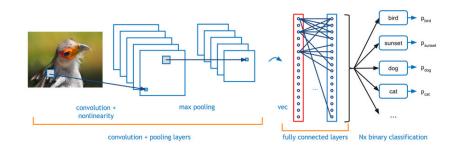
Convolutional network



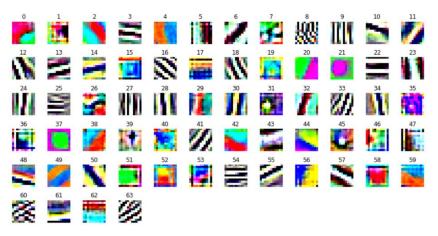
Convolutional networks – architecture

- Denote
 - X a set of input neurons
 - Y a set of *output* neurons
 - ightharpoonup Z a set of *all* neurons $(X, Y \subseteq Z)$
- ▶ individual neurons denoted by indices *i*, *j* etc.
 - \triangleright ξ_j is the inner potential of the neuron j after the computation stops
 - y_j is the output of the neuron j after the computation stops (define $y_0 = 1$ is the value of the formal unit input)
- ▶ w_{ji} is the weight of the connection **from** i **to** j (in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{i0} = -b_i$ where b_i is the bias of the neuron j)
- ▶ j_{\leftarrow} is a set of all i such that j is adjacent from i (i.e. there is an arc **to** j from i)
- ▶ $j \rightarrow$ is a set of all i such that j is adjacent to i (i.e. there is an arc **from** j to i)
- ▶ [ji] is a set of all connections (i.e. pairs of neurons) sharing the weight w_{ii} .

Visualzation methods

- Visualize weights
- Visualize most "important" inputs for a given class
- Visualize effect of input perturbations on the output
- Construct a local "interpretable" model

Alex-net - filters of the first convolutional layer



64 filters of depth 3 (RGB).

Combined each filter RGB channels into one RGB image of size 11x11x3.

ļ

Maximizing input

Assume a trained model giving a score for each class given an input image.

- ▶ Denote by $y_i(I)$ the value of the output neuron i on an input image I.
- Maximize

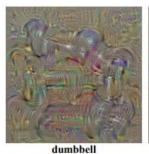
$$y_i(I) - \lambda ||I||_2^2$$

over all images I.

- A maximum image computed using gradient descent.
- Gives the most "representative" image of the class c.

5

Maximizing input - example



cup

dalmatian

Image specific saliency maps

- Let us fix an output neuron i and an image I_0 .
- Rank pixels in I_0 based on their influence on the value $y_i(I_0)$.

Image specific saliency maps

- Let us fix an output neuron i and an image l₀.
- ▶ Rank pixels in I_0 based on their influence on the value $y_i(I_0)$.
- Note that we can approximate y_i locally around I_0 with the linear part of the Taylor series:

$$y_i(I) \approx y_i(I_0) + w^T(I - I_0) = w^TI + (y_i(I_0) - w^TI_0)$$

where

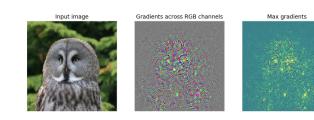
$$w = \frac{\delta y_i}{\delta I}(I_0)$$

Heuristics: The magnitude of the derivative indicates which pixels need to be changed the least to affect the score most.

7

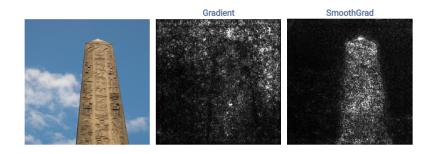
Saliency maps - example

Saliency maps - example



Quite noisy, the signal is spread and does not tell much about the perception of the owl.

SmoothGrad

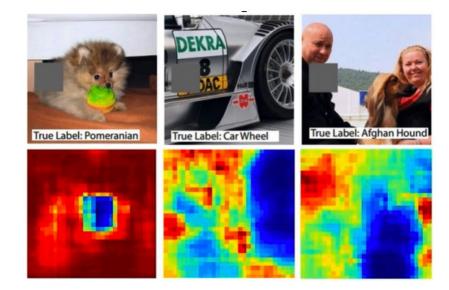


Average several saliency maps of noisy copies of the input.

Occlusion

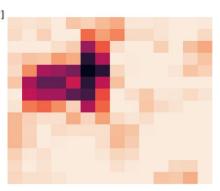
- Systematically cover parts of the input image.
- Observe the effect on the output value.
- Find regions with the largest effect.

Occlusion - example



Occlusion - example

['harmonica, mouth organ, harp, mouth harp']



LIME - for images

Let us fix an image I_0 to be explained.

Outline:

- Consider superpixels of l₀ as interpretable components.
- Construct a linear model approximating the network aroung the image l₀ with weights corresponding to the superpixels.
- Select the superpixels with weights of large magnitude as the important ones.

Original Image

Interpretable Components

Superpixels as explainable components

Original Image

Interpretable Components

Denote by P_1, \ldots, P_ℓ all superpixels of I_0 .

Consider binary vectors $\vec{x} = (x_1, \dots, x_\ell) \in \{0, 1\}^\ell$.

Each such vector \vec{x} determines a "subimage" $I[\vec{x}]$ of I_0 obtained by removing all P_k with $x_k = 0$.

LIME

- Let us fix an output neuron i, we dnote by y_i(I) the value of i for a given input image I.
- Given an image I₀ to be interpreted, consider the following training set:

$$\mathcal{T} = \{ (\vec{x}_1, y_i(l_0[\vec{x}_1])), \dots, (\vec{x}_p, y_i(l_0[\vec{x}_p])) \}$$

Here $\vec{x}_h = (x_{h1}, \dots, x_{h\ell})$ are (some) binary vectors of $\{0, 1\}^{\ell}$. E.g. randomly selected.

16

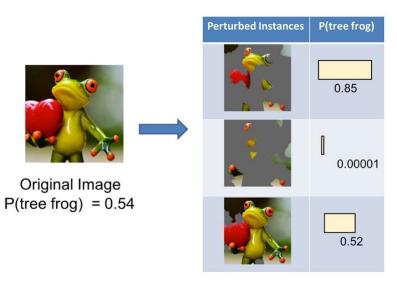
LIME

- Let us fix an output neuron i, we dnote by y_i(I) the value of i for a given input image I.
- Given an image I₀ to be interpreted, consider the following training set:

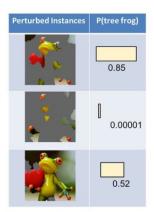
$$\mathcal{T} = \{ (\vec{x}_1, y_i(I_0[\vec{x}_1])), \dots, (\vec{x}_p, y_i(I_0[\vec{x}_p])) \}$$

Here $\vec{x}_h = (x_{h1}, \dots, x_{h\ell})$ are (some) binary vectors of $\{0, 1\}^{\ell}$. E.g. randomly selected.

- ► Train a linear model (ADALINE) with weights w₁,..., w_ℓ on T minimizing the mean-squared error (+ a regularization term making the number of non-zero weights as small as possible).
 - Intuitively, the linear model approximates the networks on the "subimages" of *I* obtained by removing unimportant superpixels.
- Inspect the weights (magnitude and sign).



Original Image P(tree frog) = 0.54



Explanation

(a) Original Image

(b) Explaining $Electric\ guitar\$ (c) Explaining $Acoustic\ guitar$

(d) Explaining Labrador

(a) Husky classified as wolf

(b) Explanation