
October 15, 2020

PB173/B Kernel Development
P. Ročkai

PB173/B Kernel Development 2/82 October 15, 2020

Organisation
• you write a tiny operating system kernel
• use this document as a ‘todo list’ and a springboard
• use OSDev wiki, architecture manuals, specs, …
• use the chat (lounge) to ask questions

PB173/B Kernel Development 3/82 October 15, 2020

Grading
• there are 6 suggested checkpoints
• some have dependencies, others don’t
• meet any 4 to pass the subject
• feel free to negotiate different goals
• set up any schedule you like

PB173/B Kernel Development 4/82 October 15, 2020

Your Own OS (in 6 easy steps)
1. Booting
2. Memory
3. libc &c.
4. System Calls
5. Userland
6. Interrupts

PB173/B Kernel Development 5/82 October 15, 2020

Resources
• the OSDev wiki
• OSKit
• the m.br. book
• open-source kernels

∘ Linux, *BSD
∘ MINIX 3
∘ IncludeOS

• pdclib, libc++, ...

PB173/B Kernel Development 6/82 October 15, 2020

Non-Goals
• writing a realistic kernel
• portability
• long-term maintainability
• hardware / drivers
• file systems
• POSIX

PB173/B Kernel Development 7/82 October 15, 2020

Goals
• learn stuff & have fun
• cross an item off your bucket list

Technical goals (stuff to try)
• something that boots
• memory management basics
• C++ in kernel space
• kernel-user separation

PB173/B Kernel Development 8/82 October 15, 2020

Platform
• protected mode, 32 bit x86
• some assembly required (tm)
• let’s not muck with cross toolchains
• GRUB2 as the bootloader
• qemu as the system emulator
• serial port for IO

PB173/B Kernel Development 9/82 October 15, 2020

Part 1: Booting

PB173/B Kernel Development 10/82 October 15, 2020

The Boot Sequence
• very platform-specific
• on x86, either legacy or UEFI
• all sorts of stuff elsewhere
• man-years of work

The EasyWay Out
• GRUB with multiboot2
• not actually portable either :(

PB173/B Kernel Development 11/82 October 15, 2020

Multiboot2
• lands you in protected mode
• getting to C in under 10 instructions
• module preloading
• example in study materials

PB173/B Kernel Development 12/82 October 15, 2020

Checkpoint 1: Part 1
• get a copy of GRUB and build it from source

∘ also grab xorriso to go with it

• read through the multiboot2 spec
• set up version control for your code
• build the example multiboot kernel

∘ multiboot.tgz in study materials

• ask questions

PB173/B Kernel Development 13/82 October 15, 2020

Multiboot Modules
• GRUB can load extra files for you
• dump it at some location in memory
• give you a list of the modules
• and their load addresses / sizes

PB173/B Kernel Development 14/82 October 15, 2020

Checkpoint 1: Part 2
• print a list of multiboot modules
• load a text file as a module
• copy the text to screen
• we will use this later to load user programs

PB173/B Kernel Development 15/82 October 15, 2020

Checkpoint 1: Part 3
• write a very simple serial port driver
• https://wiki.osdev.org/Serial_ports

• you will need inb and outb

• do not use interrupt mode (for now)
• this lets us get some user input
• more details about this next week

PB173/B Kernel Development 16/82 October 15, 2020

Assembly Syntax
• immediate values get a $ prefix
• registers get a % prefix
• unprefixed numbers are addresses
• opcode source, destination

• note well that there are other conventions

PB173/B Kernel Development 17/82 October 15, 2020

The Calling Convention
• specific to C on x86

• scratch registers: eax, ecx, edx
• return value is in eax

mov 4(%esp), %eax // arg 1

mov 8(%esp), %edx // arg 2

// do stuff

ret

PB173/B Kernel Development 18/82 October 15, 2020

Sidenote: Calling C Functions

pushl %edx

pushl %eax

pushl $fmt

call printf

addl $12, %esp // clean up arguments

PB173/B Kernel Development 19/82 October 15, 2020

Wrapping I/O Instructions
• read with inb port, register

• and write with outb register, port

• note the argument order
• note the C argument order on the stack
• maybe draw a picture

PB173/B Kernel Development 20/82 October 15, 2020

Serial Port (RS 232)
• https://wiki.osdev.org/Serial_ports

• write inb and outb in assembly
• so that they can be called from C

• defining symbols in asm: .global foo

• foo is then a standard label
• don’t forget to write a C prototype for both

PB173/B Kernel Development 21/82 October 15, 2020

Part 2: Memory

PB173/B Kernel Development 22/82 October 15, 2020

Kernels vs Memory
• physical memory
• MMU and page tables
• memory protection
• dynamic memory in kernel

PB173/B Kernel Development 23/82 October 15, 2020

MMU
• part of the CPU
• Memory Management Unit
• responsible for memory protection
• also virtual memory

PB173/B Kernel Development 24/82 October 15, 2020

Address Types
• physical – what shows up on the memory bus

∘ not directly accessible to (normal) software
∘ shows up as frame addresses in page tables

• virtual
∘ normal pointers in C
∘ user-mode software only sees this
∘ managed by the OS

PB173/B Kernel Development 25/82 October 15, 2020

Paging
• physical memory is split into 4K frames
• virtual memory is split into 4K pages
• i.e. page is the content, frame is a place
• pages can be moved in and out of frames

PB173/B Kernel Development 26/82 October 15, 2020

Properties of Pages
• each page is of a fixed and uniform size
• pages have permission bits (read, write, execute)
• page table decides which pages ’exist’
• the page table can be changed by the OS

∘ useful for context switching

PB173/B Kernel Development 27/82 October 15, 2020

Aside: Segmentation
• different memory protection scheme
• variable-sized segments
• specific use: code, stack & data segments
• not used in modern systems
• we will not use segmentation either

PB173/B Kernel Development 28/82 October 15, 2020

Page Directory
• first level of paging metadata
• lives at a 4K-aligned physical address
• the address of the PD lives in CR3

• lists 1024 pointers to 4K page tables

PB173/B Kernel Development 29/82 October 15, 2020

Page Table
• second level of paging metadata
• also lives at 4K-aligned physical addresses
• lists 1024 physical (frame) addresses

∘ the page may or may not be present in the frame
∘ the P bit decides this
∘ accessing a P-less pages traps

PB173/B Kernel Development 30/82 October 15, 2020

Enabling Paging
• paging must be explicitly enabled
• you need to set up a page directory first
• and the page tables to go with it
• then load the physical address of PD into CR3

• and flip the PG and PE bits in CR0

PB173/B Kernel Development 31/82 October 15, 2020

Identity Mapping
• portions of memory can be mapped 1:1
• those virtual addresses will be the same as physical
• this is called identity mapping
• makes your life easier, but limits your flexibility

PB173/B Kernel Development 32/82 October 15, 2020

Reserved Physical Memory
• there are areas you cannot touch
• this includes BIOS data structures
• the PCI address space
• data on this is available from multiboot

PB173/B Kernel Development 33/82 October 15, 2020

Memory Allocation
• there are two levels of allocation in kernels
• one deals with obtaining physical pages
• another deals with fine-grained memory

∘ it is hard to live without malloc()
∘ linked lists, dynamic arrays &c. &c.

PB173/B Kernel Development 34/82 October 15, 2020

Page Allocator
• the page allocator can be quite simple
• page size is uniform
• the memory chunks are fairly big

∘ which makes metadata small in comparison
∘ there aren’t that many pages to be had

PB173/B Kernel Development 35/82 October 15, 2020

Implementing malloc()

• malloc works by subdividing bigger chunks of memory
• userspace malloc() typically gets memory from mmap()

• you can use the page allocator as a backend for malloc
• alternative: fixed size memory area for kernel data

∘ simpler, but also less flexible

PB173/B Kernel Development 36/82 October 15, 2020

How does mallocwork?
• many different approaches
• often size-bucketed storage for small allocations

∘ per-bucket bump allocator
∘ per-bucket, inline free lists

• alternative: pre-filled free lists
• passthrough of big allocations (page-sized)

PB173/B Kernel Development 37/82 October 15, 2020

Aside: Optimising malloc

• consider cache interaction
• free list used in FIFO or LIFO order?
• separate per-thread arenas/pools
• free still has to work cross-thread

PB173/B Kernel Development 38/82 October 15, 2020

Checkpoint 2: Part 1
• set up page tables
• identity-map your kernel
• make those pages supervisor-only
• write code to map/unmap user pages

PB173/B Kernel Development 39/82 October 15, 2020

Checkpoint 2: Hints
• you can implement most of page management in C
• like with inb/outb, you need asm to flip cr3

∘ and to change bits in cr0

• identity-mapping the kernel will save you a lot of trouble
∘ but you can do a bootstrap with physical/virtual split
∘ no bonus points for doing this

PB173/B Kernel Development 40/82 October 15, 2020

Checkpoint 2: Part 2
• pick a range of addresses for kernel data
• obtain physical memory reservations at boot time
• write malloc for in-kernel use
• also write free and realloc

• if you feel adventurous, try a threadsafe implementation

PB173/B Kernel Development 41/82 October 15, 2020

Checkpoint 2 Resources
• https://wiki.osdev.org/Paging

• https://wiki.osdev.org/Setting_Up_Paging

• https://wiki.osdev.org/Page_Frame_Allocation

• https://wiki.osdev.org/Memory_Allocation

• x86 reference manual

PB173/B Kernel Development 42/82 October 15, 2020

Part 3: libc &c.

PB173/B Kernel Development 43/82 October 15, 2020

What is libc
• provides ISO C library functions

∘ printf, scanf, strcmp, …
∘ malloc, free, …

• and the POSIX syscall interface
∘ open, read, write

PB173/B Kernel Development 44/82 October 15, 2020

Using libc in a Kernel
• no system call interface
• reduced file abstraction
• malloc never fails?
• what about thread support?

PB173/B Kernel Development 45/82 October 15, 2020

Support for FILE
• this includes printf and friends
• it makes sense to tie this to console

∘ in our case, serial port

• FILE does not need much
∘ only a few callbacks

PB173/B Kernel Development 46/82 October 15, 2020

Kernel Threads
• libcmay contain pthread support
• this is very much user-level
• probably a bad idea to use this API in kernel
• kernels still need mutexes and the like

PB173/B Kernel Development 47/82 October 15, 2020

Porting libc

• memory allocation (malloc)
∘ we did this last time

• file abstraction (FILE *)
• random platform glue

∘ exit, atexit, sleep, ...

PB173/B Kernel Development 48/82 October 15, 2020

Porting libc++

• based mostly on libc

• and pthread support code
• also needs libc++abi

∘ RTTI, exceptions, ...

PB173/B Kernel Development 49/82 October 15, 2020

Thread Support
• our kernel will be single-threaded
• we still need to provide thread APIs

∘ libc++ needs a rudimentary one

• mutex functions can do nothing
• pthread_once (equivalent) has to work though

PB173/B Kernel Development 50/82 October 15, 2020

Dependencies Everywhere
• std::stringstream is nice to have
• but it needs a locale library

∘ we need to provide locale stubs for libc++

• normal streams are based on FILE *

PB173/B Kernel Development 51/82 October 15, 2020

Checkpoint 3
• take a libc of your choosing

∘ pdclibwould be a good candidate

• make it build and run
• adapt it for kernel use
• tie stdout and stdin to the serial port
• printf away

PB173/B Kernel Development 52/82 October 15, 2020

Part 4: System Calls

PB173/B Kernel Development 53/82 October 15, 2020

What is a System Call
• calls from user code into the kernel
• works (almost) like a function call

∘ with a special calling convention

• switches the CPU into privileged mode

PB173/B Kernel Development 54/82 October 15, 2020

How?
• software interrupts

∘ synchronous
∘ saves CPU state

• sysenter or syscall (on x64)
• return with iret, sysleave or sysret

PB173/B Kernel Development 55/82 October 15, 2020

Software Interrupts
• user side: an int instruction

∘ you get to pick a number (from 32 up)

• kernel side: IDT
∘ interrupt descriptor table
∘ address stored in idtr

∘ load with lidt

PB173/B Kernel Development 56/82 October 15, 2020

Loading IDT (and GDT)
• lidt and lgdt expect both size and address

∘ this is given as a pointer to a 2-tuple

• the address is a virtual address

PB173/B Kernel Development 57/82 October 15, 2020

IDT Structure
• another table a bit like the page directory

∘ or like GDT and LDT (which we don’t use)
∘ oops, IDT refers to GDT or LDT

• see also https://wiki.osdev.org/IDT

• set all but the system call P (present) bits to 0

PB173/B Kernel Development 58/82 October 15, 2020

IDT Entry
• contains a code reference (segment + offset)

∘ segment really means a GDT selector
∘ you will want this to be a TSS

• and a few control bits / type info

PB173/B Kernel Development 59/82 October 15, 2020

TSS
• task state segment
• used for hardware-assisted context switching
• also needed for ring 3→ ring 0 transition
• you only need to set ss0 and esp0

∘ and set iopb to 104 (since we won’t use the bitmap)

PB173/B Kernel Development 60/82 October 15, 2020

User Side
• the exact sequence is up to you
• you want to send syscall number somehow

∘ eax is customary

• you want to send in arguments too
∘ probably mostly via stack

PB173/B Kernel Development 61/82 October 15, 2020

User Side in C
• you will probably want a syscall function
• implement it in assembly
• needs to cooperate with the kernel side

PB173/B Kernel Development 62/82 October 15, 2020

Checkpoint 4
• implement a system call interface
• testing will be tricky without userland
• but you can do int in kernel

∘ you won’t be able to check ring transitions
∘ all else should work like normal

PB173/B Kernel Development 63/82 October 15, 2020

Part 5: Userland

PB173/B Kernel Development 64/82 October 15, 2020

Checkpoint 5
• build a userland version of libc
• build a user program that uses printf

∘ turn it into a multiboot module and load at boot

• prepare memory (including stack) for the program
• execute the program in ring 3

PB173/B Kernel Development 65/82 October 15, 2020

Userland libc

• mostly the same as kernel libc
• link it statically into your program
• don’t forget the syscall mechanism
• hook up file ops into syscalls

PB173/B Kernel Development 66/82 October 15, 2020

Linking
• write a link script to link the program
• you can use a fixed load address

∘ feel free to experiment with PIC/PIE

• the linker will produce an ELF binary

PB173/B Kernel Development 67/82 October 15, 2020

Multiboot Module
• you can use a separate module for each section

∘ you’ll probably need text and data

• you can use objdump to extract the sections
• it’s also OK to keep & use ELF metadata instead

PB173/B Kernel Development 68/82 October 15, 2020

Loading
• GRUB will load your modules wherever
• set up page tables for userspace
• map the module data on the right virtual addresses

∘ either those agreed ahead of time
∘ or those parsed out of the ELF header

PB173/B Kernel Development 69/82 October 15, 2020

Switching to User Mode
• you will need to do an iret

∘ even though no interrupt happened

• set up a stack as if an interrupt just happened
• then do an iret into the user mode
• see also https://is.muni.cz/go/ki6k82

PB173/B Kernel Development 70/82 October 15, 2020

A Few Hints
• user mode, stack setup and loading are independent
• you can switch into ring 3 within the kernel
• you can create another stack within the kernel too
• you can load (and execute) program without user mode

PB173/B Kernel Development 71/82 October 15, 2020

Bonus: Cooperative Multitasking
• allow 2 (different) programs to be loaded
• add a ‘yield’ system call
• let the two tasks alternate in execution
• run them in separate address spaces

PB173/B Kernel Development 72/82 October 15, 2020

Part 6: Interrupts

PB173/B Kernel Development 73/82 October 15, 2020

Hardware Interrupts
• hardware can asynchronously signal events
• typically related to input/output

∘ new input available
∘ finished processing something

• data is moved some other way
∘ DMA, PIO (inb, outb)

PB173/B Kernel Development 74/82 October 15, 2020

Interrupt Enable
• the CPU can mask/unmask interrupts
• on x86, this is controlled by eflags

• instructions:
∘ sti enables interrupts
∘ climasks (disables) interrupts
∘ popf can change the interrupt flag

PB173/B Kernel Development 75/82 October 15, 2020

Interrupt Service Routine (ISR)
• the bit that runs in response to an IRQ

∘ also called the top half

• runs on the interrupt stack
• ends with an iret

∘ chances are the iret lands in user mode

PB173/B Kernel Development 76/82 October 15, 2020

Re-entry
• ISRs are concurrent to the rest of the kernel
• if the ISR calls into the rest of the kernel

∘ the same function may already be executing
∘ similar to POSIX signal handlers

• mutual exclusion will not help

PB173/B Kernel Development 77/82 October 15, 2020

Prohibiting Nesting
• the easiest way is to cli

• this masks all (maskable) interrupts
• do not forget to sti before iret
• this is the easiest (not best) approach

PB173/B Kernel Development 78/82 October 15, 2020

Nested Interrupts
• an interrupt can arrive while an ISR is running
• those are nested interrupts
• in this case, more reentrancy is required
• also, the interrupt stack is finite

PB173/B Kernel Development 79/82 October 15, 2020

Fully Re-entrant ISR
• worst case if the same ISR runs nested

∘ only applies to the ‘top half’
∘ bottom halves run from a queue

• for example, this is forbidden in Linux
∘ but different ISRs can nest on the same CPU

PB173/B Kernel Development 80/82 October 15, 2020

IRQ: Interrupt ReQuest
• the hardware side of interrupts
• (TBD)

PB173/B Kernel Development 81/82 October 15, 2020

PIC
• Programmable Interrupt Controller
• you need to set this up to get IRQs
• IRQs are mapped to interrupts
• https://wiki.osdev.org/PIC

PB173/B Kernel Development 82/82 October 15, 2020

Checkpoint 6
• write an IRQ-driven serial port driver
• IDT principles stay the same as with syscalls

