
October 8, 2020

Efficient C++
Petr Ročkai



Efficient C++ 2/23 October 8, 2020

Part A: Introduction



Efficient C++ 3/23 October 8, 2020

Organisation
• online discussion at a specific time

∘ we will find a common slot
• collect 12 points to pass the subject
• most points come from assignments
• a few from competitions & peer review



Efficient C++ 4/23 October 8, 2020

Assignments
• one assignment every 2 weeks, 6 in total
• one assignment = 2 points

Bonuses (per assignment)
• add 1 point if you pass within 14 days
• else add 0.5 points if you pass by 30.1.



Efficient C++ 5/23 October 8, 2020

Assignments (cont’d)
• details about submission next week
• we will use a small subset of C++
• the code must be valid C++17
• sanity tests run every midnight
• verity tests run every Friday



Efficient C++ 6/23 October 8, 2020

Competitions
• we will hold 3 online competitions
• do your best in 40–60 minutes on a small problem
• the winner gets 2 points, 2nd & 3rd place get 1.5
• all other working programs get 1 point
• we’ll dissect the winning program together



Efficient C++ 7/23 October 8, 2020

Peer Review
• you can write feedback for classmates
• up to 6 reviews, 0.5 points each
• you must pass the assignment first



Efficient C++ 8/23 October 8, 2020

Exercises
• there will be a few weekly exercises
• working them out is optional but recommended
• we can discuss them in the online chat



Efficient C++ 9/23 October 8, 2020

Summary of Points
• 12 points for assignments
• 6 points for early work
• 3–6 points for competitions
• 3 points for peer review

• you need 12 points by 27.2. to pass



Efficient C++ 10/23 October 8, 2020

Semester Plan (part 1)
date

1. computational complexity 8.10.
2. microbenchmarking & stats 15.10.
3. the memory hierarchy 22.10.
4. using callgrind 29.10.
5. tuning for the compiler 21.10.
6. competition 1 5.11.



Efficient C++ 11/23 October 8, 2020

Semester Plan (part 2)
date

7. understanding the CPU 12.11.
8. exploiting parallelism 19.11.
9. competition 2 26.11.
10. using perf 3.12.
11. competition 3 10.12.



Efficient C++ 12/23 October 8, 2020

Assignment Schedule
given due

1. benchmarking tool 8.10. 23.10.
2. matrix multiplication 22.10. 6.11.
3. sets of integers 5.11. 20.11.
4. substring search 19.11. 4.12.
5. parallel computation 3.12. 18.12.
6. a hash table 31.12. 15.1.



Efficient C++ 13/23 October 8, 2020

Efficient Code
• computational complexity
• the memory hierarchy
• tuning for the compiler & optimiser
• understanding the CPU

• exploiting parallelism



Efficient C++ 14/23 October 8, 2020

Understanding Performance
• writing and evaluating benchmarks
• profiling with callgrind

• profiling with perf

• the law of diminishing returns

• premature optimisation is the root of all evil
• (but when is the right time?)



Efficient C++ 15/23 October 8, 2020

Tools
• on a POSIX operating system (preferably not in a VM)
• perf (Linux-only, sorry)
• callgrind (part of the valgrind suite)
• kcachegrind (for visualisation of callgrind logs)
• maybe gnuplot for plotting performance data



Efficient C++ 16/23 October 8, 2020

Compilers
• please stick to C++17 and C11 (or C99)
• the reference compiler will be gcc 9.3.0
• you can use other compilers locally
• but your code has to build with the above



Efficient C++ 17/23 October 8, 2020

Part 1: Computational Complexity



Efficient C++ 18/23 October 8, 2020

Complexity and Efficiency
• this class is not about asymptotic behaviour
• you need to understand complexity to write good code
• performance and security implications

• what is your expected input size?
• complexity vs constants vs memory use



Efficient C++ 19/23 October 8, 2020

Quiz
• what’s the worst-case complexity of:

∘ a bubble sort? (standard) quick sort?
∘ inserting an element into a RB tree?
∘ inserting an element into a hash table?
∘ inserting an element into a sorted array?
∘ appending an element to a dynamic array?

• what are the amortised complexities?
• how about expected (average)?



Efficient C++ 20/23 October 8, 2020

Hash Tables
• often the most efficient data structure available
• poor theoretical worst-case complexity

∘ what if the hash function is really bad?
• needs a fast hash function for efficiency

∘ rules out secure (cryptographic) hashes



Efficient C++ 21/23 October 8, 2020

Worst-Case Complexity Matters
• CVE-2011-4815, 4838, 4885, 2012-0880, ...
• apps can become unusable with too many items
• use a better algorithm if you can (or must)
• but: simplicity of code is worth a lot, too
• also take memory complexity and constants into account



Efficient C++ 22/23 October 8, 2020

Constants Matter
• n ops if each takes 1 second
• n logn ops if each takes .1 second
• n2 ops if each takes .01 second

Picking the Right Approach
• where are the crossover points?
• what is my typical input size?
• is it worth picking an approach dynamically?
• what happens in pathological cases?



Efficient C++ 23/23 October 8, 2020

Exercises
• log into aisa

• run pb173a update

• then cd ~/pb173a/01

• and cat intro.txt


