What about classification?

Binary classification: Desired outputs 0 and 1.

Ideally, capture the probability distribution of classes.

What about classification?

Binary classification: Desired outputs 0 and 1.

... does not capture probability well (it is not a probability at all)

What about classification?

Binary classification: Desired outputs 0 and 1.

Logistic regression

$$\vec{w} = (w_0, w_1, \dots, w_n)$$
 and $\vec{x} = (x_0, x_1, \dots, x_n)$ where $x_0 = 1$.
Activity:

- inner potential: $\xi = w_0 + \sum_{i=1}^n w_i x_i = \sum_{i=0}^n w_i x_i = \vec{w} \cdot \vec{x}$
- activation function: $\sigma(\xi) = \frac{1}{1+e^{-\xi}}$
- network function: $y[\vec{w}](\vec{x}) = \sigma(\xi) = \frac{1}{1 + e^{-(\vec{w}\cdot\vec{x})}}$

Intuition: The output *y* is now interpreted as the probability of the class 1 given the input \vec{x} .

The model gives a probability *y* of the class 1 given an input \vec{x} . But why we model such a probability using $1/(1 + e^{-\vec{w}\cdot\vec{x}})$??

The model gives a probability *y* of the class 1 given an input \vec{x} . But why we model such a probability using $1/(1 + e^{-\vec{w}\cdot\vec{x}})$??

Let \hat{y} be the "true" probability of the class 1 to be modeled. What about odds of the class 1?

 $odds(\hat{y}) = \hat{y}/1 - \hat{y}$

Resembles an exponential function ...

The model gives a probability *y* of the class 1 given an input \vec{x} . But why we model such a probability using $1/(1 + e^{-\vec{w}\cdot\vec{x}})$??

Let \hat{y} be the "true" probability of the class 1 to be modeled. What about log odds (aka logit) of the class 1?

 $logit(\hat{y}) = \log(\hat{y}/(1-\hat{y}))$

Looks almost linear ...

Assume that \hat{y} is the probability of the class 1. Put

 $\log(\hat{y}/(1-\hat{y})) = \vec{w} \cdot \vec{x}$

Assume that \hat{y} is the probability of the class 1. Put

$$\log(\hat{y}/(1-\hat{y})) = \vec{w} \cdot \vec{x}$$

Then

$$\log((1-\hat{y})/\hat{y}) = -\vec{w}\cdot\vec{x}$$

Assume that \hat{y} is the probability of the class 1. Put

$$\log(\hat{y}/(1-\hat{y})) = \vec{w} \cdot \vec{x}$$

Then

$$\log(((1-\hat{y})/\hat{y})) = -\vec{w}\cdot\vec{x}$$

and

$$(1-\hat{y})/\hat{y} = e^{-\vec{w}\cdot\vec{x}}$$

Assume that \hat{y} is the probability of the class 1. Put

$$\log(\hat{y}/(1-\hat{y})) = \vec{w} \cdot \vec{x}$$

Then

$$\log(((1-\hat{y})/\hat{y})) = -\vec{w}\cdot\vec{x}$$

and

$$(1-\hat{y})/\hat{y}=e^{-ec{w}\cdotec{x}}$$

and

$$\hat{y} = \frac{1}{1 + e^{-\vec{w}\cdot\vec{x}}}$$

That is, if we model log odds using a linear function, the probability is obtained by applying the logistic sigmoid on the result of the linear function.

 $T = \{(x,d)\}, \forall = \emptyset(\xi), \xi = n \forall X \mid \forall' = \emptyset(n-\vartheta) = \dots$ M(1-m) $E = -d \log(m) - (1 - d) \log(1 - m)$ $d=1: \frac{\partial E}{\partial N} = \frac{\partial - d \log N}{\partial N} = -\frac{1}{N} \cdot \sigma' \cdot X =$ $= \frac{-1\sqrt{n}(n-n)}{2} = -(n-n) \times$ $\gamma \sim 0 = \sum \frac{0}{2} \frac{1}{10} = -\chi$

Logistic regression

¹Learning:

- Given a training dataset
 - $\mathcal{T} = \left\{ \left(\vec{x}_1, d_1 \right), \left(\vec{x}_2, d_2 \right), \dots, \left(\vec{x}_p, d_p \right) \right\}$

Here $\vec{x}_k = (x_{k0}, x_{k1} \dots, x_{kn}) \in \mathbb{R}^{n+1}$, $x_{k0} = 1$, is the *k*-th input, and $d_k \in \{0, 1\}$ is the expected output.

 $T = \{ (x,d) \} \; | \; \mathcal{J} = \sigma(\xi) \; , \; \xi = n \sigma x \; | \; \sigma'(\xi) = \sigma(\xi) \; . \; (n - \sigma(\xi)) \; .$ Logistic regression $E = \frac{1}{2} (\gamma - \lambda)^{2}$ $\frac{\partial E}{\partial N} = (N - d) \cdot \sigma' \cdot X = (N - d) \cdot \overline{\sigma} \cdot (1 - \sigma) \cdot X$ $i \oint d = 1, \forall n = 0 \implies \frac{\partial E}{\partial N} \sim i$ $d = 0, \forall n = n \implies \frac{\partial E}{\partial N} \sim 0$ $d \sim \Lambda$ What?!?

Learning:

- Given a training dataset
 - $\mathcal{T} = \{ (\vec{x}_1, d_1), (\vec{x}_2, d_2), \dots, (\vec{x}_p, d_p) \}$

Here $\vec{x}_k = (x_{k0}, x_{k1} \dots, x_{kn}) \in \mathbb{R}^{n+1}$, $x_{k0} = 1$, is the *k*-th input, and $d_k \in \{0, 1\}$ is the expected output.

What error function?

(Binary) cross-entropy:

 $E(\vec{w}) = \sum_{k=1}^{k} -(d_k \log(y_k) + (1 - d_k) \log(1 - y_k))$

Let's have a "coin" (sides 0 and 1).

- Let's have a "coin" (sides 0 and 1).
- The probability of 1 is \hat{y} and is unknown!

- Let's have a "coin" (sides 0 and 1).
- The probability of 1 is \hat{y} and is unknown!
- You have tossed the coin 5 times and got a training dataset:

$$\mathcal{T} = \{1, 1, 0, 0, 1\} = \{d_1, \dots, d_5\}$$

Consider this to be a very special case where the input dimension is 0

- Let's have a "coin" (sides 0 and 1).
- The probability of 1 is \hat{y} and is unknown!
- You have tossed the coin 5 times and got a training dataset:

$$\mathcal{T} = \{1, 1, 0, 0, 1\} = \{d_1, \dots, d_5\}$$

Consider this to be a very special case where the input dimension is 0

• What is the best model y of \hat{y} based on the data?

- Let's have a "coin" (sides 0 and 1).
- The probability of 1 is \hat{y} and is unknown!
- You have tossed the coin 5 times and got a training dataset:

$$\mathcal{T} = \{1, 1, 0, 0, 1\} = \{d_1, \dots, d_5\}$$

Consider this to be a very special case where the input dimension is 0

• What is the best model y of \hat{y} based on the data? **Answer:** The one that generates the data with maximum probability!

Keep in mind our dataset:

$$\mathcal{T} = \{1, 1, 0, 0, 1\} = \{d_1, \dots, d_5\}$$

Keep in mind our dataset:

$$\mathcal{T} = \{1, 1, 0, 0, 1\} = \{d_1, \dots, d_5\}$$

Assume that the data was generated by independent trials, then the probability of getting exactly ${\mathcal T}$ from our model is

$$L = y \cdot y \cdot (1 - y) \cdot (1 - y) \cdot y$$

How to maximize this w.r.t. y?

Keep in mind our dataset:

$$\mathcal{T} = \{1, 1, 0, 0, 1\} = \{d_1, \dots, d_5\}$$

Assume that the data was generated by independent trials, then the probability of getting exactly ${\mathcal T}$ from our model is

$$L = y \cdot y \cdot (1 - y) \cdot (1 - y) \cdot y$$

How to maximize this w.r.t. y?

Maximize

 $LL = log(L) = \log(y) + \log(y) + \log(1-y) + \log(1-y) + \log(y)$

Keep in mind our dataset:

$$\mathcal{T} = \{1, 1, 0, 0, 1\} = \{d_1, \dots, d_5\}$$

Assume that the data was generated by independent trials, then the probability of getting exactly ${\mathcal T}$ from our model is

$$L = y \cdot y \cdot (1 - y) \cdot (1 - y) \cdot y$$

How to maximize this w.r.t. y?

Maximize

$$LL = log(L) = log(y) + log(y) + log(1-y) + log(1-y) + log(y)$$

But then

$$-LL = -1 \cdot \log(y) - 1 \cdot \log(y) - (1 - 0) \cdot \log(1 - y) - (1 - 0) \cdot \log(1 - y) - 1 \cdot \log(y)$$

i.e. -LL is the cross-entropy.

Let the coin depend on the input

Consider our model:

$$y = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x})}}$$

Let the coin depend on the input

Consider our model:

$$y = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x})}}$$

The training dataset is now standard:

$$\mathcal{T} = \left\{ \left(\vec{x}_1, d_1 \right), \left(\vec{x}_2, d_2 \right), \dots, \left(\vec{x}_p, d_p \right) \right\}$$

Here $\vec{x}_k = (x_{k0}, x_{k1}, \dots, x_{kn}) \in \mathbb{R}^{n+1}$, $x_{k0} = 1$, is the *k*-th input, and $d_k \in \{0, 1\}$ is the expected output.

Let the coin depend on the input

Consider our model: $y = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x})}}$ The training dataset is now standard: $\mathcal{T} = \{(\vec{x}_1, d_1), (\vec{x}_2, d_2), \dots, (\vec{x}_p, d_p)\}$ Here $\vec{x}_k = (x_{k0}, x_{k1}, \dots, x_{kn}) \in \mathbb{R}^{n+1}, x_{k0} = 1$, is the *k*-th input,

and $d_k \in \{0, 1\}$ is the expected output.

The likelihood:

$$L = \prod_{k=1}^{p} y_{k}^{d_{k}} \cdot (1 - y_{k})^{(1 - d_{k})}$$

and $LL = \log(L) = \sum_{k=1}^{p} (d_k \log(y_k) + (1 - d_k) \log(1 - y_k))$ and thus -LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood (and vice versa).

Distribution of continuous random variables.

Density (one dimensional, that is over \mathbb{R}):

$$p(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} =: N[\mu,\sigma^2](x)$$

 μ is the expected value (the mean), σ^2 is the variance.

Fix a training set $D = \{(x_1, d_1), (x_2, d_2), \dots, (x_p, d_p)\}$

Fix a training set $D = \{(x_1, d_1), (x_2, d_2), \dots, (x_p, d_p)\}$ Assume that each d_k has been generated randomly by

 $d_k = (\mathbf{w}_0 + \mathbf{w}_1 \cdot \mathbf{x}_k) + \boldsymbol{\epsilon}_k$

w₀, w₁ are unknown numbers

• ϵ_k are normally distributed with mean 0 and an unknown variance σ^2

Keep in mind:

 $d_k = (w_0 + w_1 \cdot x_k) + \epsilon_k$

Assume that $\epsilon_1, \ldots, \epsilon_p$ were generated **independently**.

Keep in mind:

 $d_k = (w_0 + w_1 \cdot x_k) + \epsilon_k$

Assume that $\epsilon_1, \ldots, \epsilon_p$ were generated **independently**.

Denote by $p(d_1, ..., d_p | w_0, w_1, \sigma^2)$ the probability density according to which the values $d_1, ..., d_n$ were generated assuming fixed $w_0, w_1, \sigma^2, x_1, ..., x_p$.

Keep in mind:

$$d_k = (w_0 + w_1 \cdot x_k) + \epsilon_k$$

Assume that $\epsilon_1, \ldots, \epsilon_p$ were generated **independently**.

Denote by $p(d_1, ..., d_p | w_0, w_1, \sigma^2)$ the probability density according to which the values $d_1, ..., d_n$ were generated assuming fixed $w_0, w_1, \sigma^2, x_1, ..., x_p$.

The independence and normality imply

$$p(d_1, \dots, d_p \mid w_0, w_1, \sigma^2) = \prod_{k=1}^p N[w_0 + w_1 x_k, \sigma^2](d_k)$$
$$= \prod_{k=1}^p \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(d_k - w_0 - w_1 x_k)^2}{2\sigma^2}\right\}$$

Our goal is to find (w_0, w_1) that maximizes the likelihood that the training set *D* with **fixed** values d_1, \ldots, d_n has been generated:

$$L(\mathbf{w}_0, \mathbf{w}_1, \sigma^2) := p(d_1, \ldots, d_p \mid \mathbf{w}_0, \mathbf{w}_1, \sigma^2)$$

Our goal is to find (w_0, w_1) that maximizes the likelihood that the training set *D* with **fixed** values d_1, \ldots, d_n has been generated:

$$L(\mathbf{w}_0, \mathbf{w}_1, \sigma^2) := p(d_1, \ldots, d_p \mid \mathbf{w}_0, \mathbf{w}_1, \sigma^2)$$

Theorem

 (w_0, w_1) maximizes $L(w_0, w_1, \sigma^2)$ for arbitrary σ^2 iff (w_0, w_1) minimizes squared error $E(w_0, w_1) = \sum_{k=1}^{p} (d_k - w_0 - w_1 x_k)^2$.

Our goal is to find (w_0, w_1) that maximizes the likelihood that the training set *D* with **fixed** values d_1, \ldots, d_n has been generated:

$$L(\mathbf{w}_0, \mathbf{w}_1, \sigma^2) := p(d_1, \ldots, d_p \mid \mathbf{w}_0, \mathbf{w}_1, \sigma^2)$$

Theorem

 (w_0, w_1) maximizes $L(w_0, w_1, \sigma^2)$ for arbitrary σ^2 iff (w_0, w_1) minimizes squared error $E(w_0, w_1) = \sum_{k=1}^{p} (d_k - w_0 - w_1 x_k)^2$.

Note that the maximizing/minimizing (w_0, w_1) does not depend on σ^2 .

Our goal is to find (w_0, w_1) that maximizes the likelihood that the training set *D* with **fixed** values d_1, \ldots, d_n has been generated:

$$L(\mathbf{w}_0, \mathbf{w}_1, \sigma^2) := p(d_1, \ldots, d_p \mid \mathbf{w}_0, \mathbf{w}_1, \sigma^2)$$

Theorem

 (w_0, w_1) maximizes $L(w_0, w_1, \sigma^2)$ for arbitrary σ^2 iff (w_0, w_1) minimizes squared error $E(w_0, w_1) = \sum_{k=1}^{p} (d_k - w_0 - w_1 x_k)^2$.

Note that the maximizing/minimizing (w_0, w_1) does not depend on σ^2 .

Maximizing
$$\sigma^2$$
 satisfies $\sigma^2 = \frac{1}{p} \sum_{k=1}^{p} (d_k - w_0 - w_1 \cdot x_k)^2$.

MLP training - theory
Architecture – Multilayer Perceptron (MLP)

- Neurons partitioned into layers; one input layer, one output layer, possibly several hidden layers
- layers numbered from 0; the input layer has number 0
 - E.g. three-layer network has two hidden layers and one output layer
- Neurons in the *i*-th layer are connected with all neurons in the *i* + 1-st layer
- Architecture of a MLP is typically described by numbers of neurons in individual layers (e.g. 2-4-3-2)

Notation:

- Denote
 - X a set of input neurons
 - Y a set of output neurons
 - ► Z a set of all neurons $(X, Y \subseteq Z)$

Notation:

- Denote
 - X a set of input neurons
 - Y a set of output neurons
 - ► Z a set of all neurons $(X, Y \subseteq Z)$
- individual neurons denoted by indices i, j etc.
 - ξ_j is the inner potential of the neuron j after the computation stops

Notation:

- Denote
 - X a set of input neurons
 - Y a set of output neurons
 - Z a set of all neurons $(X, Y \subseteq Z)$
- individual neurons denoted by indices i, j etc.
 - ξ_j is the inner potential of the neuron j after the computation stops
 - > y_j is the output of the neuron *j* after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

Notation:

- Denote
 - X a set of input neurons
 - Y a set of output neurons
 - Z a set of all neurons $(X, Y \subseteq Z)$
- individual neurons denoted by indices i, j etc.
 - ξ_j is the inner potential of the neuron j after the computation stops
 - ▶ *y_j* is the output of the neuron *j* after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

w_{ji} is the weight of the connection from *i* to *j*

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron *j*)

Notation:

- Denote
 - X a set of input neurons
 - Y a set of output neurons
 - Z a set of all neurons $(X, Y \subseteq Z)$
- individual neurons denoted by indices i, j etc.
 - ξ_j is the inner potential of the neuron j after the computation stops
 - > y_j is the output of the neuron *j* after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

w_{ji} is the weight of the connection from i to j

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron *j*)

j← is a set of all *i* such that *j* is adjacent from *i* (i.e. there is an arc **to** *j* from *i*)

Notation:

- Denote
 - X a set of input neurons
 - Y a set of output neurons
 - Z a set of all neurons $(X, Y \subseteq Z)$
- individual neurons denoted by indices i, j etc.
 - ξ_j is the inner potential of the neuron j after the computation stops
 - > y_j is the output of the neuron *j* after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

w_{ji} is the weight of the connection from i to j

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron *j*)

- *j*← is a set of all *i* such that *j* is adjacent from *i* (i.e. there is an arc **to** *j* from *i*)
- *j*→ is a set of all *i* such that *j* is adjacent to *i* (i.e. there is an arc **from** *j* to *i*)

Activity:

inner potential of neuron j:

$$\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i$$

Activity:

inner potential of neuron j:

$$\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i$$

• activation function σ_j for neuron *j* (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1+e^{-\lambda_j \xi}}$]

Activity:

inner potential of neuron j:

$$\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i$$

- activation function σ_j for neuron *j* (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1+e^{-\lambda_j\xi}}$]
- State of non-input neuron j ∈ Z \ X after the computation stops:

$$\mathbf{y}_j = \sigma_j(\xi_j)$$

 $(y_j$ depends on the configuration \vec{w} and the input \vec{x} , so we sometimes write $y_j(\vec{w}, \vec{x})$)

Activity:

inner potential of neuron j:

$$\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i$$

- activation function σ_j for neuron *j* (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1+e^{-\lambda_j\xi}}$]
- State of non-input neuron j ∈ Z \ X after the computation stops:

$$\mathbf{y}_j = \sigma_j(\xi_j)$$

 $(y_j$ depends on the configuration \vec{w} and the input \vec{x} , so we sometimes write $y_j(\vec{w}, \vec{x})$)

The network computes a function R^{|X|} do R^{|Y|}. Layer-wise computation: First, all input neurons are assigned values of the input. In the *l*-th step, all neurons of the *l*-th layer are evaluated.

MLP – learning

Learning:

• Given a training set \mathcal{T} of the form

$$\left\{ \left(\vec{x}_k, \vec{d}_k \right) \mid k = 1, \dots, p \right\}$$

Here, every $\vec{x}_k \in \mathbb{R}^{|X|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|Y|}$ is the desired network output. For every $j \in Y$, denote by d_{kj} the desired output of the neuron j for a given network input \vec{x}_k (the vector \vec{d}_k can be written as $(d_{kj})_{i \in Y}$).

MLP – learning

Learning:

• Given a training set \mathcal{T} of the form

$$\left\{ \left(\vec{x}_k, \vec{d}_k \right) \mid k = 1, \dots, p \right\}$$

Here, every $\vec{x}_k \in \mathbb{R}^{|X|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|Y|}$ is the desired network output. For every $j \in Y$, denote by d_{kj} the desired output of the neuron j for a given network input \vec{x}_k (the vector \vec{d}_k can be written as $(d_{kj})_{i \in Y}$).

Error function:

$$E(\vec{w}) = \sum_{k=1}^{p} E_k(\vec{w})$$

where

$$E_k(\vec{w}) = \frac{1}{2} \sum_{j \in Y} (y_j(\vec{w}, \vec{x}_k) - d_{kj})^2$$

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ▶ in the step t + 1 (here t = 0, 1, 2...), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$w_{ji}^{(t+1)} = w_{ji}^{(t)} + \Delta w_{ji}^{(t)}$$

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ▶ in the step t + 1 (here t = 0, 1, 2...), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$w_{ji}^{(t+1)} = w_{ji}^{(t)} + \Delta w_{ji}^{(t)}$$

where

$$\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial \boldsymbol{\mathsf{E}}}{\partial \boldsymbol{w}_{ji}}(\vec{\boldsymbol{w}}^{(t)})$$

is a weight update of w_{ji} in step t + 1 and $0 < \varepsilon(t) \le 1$ is a learning rate in step t + 1.

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ▶ in the step t + 1 (here t = 0, 1, 2...), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$w_{ji}^{(t+1)} = w_{ji}^{(t)} + \Delta w_{ji}^{(t)}$$

where

$$\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial \boldsymbol{\mathsf{E}}}{\partial \boldsymbol{w}_{ji}}(\vec{w}^{(t)})$$

is a weight update of w_{ji} in step t + 1 and $0 < \varepsilon(t) \le 1$ is a learning rate in step t + 1.

Note that $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})$ is a component of the gradient ∇E , i.e. the weight update can be written as $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot \nabla E(\vec{w}^{(t)})$.

For every w_{ji} we have

$$\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$$

For every w_{ji} we have

$$\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$$

where for every k = 1, ..., p holds

$$\frac{\partial \mathbf{E}_k}{\partial \mathbf{w}_{ji}} = \frac{\partial \mathbf{E}_k}{\partial \mathbf{y}_j} \cdot \sigma'_j(\xi_j) \cdot \mathbf{y}_i$$

For every w_{ji} we have

$$\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$$

where for every $k = 1, \ldots, p$ holds

$$\frac{\partial \mathbf{E}_k}{\partial \mathbf{w}_{ji}} = \frac{\partial \mathbf{E}_k}{\partial \mathbf{y}_j} \cdot \sigma'_j(\xi_j) \cdot \mathbf{y}_i$$

and for every $j \in Z \setminus X$ we get

~ -

$$\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y$$

For every w_{ji} we have

$$\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$$

where for every $k = 1, \ldots, p$ holds

$$\frac{\partial \boldsymbol{E}_k}{\partial \boldsymbol{w}_{ji}} = \frac{\partial \boldsymbol{E}_k}{\partial \boldsymbol{y}_j} \cdot \sigma'_j(\boldsymbol{\xi}_j) \cdot \boldsymbol{y}_i$$

and for every $j \in Z \setminus X$ we get

$$\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y$$
$$\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\rightarrow}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj} \qquad \text{for } j \in Z \smallsetminus (Y \cup X)$$

(Here all y_j are in fact $y_j(\vec{w}, \vec{x}_k)$).

• If
$$\sigma_j(\xi) = \frac{1}{1+e^{-\lambda_j\xi}}$$
 for all $j \in Z$, then
 $\sigma'_j(\xi_j) = \lambda_j y_j(1-y_j)$

• If
$$\sigma_j(\xi) = \frac{1}{1+e^{-\lambda_j\xi}}$$
 for all $j \in Z$, then
 $\sigma'_j(\xi_j) = \lambda_j y_j(1-y_j)$

and thus for all $j \in Z \setminus X$:

$$\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \quad \text{for } j \in Y$$
$$\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\rightarrow}} \frac{\partial E_k}{\partial y_r} \cdot \lambda_r y_r (1 - y_r) \cdot w_{rj} \quad \text{for } j \in Z \setminus (Y \cup X)$$

• If
$$\sigma_j(\xi) = \frac{1}{1+e^{-\lambda_j\xi}}$$
 for all $j \in Z$, then
 $\sigma'_j(\xi_j) = \lambda_j y_j (1 - y_j)$

and thus for all $j \in Z \setminus X$:

$$\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \quad \text{for } j \in Y$$
$$\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\rightarrow}} \frac{\partial E_k}{\partial y_r} \cdot \lambda_r y_r (1 - y_r) \cdot w_{rj} \quad \text{for } j \in Z \smallsetminus (Y \cup X)$$

• If
$$\sigma_j(\xi) = a \cdot \tanh(b \cdot \xi_j)$$
 for all $j \in Z$, then

$$\sigma'_j(\xi_j) = \frac{b}{a}(a - y_j)(a + y_j)$$

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$ as follows:

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$ as follows:

Initialize $\mathcal{E}_{ji} := 0$

(By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ii}}$)

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$ as follows: Initialize $\mathcal{E}_{ji} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$ as follows: Initialize $\mathcal{E}_{ji} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ii}}$)

For every $k = 1, \ldots, p$ do:

1. forward pass: compute $y_j = y_j(\vec{w}, \vec{x}_k)$ for all $j \in Z$

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$ as follows: Initialize $\mathcal{E}_{ji} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ii}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_j = y_j(\vec{w}, \vec{x}_k)$ for all $j \in Z$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using *backpropagation* (see the next slide!)

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$ as follows: Initialize $\mathcal{E}_{ji} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ii}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_j = y_j(\vec{w}, \vec{x}_k)$ for all $j \in Z$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using *backpropagation* (see the next slide!)

3. compute
$$\frac{\partial E_k}{\partial w_{ii}}$$
 for all w_{ji} using

$$\frac{\partial E_k}{\partial w_{ji}} := \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i$$

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$ as follows: Initialize $\mathcal{E}_{ji} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ii}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_j = y_j(\vec{w}, \vec{x}_k)$ for all $j \in Z$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using *backpropagation* (see the next slide!)

3. compute
$$\frac{\partial E_k}{\partial w_{ii}}$$
 for all w_{ji} using

$$\frac{\partial E_k}{\partial w_{ji}} := \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i$$

4.
$$\mathcal{E}_{ji} := \mathcal{E}_{ji} + \frac{\partial E_k}{\partial w_{ji}}$$

The resulting \mathcal{E}_{ji} equals $\frac{\partial E}{\partial w_{ji}}$.

MLP – backpropagation

Compute
$$\frac{\partial E_k}{\partial y_i}$$
 for all $j \in Z$ as follows:

MLP – backpropagation

Compute
$$\frac{\partial E_k}{\partial y_j}$$
 for all $j \in Z$ as follows:
• if $j \in Y$, then $\frac{\partial E_k}{\partial y_j} = y_j - d_{kj}$

Compute $\frac{\partial E_k}{\partial y_i}$ for all $j \in Z$ as follows:

• if
$$j \in Y$$
, then $\frac{\partial E_k}{\partial y_j} = y_j - d_{kj}$

▶ if $j \in Z \setminus Y \cup X$, then assuming that *j* is in the ℓ -th layer and assuming that $\frac{\partial E_k}{\partial y_r}$ has already been computed for all neurons in the ℓ + 1-st layer, compute

$$\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\rightarrow}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot \mathbf{w}_{rj}$$

(This works because all neurons of $r \in j^{\rightarrow}$ belong to the $\ell + 1$ -st layer.)

Complexity of the batch algorithm

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_r(\xi_r)$ for given ξ_r)

Complexity of the batch algorithm

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_r(\xi_r)$ for given ξ_r)

Proof sketch: The algorithm does the following *p* times:

Complexity of the batch algorithm

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set. (assuming unit cost of operations including computation of $\sigma'_{\ell}(\xi_{t})$ for given ξ_{t})

Proof sketch: The algorithm does the following *p* times:

1. forward pass, i.e. computes $y_j(\vec{w}, \vec{x}_k)$
Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_r(\xi_r)$ for given ξ_r)

Proof sketch: The algorithm does the following *p* times:

- **1.** forward pass, i.e. computes $y_j(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_i}$

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_r(\xi_r)$ for given ξ_r)

Proof sketch: The algorithm does the following *p* times:

- **1.** forward pass, i.e. computes $y_j(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_i}$
- **3.** computes $\frac{\partial E_k}{\partial w_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_r(\xi_r)$ for given ξ_r)

Proof sketch: The algorithm does the following *p* times:

- **1.** forward pass, i.e. computes $y_j(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_i}$
- **3.** computes $\frac{\partial E_k}{\partial w_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

The steps 1. - 3. take linear time.

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_r(\xi_r)$ for given ξ_r)

Proof sketch: The algorithm does the following *p* times:

- **1.** forward pass, i.e. computes $y_j(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_i}$
- **3.** computes $\frac{\partial E_k}{\partial w_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be estimated ...

Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ▶ in the step t + 1 (here t = 0, 1, 2...), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$w_{ji}^{(t+1)} = w_{ji}^{(t)} + \Delta w_{ji}^{(t)}$$

where

$$\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial \boldsymbol{E_k}}{\partial w_{ji}}(w_{ji}^{(t)})$$

is the weight update of w_{ji} in the step t + 1 and $0 < \varepsilon(t) \le 1$ is the *learning rate* in the step t + 1.

There are other variants determined by selection of the training examples used for the error computation (more on this later).

SGD

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ▶ in the step t + 1 (here t = 0, 1, 2...), weights $\vec{w}^{(t+1)}$ are computed as follows:
 - ► Choose (randomly) a set of training examples $T \subseteq \{1, ..., p\}$
 - Compute

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} + \Delta \vec{w}^{(t)}$$

where

$$\Delta \vec{w}^{(t)} = -\varepsilon(t) \cdot \sum_{k \in T} \nabla E_k(\vec{w}^{(t)})$$

- $0 < \varepsilon(t) \le 1$ is a *learning rate* in step t + 1
- ► $\nabla E_k(\vec{w}^{(t)})$ is the gradient of the error of the example *k*

Note that the random choice of the minibatch is typically implemented by randomly shuffling all data and then choosing minibatches sequentially.