexity of data structures;

▪ Object, method (procedure) and module size.

24Chapter 9 Software evolution



3. Predicting maintainability

 Planning

▪ What parts of the system will be the most expensive to maintain?

 Process metrics may be used to assess maintainability

▪ Number of requests for corrective maintenance;

▪ Average time required for impact analysis;

▪ Average time taken to implement a change request;

▪ Number of outstanding change requests.

 If any or all of these is increasing, this may indicate a 

decline in maintainability.

25Chapter 9 Software evolution



Change/Issue tracking

26© Papcunová

 Process of recording and following the progress of a software issue, 

change request until the problem is resolved

 Mostly used in a customer support to report customer issues

 Issues are transformed into tickets that contain report of the problem 

and its status

 Also used as a software project tracking and management



Issue tracking board

27© Papcunová

https://brainhub.eu/blog/wp-content/uploads/2018/08/best-issue-tracking-systems-jira.png



Version control

28© Papcunová

 A system that records changes to files over time so that specific 

versions can be recalled later

 Allows comparing changes and reverting files back to a previous 

state

 Code is organized in a tree structure – developers can work on 

some parts of that tree and later can merge their changes together

h
ttp

s
://b

lo
g
.c

p
a
n
e
l.c

o
m

/w
p

-

c
o
n
te

n
t/u

p
lo

a
d
s
/2

0
1
8
/0

5
/im

a
g
e
2
0
1

8
-2

-8
_
1
7
-4

6
-1

.p
n
g



Refactoring and Reengineering

Lecture 10/Part 3

29Chapter 9 Software evolution



System reengineering

 Re-structuring or re-writing part or all of a legacy system 

without changing its functionality.

 Applicable where some but not all sub-systems of a 

larger system require frequent maintenance.

 Reengineering involves adding effort to make them 

easier to maintain. The system may be re-structured 

and re-documented.

 How does reengineering relate to refactoring?

 How does reengineering relate to technical debt?

30Chapter 9 Software evolution



Advantages of reengineering

 Reduced risk

▪ There is a high risk in new software development. There may be 

development problems, staffing problems and specification 

problems.

 Reduced cost

▪ The cost of reengineering is often significantly less than the 

costs of developing new software.

31Chapter 9 Software evolution



Reengineering activities

 Source code translation

▪ Convert code to a new language.

 Reverse engineering

▪ Analyse the program to understand it;

 Program structure improvement

▪ Restructure automatically for understandability;

 Program modularisation

▪ Reorganise the program structure;

 Data reengineering

▪ Clean-up and restructure system data.

32Chapter 9 Software evolution



The reengineering process example

33Chapter 9 Software evolution



Reengineering cost factors

 The quality of the software to be reengineered.

 The tool support available for reengineering.

 The extent of the data conversion which is required.

 The availability of expert staff for reengineering.

34Chapter 9 Software evolution



Refactoring

35© Papcunová

 A process of modifying a program to improve its structure, reduce its 

complexity or make it easier to understand

 It is intended to avoid the structure and code degradation that 

increases the costs and difficulties of maintaining a system

 Should be done in small steps without changing the program’s 

behaviour



Preventative maintenance by refactoring

 Refactoring is the process of making improvements to a 

program to slow down degradation through change.

 You can think of refactoring as ‘preventative 

maintenance’ that reduces the problems of future 

change. 

 Refactoring involves modifying a program to improve its 

structure, reduce its complexity or make it easier to 

understand. 

 When you refactor a program, you should not add or 

change functionality but concentrate on code quality 

improvement. 

36Chapter 9 Software evolution



Refactoring and reengineering

 Reengineering takes place after a system has been 

maintained for some time and maintenance costs are 

increasing. You use automated tools to process and 

reengineer a legacy system to create a new system that 

is more maintainable. 

 Refactoring is a continuous process of improvement 

throughout the development and evolution process. It is 

intended to avoid the structure and code degradation 

that increases the costs and difficulties of maintaining a 

system.

37Chapter 9 Software evolution



Examples of ‘Bad Smells’ in program code

 Duplicate code 

▪ Can be implemented as a single method or function that is called 

as required.

 S.O.L.I.D. violated

▪ God classes, long methods, which should be split.

 Different abstraction levels

▪ Not top down - mixed, skipping levels, mixing levels in one 

method.

 Circular dependencies 

 Long parameter list

38Chapter 9 Software evolution



Key points

 There are 3 types of software maintenance, namely bug 

fixing, modifying software to work in a new 

environment, and implementing new or changed 

requirements.

 Software reengineering is concerned with re-

structuring and re-documenting software to make it 

easier to understand and change. 

 Refactoring, making program changes that preserve 

functionality, is a form of preventative maintenance.

39Chapter 9 Software evolution



Legacy System Management

Lecture 10/Part 4

40Chapter 9 Software evolution



Legacy system management

 Organisations that rely on legacy systems must choose 

a strategy for evolving these systems

▪ Scrap: Scrap the system completely and modify business 

processes so that it is no longer required;

▪ Maintain: Continue maintaining the system;

▪ Reengineer: Transform the system by reengineering to improve 

its maintainability;

▪ Replace: Replace the system with a new system.

 The strategy chosen should depend on the system 

quality and its business value.

41Chapter 9 Software evolution



An example of a legacy system assessment

42Chapter 9 Software evolution



Legacy system categories

 Low quality, low business value

▪ These systems should be scrapped. 

 Low quality, high business value

▪ These make an important business 

contribution but are expensive to 

maintain. Should be reengineered 

or replaced if a suitable system is available.

 High quality, low business value

▪ Scrap or increase the business value – see on later slides.

 High quality, high business value

▪ Continue in operation using normal system maintenance.

43Chapter 9 Software evolution



Business value assessment

 Assessment should take different viewpoints into 

account

▪ System end-users;

▪ Business customers;

▪ Line managers;

▪ IT managers;

▪ Senior managers.

 Interview different stakeholders and collate results.

44Chapter 9 Software evolution



System quality assessment

 Application assessment

▪ What is the quality of the application software system? 

How expensive it is to maintain?

 Environment assessment

▪ How effective is the system’s environment?

How expensive it is to maintain?

 You may collect quantitative data to make an 

assessment of the quality of the application system

▪ The number of system change requests; 

▪ The number of different user interfaces used by the system;

▪ The volume of data used by the system.

45Chapter 9 Software evolution



Factor Questions

Understandability How difficult is it to understand the source code of the current 

system? How complex are the control structures that are used? 

Do variables have meaningful names that reflect their function?

Documentation What system documentation is available? Is the documentation 

complete, consistent, and current?

Data Is there an explicit data model for the system? To what extent is 

data duplicated across files? Is the data used by the system up to 

date and consistent?

Performance Is the performance of the application adequate? Do performance 

problems have a significant effect on system users?

46Chapter 9 Software evolution

Factors used in application assessment



Factors used in application assessment

Factor Questions

Programming language Are modern compilers available for the programming 

language used to develop the system? Is the programming 

language still used for new system development?

Configuration 

management

Are all versions of all parts of the system managed by a 

configuration management system? Is there an explicit 

description of the versions of components that are used in 

the current system?

Test data Does test data for the system exist? Is there a record of 

regression tests carried out when new features have been 

added to the system? 

Personnel skills Are there people available who have the skills to maintain the 

application? Are there people available who have experience 

with the system? 

47Chapter 9 Software evolution



Factors used in environment assessment

Factor Questions

Supplier stability Is the supplier still in existence? Is the supplier financially stable and 

likely to continue in existence? Is the supplier replaceable? 

Failure rate Does the hardware have a high rate of reported failures? Does the 

support software crash and force system restarts? 

Age How old is the hardware and software? The older the hardware and 

support software, the more obsolete it will be.

Performance Is the performance of the system adequate? Do performance 

problems have a significant effect on system users?

Support 

requirements

What local support is required by the hardware and software? If high, 

it may be worth considering system replacement.

Maintenance 

costs

What are the costs of hardware maintenance and support software 

licenses (annual licensing costs)?

Interoperability Are there problems interfacing the system to other systems? Can 

compilers, for example, be used with current versions of the operating 

system? Is hardware emulation required?

48Chapter 9 Software evolution



Key points

 The business value of a legacy system and the quality of 

the application should be assessed to help decide if a 

system should be replaced, transformed or maintained.

 The business-value assessment should take different 

stakeholder viewpoints into account.

49Chapter 9 Software evolution


