
Recurrent Neural Networks - LSTM
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RNN

I Input:
~x = (x1, . . . , xM)

I Hidden:
~h = (h1, . . . ,hH)

I Output:
~y = (y1, . . . , yN)
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RNN example

Activation function:

σ(ξ) =

1 ξ ≥ 0
0 ξ < 0

y 1 0 1
h (0,0) (1,1) (1,0) (0,1) · · ·

x (0,0) (1,0) (1,1)
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RNN example

Activation function:

σ(ξ) =

1 ξ ≥ 0
0 ξ < 0

y ~y1 = 1 ~y2 = 0 ~y3 = 1
h ~h0 = (0,0) ~h1 = (1,1) ~h2 = (1,0) ~h3 = (0,1) · · ·

x ~x1 = (0,0) ~x2 = (1,0) ~x3 = (1,1)
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RNN example

y ~y1 = 1 ~y2 = 0 ~y3 = 1
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RNN – formally

I M inputs: ~x = (x1, . . . , xM)

I H hidden neurons: ~h = (h1, . . . ,hH)

I N output neurons: ~y = (y1, . . . , yN)

I Weights:
I Ukk ′ from input xk ′ to hidden hk
I Wkk ′ from hidden hk ′ to hidden hk
I Vkk ′ from hidden hk ′ to output yk
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RNN – formally

I Input sequence: x = ~x1, . . . , ~xT

~xt = (xt1, . . . , xtM)

I Hidden sequence: h = ~h0, ~h1, . . . , ~hT

~ht = (ht1, . . . ,htH)

We have ~h0 = (0, . . . ,0) and

~htk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′


I Output sequence: y = ~y1, . . . , ~yT

~yt = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.
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RNN – in matrix form

I Input sequence: x = ~x1, . . . , ~xT

I Hidden sequence: h = ~h0, ~h1, . . . , ~hT where

~h0 = (0, . . . ,0)

and

~ht = σ(U~xt + W~ht−1)

I Output sequence: y = ~y1, . . . , ~yT where

yt = σ(Vht )
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RNN – Comments

I ~ht is the memory of the network, captures what happened
in all previous steps (with decaying quality).

I RNN shares weights U,V ,W along the sequence.
Note the similarity to convolutional networks where the weights were
shared spatially over images, here they are shared temporally over
sequences.

I RNN can deal with sequences of variable length.
Compare with MLP which accepts only fixed-dimension vectors on
input.
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RNN – training

Training set

T =
{
(x1,d1), . . . , (xp ,yp)

}
here
I each x` = ~x`1, . . . , ~x`T` is an input sequence,

I each d` = ~d`1, . . . , ~d`T` is an expected output sequence.
Here each ~x`t = (x`t1, . . . , x`tM) is an input vector and each
~d`t = (d`t1, . . . ,d`tN) is an expected output vector.
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Error function

In what follows I will consider a training set with a single
element (x,d). I.e. drop the index ` and have
I x = ~x1, . . . , ~xT where ~xt = (xt1, . . . , xtM)

I d = ~d1, . . . , ~dT where ~dt = (dt1, . . . ,dtN)

The squared error of (x,d) is defined by

E(x,d) =

T∑
t=1

N∑
k=1

1
2

(ytk − dtk )2

Recall that we have a sequence of network outputs
y = ~y1, . . . , ~yT and thus ytk is the k -th component of ~yt
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Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:

I Initialize all weights randomly close to 0.
I In the step ` + 1 (here ` = 0,1,2, . . .) compute "new"

weights U(`+1),V (`+1),W (`+1) from the "old" weights
U(`),V (`),W (`) as follows:

U(`+1)
kk ′ = U(`)

kk ′ − ε(`) ·
δE(x,d)

δUkk ′

V (`+1)
kk ′ = V (`)

kk ′ − ε(`) ·
δE(x,d)

δVkk ′

W (`+1)
kk ′ = W (`)

kk ′ − ε(`) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!
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Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k
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Long-term dependencies

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

I Unless
∑H

k ′=1 σ
′
·Wk ′k ≈ 1, the gradient either vanishes, or

explodes.
I For a large T (long-term dependency), the gradient

"deeper" in the past tends to be too small (large).
I A solution: LSTM
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LSTM

~ht = ~ot ◦ σh(~Ct ) output
~Ct = ~ft ◦ ~Ct−1 +~it ◦ C̃t memory

C̃t = σh(WC ·
~ht−1 + UC · ~xt ) new memory contents

~ot = σg(Wo · ~ht−1 + Uo · ~xt ) output gate
~ft = σg(Wf ·

~ht−1 + Uf · ~xt ) forget gate
~it = σg(Wi · ~ht−1 + Ui · ~xt ) input gate

I ◦ is the component-wise product of vectors
I · is the matrix-vector product
I σh hyperbolic tangents (applied component-wise)
I σg logistic sigmoid (aplied component-wise)
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RNN vs LSTM

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM – summary

I LSTM (almost) solves the vanishing gradient problem w.r.t.
the "internal" state of the network.

I Learns to control its own memory (via forget gate).
I Revolution in machine translation and text processing.
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Convolutions & LSTM in action – cancer research
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Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

Input: Digitized haematoxylin-eosin-stained
tumour tissue microarray samples.
Output: Estimated survival probability.

Data:
I Training set: 420 patients of Helsinki University Centre

Hospital, diagnosed with colorectal cancer, underwent
primary surgery.

I Test set: 182 patients
I Follow-up time and outcome known for each patient.

Human expert comparison:
I Histological grade assessed at the time of diagnosis.
I Visual Risk Score: Three pathologists classified to

high/low-risk categories (by majority vote).
Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific
Reports, Nature, 2018.
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Data & workflow

I Input images: 3500 px × 3500 px
I Cut into tiles: 224 px × 224 px⇒ 256 tiles

I Each tile pased to a convolutional network (CNN)
I Ouptut of CNN: 4096 dimensional vector.

I A "string" of 256 vectors (each of the dimension 4096)
pased into a LSTM.

I LSTM outputs the probability of 5-year survival.

The authors also tried to substitute the LSTM on top of CNN
with
I logistic regression
I naive Bayes
I support vector machines
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CNN architecture – VGG-16

(Pre)trained on ImageNet (cats, dogs, chairs, etc.)
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LSTM architecture

I LSTM has three layers (264, 128, 64 cells)
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LSTM – training

I L1 regularization (0.005) at each hidden layer of LSTM
i.e. 0.005 times the sum of absolute values of weights added to the error

I L2 regularization (0.005) at each hidden layer of LSTM
i.e. 0.005 times the sum of squared values of weights added to the error

I Dropout 5% at the input and the last hidden layers of LSTM

I Datasets:
I Training: 220 samples,
I Validation 60 samples,
I Test 140 samples.
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Colorectal cancer outcome prediction

Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific

Reports, Nature, 2018.
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