What about classification?

Binary classification: Desired outputs 0 and 1.

Ideally, capture the probability distribution of classes.

What about classification?

Binary classification: Desired outputs 0 and 1.

... does not capture probability well (it is not a probability at all)

What about classification?

Binary classification: Desired outputs 0 and 1.

Logistic regression

$$
\vec{w} = (w_0, w_1, \dots, w_n) \text{ and } \vec{x} = (x_0, x_1, \dots, x_n) \text{ where } x_0 = 1.
$$

Activity:

- inner potential: $\xi = w_0 + \sum_{i=1}^n w_i x_i = \sum_{i=0}^n w_i x_i = \vec{w} \cdot \vec{x}$
- **►** activation function: $\sigma(\xi) = \frac{1}{1+e^{-\xi}}$
- ► network function: $y[\vec{w}](\vec{x}) = \sigma(\xi) = \frac{1}{1 + e^{-(\vec{w}\cdot\vec{x})}}$

Intuition: The output y is now interpreted as the probability of the class 1 given the input \vec{x} .

The model gives a probability y of the class 1 given an input \vec{x} . But why we model such a probability using $1/(1 + e^{-\vec{w} \cdot \vec{x}})$??

The model gives a probability y of the class 1 given an input \vec{x} . But why we model such a probability using $1/(1 + e^{-\vec{w} \cdot \vec{x}})$??

Let \hat{v} be the "true" probability of the class 1 to be modeled. What about odds of the class 1?

 $odds(\hat{v}) = \hat{v}/1 - \hat{v}$

Resembles an exponential function ...

The model gives a probability y of the class 1 given an input \vec{x} . But why we model such a probability using $1/(1 + e^{-\vec{w} \cdot \vec{x}})$??

Let \hat{v} be the "true" probability of the class 1 to be modeled. What about log odds (aka logit) of the class 1?

 $logit(\hat{y}) = log(\hat{y}/(1 - \hat{y}))$

Looks almost linear ...

Assume that \hat{y} is the probability of the class 1. Put

 $\log(\hat{y}/(1-\hat{y})) = \vec{w} \cdot \vec{x}$

Assume that \hat{y} is the probability of the class 1. Put

$$
\log(\hat{y}/(1-\hat{y})) = \vec{w}\cdot\vec{x}
$$

Then

$$
\log((1-\hat{y})/\hat{y})=-\vec{w}\cdot\vec{x}
$$

Assume that \hat{y} is the probability of the class 1. Put

$$
\log(\hat{y}/(1-\hat{y})) = \vec{w}\cdot\vec{x}
$$

Then

$$
\log((1-\hat{y})/\hat{y})=-\vec{w}\cdot\vec{x}
$$

and

$$
(1-\hat{y})/\hat{y}=e^{-\vec{w}\cdot\vec{x}}
$$

Assume that \hat{v} is the probability of the class 1. Put

$$
\log(\hat{y}/(1-\hat{y}))=\vec{w}\cdot\vec{x}
$$

Then

$$
\log((1-\hat{y})/\hat{y})=-\vec{w}\cdot\vec{x}
$$

and

$$
(1-\hat{y})/\hat{y}=e^{-\vec{w}\cdot\vec{x}}
$$

and

$$
\hat{y} = \frac{1}{1+e^{-\vec{w}\cdot\vec{x}}}
$$

That is, if we model log odds using a linear function, the probability is obtained by applying the logistic sigmoid on the result of the linear function.

 $T = \left\{ (x, d) \Big|_1 \gamma = \sigma(\xi), \xi = \pi x \times \sigma^2 = \sigma(n - \gamma) = \sigma^2 \right\}$ $\mathcal{D}(\eta-\eta)$ $E = -d \log(\gamma_0) - (1-d) \log(1-\gamma_0)$ $d=1: \frac{\partial E}{\partial \rho\sigma}=\frac{\partial-dlog\rho}{\partial\omega}=-\frac{1}{\gamma\gamma}\cdot\sigma'.x=$ $= \frac{-116(1-1)x}{2} = -(1-x)x$ $\gamma_0 \sim 0 \implies \frac{\partial E}{\partial x} = -x$

Logistic regression

Learning:

- **In Given a training dataset**
	- $\mathcal{T} = \left\{\left(\vec{\mathsf{x}}_1, \mathsf{d}_1\right), \left(\vec{\mathsf{x}}_2, \mathsf{d}_2\right), \ldots, \left(\vec{\mathsf{x}}_p, \mathsf{d}_p\right)\right\}$

Here $\vec{x}_k = (x_{k0}, x_{k1}, \dots, x_{kn}) \in \mathbb{R}^{n+1}$, $x_{k0} = 1$, is the k-th input, and $d_k \in \{0, 1\}$ is the expected output.

 $\int \text{Logistic regression}$ $E = \frac{1}{2}(\gamma-d)^2$ **Learning:** $\frac{\partial E}{\partial w} = (y - d) \cdot \sigma' \cdot x = (y - d) \cdot \overline{\sigma'} \cdot (1 - \overline{\sigma'}) \cdot x$ $i\oint d = 1, \quad \eta \sim 0 \Rightarrow \frac{\partial E}{\partial m} \sim 0$
 $d = 0, \quad \eta \sim 1 \Rightarrow \frac{\partial E}{\partial m} \sim 0$ $d \sim 1$ What?!?

- ▶ Given a training dataset
	- $\mathcal{T} = \left\{ \left(\vec{\mathsf{x}}_1, \mathsf{d}_1 \right), \left(\vec{\mathsf{x}}_2, \mathsf{d}_2 \right), \ldots, \left(\vec{\mathsf{x}}_p, \mathsf{d}_p \right) \right\}$

Here $\vec{x}_k = (x_{k0}, x_{k1}, \ldots, x_{kn}) \in \mathbb{R}^{n+1}, x_{k0} = 1$, is the k-th input, and $d_k \in \{0, 1\}$ is the expected output.

What error function?

(Binary) cross-entropy:

 $E(\vec{w}) = \sum_{n=1}^{p}$ $k=1$ $-(d_k \log(y_k) + (1 - d_k) \log(1 - y_k))$

 \blacktriangleright Let's have a "coin" (sides 0 and 1).

- \blacktriangleright Let's have a "coin" (sides 0 and 1).
- \blacktriangleright The probability of 1 is \hat{y} and is unknown!

- In Let's have a "coin" (sides 0 and 1).
- \triangleright The probability of 1 is \hat{y} and is unknown!
- \triangleright You have tossed the coin 5 times and got a training dataset:

$$
\mathcal{T} = \{1,1,0,0,1\} = \{d_1,\ldots,d_5\}
$$

Consider this to be a very special case where the input dimension is 0

- \blacktriangleright Let's have a "coin" (sides 0 and 1).
- \triangleright The probability of 1 is \hat{y} and is unknown!
- \triangleright You have tossed the coin 5 times and got a training dataset:

$$
\mathcal{T} = \{1,1,0,0,1\} = \{d_1,\ldots,d_5\}
$$

Consider this to be a very special case where the input dimension is 0

In What is the best model y of \hat{v} based on the data?

- \blacktriangleright Let's have a "coin" (sides 0 and 1).
- In The probability of 1 is \hat{y} and is unknown!
- \triangleright You have tossed the coin 5 times and got a training dataset:

$$
\mathcal{T} = \{1,1,0,0,1\} = \{d_1,\ldots,d_5\}
$$

Consider this to be a very special case where the input dimension is 0

I What is the best model y of \hat{v} based on the data? **Answer:** The one that generates the data with maximum probability!

Keep in mind our dataset:

$$
\mathcal{T} = \{1,1,0,0,1\} = \{d_1,\ldots,d_5\}
$$

Keep in mind our dataset:

$$
\mathcal{T} = \{1,1,0,0,1\} = \{d_1,\ldots,d_5\}
$$

Assume that the data was generated by independent trials, then the probability of getting exactly $\mathcal T$ from our model is

$$
L = y \cdot y \cdot (1 - y) \cdot (1 - y) \cdot y
$$

How to maximize this w.r.t. v ?

Keep in mind our dataset:

$$
\mathcal{T} = \{1,1,0,0,1\} = \{d_1,\ldots,d_5\}
$$

Assume that the data was generated by independent trials, then the probability of getting exactly $\mathcal T$ from our model is

$$
L = y \cdot y \cdot (1 - y) \cdot (1 - y) \cdot y
$$

How to maximize this w.r.t. v ?

Maximize

 $LL = log(L) = log(y) + log(y) + log(1-y) + log(1-y) + log(y)$

Keep in mind our dataset:

$$
\mathcal{T} = \{1,1,0,0,1\} = \{d_1,\ldots,d_5\}
$$

Assume that the data was generated by independent trials, then the probability of getting exactly $\mathcal T$ from our model is

$$
L = y \cdot y \cdot (1 - y) \cdot (1 - y) \cdot y
$$

How to maximize this w.r.t. v ?

Maximize

$$
LL = log(L) = log(y) + log(y) + log(1 - y) + log(1 - y) + log(y)
$$

But then

 $-LL = -1.$ log(y)−1·log(y)−(1–0)·log(1–y)−(1–0)·log(1–y)−1·log(y)

i.e. −LL is the cross-entropy.

Let the coin depend on the input

Consider our model:

$$
y=\frac{1}{1+e^{-(\vec{w}\cdot\vec{x})}}
$$

Let the coin depend on the input

Consider our model:

$$
y=\frac{1}{1+e^{-(\vec{w}\cdot\vec{x})}}
$$

The training dataset is now standard:

$$
\mathcal{T} = \left\{ \left(\vec{x}_1, d_1 \right), \left(\vec{x}_2, d_2 \right), \ldots, \left(\vec{x}_p, d_p \right) \right\}
$$

Here $\vec{x}_k = (x_{k0}, x_{k1} \ldots, x_{kn}) \in \mathbb{R}^{n+1}$, $x_{k0} = 1$, is the k-th input, and $d_k \in \{0, 1\}$ is the expected output.

Let the coin depend on the input

Consider our model: $y=\frac{1}{1}$ $1 + e^{-(\vec{w} \cdot \vec{x})}$ The training dataset is now standard: $\mathcal{T} = \left\{\left(\vec{\mathsf{x}}_1, \mathsf{d}_1\right), \left(\vec{\mathsf{x}}_2, \mathsf{d}_2\right), \ldots, \left(\vec{\mathsf{x}}_p, \mathsf{d}_p\right)\right\}$

Here $\vec{x}_k = (x_{k0}, x_{k1} \ldots, x_{kn}) \in \mathbb{R}^{n+1}$, $x_{k0} = 1$, is the k-th input, and $d_k \in \{0, 1\}$ is the expected output.

The likelihood:

$$
L = \prod_{k=1}^{p} y_k^{d_k} \cdot (1 - y_k)^{(1 - d_k)}
$$

and $LL = \log(L) = \sum_{k=1}^{p} (d_k \log(y_k) + (1 - d_k) \log(1 - y_k))$ and thus $-LL$ = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood (and vice versa). ²¹

Distribution of continuous random variables.

Density (one dimensional, that is over R):

$$
p(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} =: \mathsf{N}[\mu, \sigma^2](x)
$$

 μ is the expected value (the mean), σ^2 is the variance.

Fix a training set $D = \big\{ (x_1, d_1)$, (x_2, d_2) , \dots , $\big(x_p, d_p\big) \big\}$

Fix a training set $D = \big\{ (x_1, d_1)$, (x_2, d_2) , \dots , $\big(x_p, d_p\big) \big\}$ Assume that each d_k has been generated randomly by

 $d_k = (w_0 + w_1 \cdot x_k) + \epsilon_k$

\triangleright w_0 , w_1 are **unknown numbers**

 \triangleright ϵ_k are normally distributed with mean 0 and an unknown variance σ^2

Keep in mind:

 $d_k = (w_0 + w_1 \cdot x_k) + \epsilon_k$

Assume that $\epsilon_1, \ldots, \epsilon_p$ were generated **independently**.

Keep in mind:

 $d_k = (w_0 + w_1 \cdot x_k) + \epsilon_k$

Assume that $\epsilon_1, \ldots, \epsilon_p$ were generated **independently**.

Denote by $p(d_1, ..., d_p | w_0, w_1, \sigma^2)$ the probability density according to which the values d_1, \ldots, d_n were generated assuming fixed w_0 , w_1 , σ^2 , x_1 , . . . , x_p .

Keep in mind:

$$
d_k = (w_0 + w_1 \cdot x_k) + \epsilon_k
$$

Assume that $\epsilon_1, \ldots, \epsilon_p$ were generated **independently**.

Denote by $p(d_1, \ldots, d_p \mid w_0, w_1, \sigma^2)$ the probability density according to which the values d_1, \ldots, d_n were generated assuming fixed w_0 , w_1 , σ^2 , x_1 , . . . , x_p .

The independence and normality imply

$$
p(d_1,...,d_p | w_0, w_1, \sigma^2) = \prod_{k=1}^p N[w_0 + w_1 x_k, \sigma^2](d_k)
$$

=
$$
\prod_{k=1}^p \frac{1}{\sigma \sqrt{2\pi}} exp\left\{-\frac{(d_k - w_0 - w_1 x_k)^2}{2\sigma^2}\right\}
$$

Our goal is to find (w_0, w_1) that maximizes the likelihood that the training set D with **fixed** values d_1, \ldots, d_n has been generated:

$$
L(w_0, w_1, \sigma^2) := p(d_1, \ldots, d_p \mid w_0, w_1, \sigma^2)
$$

Our goal is to find (w_0, w_1) that maximizes the likelihood that the training set D with **fixed** values d_1, \ldots, d_n has been generated:

$$
L(w_0, w_1, \sigma^2) := p(d_1, \ldots, d_p \mid w_0, w_1, \sigma^2)
$$

Theorem

 (w_0, w_1) maximizes $L(w_0, w_1, \sigma^2)$ for arbitrary σ^2 **iff** (w_0, w_1) minimizes squared error $E(w_0, w_1) = \sum_{k=1}^p (d_k - w_0 - w_1 x_k)^2$.

Our goal is to find (w_0, w_1) that maximizes the likelihood that the training set D with **fixed** values d_1, \ldots, d_n has been generated:

$$
L(w_0, w_1, \sigma^2) := p(d_1, \ldots, d_p \mid w_0, w_1, \sigma^2)
$$

Theorem

 (w_0, w_1) maximizes $L(w_0, w_1, \sigma^2)$ for arbitrary σ^2 **iff** (w_0, w_1) minimizes squared error $E(w_0, w_1) = \sum_{k=1}^p (d_k - w_0 - w_1 x_k)^2$.

Note that the maximizing/minimizing (w_0, w_1) does not depend on σ^2 .

Our goal is to find (w_0, w_1) that maximizes the likelihood that the training set D with **fixed** values d_1, \ldots, d_n has been generated:

$$
L(w_0, w_1, \sigma^2) := p(d_1, \ldots, d_p \mid w_0, w_1, \sigma^2)
$$

Theorem

 (w_0, w_1) maximizes $L(w_0, w_1, \sigma^2)$ for arbitrary σ^2 **iff** (w_0, w_1) minimizes squared error $E(w_0, w_1) = \sum_{k=1}^p (d_k - w_0 - w_1 x_k)^2$.

Note that the maximizing/minimizing (w_0, w_1) does not depend on σ^2 .

Maximizing
$$
\sigma^2
$$
 satisfies $\sigma^2 = \frac{1}{p} \sum_{k=1}^p (d_k - w_0 - w_1 \cdot x_k)^2$.

MLP training – theory
Architecture – Multilayer Perceptron (MLP)

- **IDED** Neurons partitioned into **layers**; one input layer, one output layer, possibly several hidden layers
- layers numbered from 0 ; the input layer has number 0
	- \blacktriangleright E.g. three-layer network has two hidden layers and one output layer
- \blacktriangleright Neurons in the *i*-th layer are connected with all neurons in the $i + 1$ -st layer
- \triangleright Architecture of a MLP is typically described by numbers of neurons in individual layers (e.g. 2-4-3-2)

Notation:

- \blacktriangleright Denote
	- \blacktriangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops
	- \blacktriangleright y_j is the output of the neuron *j after the computation stops*

(define $y_0 = 1$ is the value of the formal unit input)

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- \blacktriangleright Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops
	- \blacktriangleright y_j is the output of the neuron *j after the computation stops*

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ii} is the weight of the connection **from** *i* to *j*

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops
	- \blacktriangleright y_j is the output of the neuron *j after the computation stops*

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ij} is the weight of the connection **from** *i* to *j*

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

 \triangleright i_{\leftarrow} is a set of all *i* such that *i* is adjacent from *i* (i.e. there is an arc **to** j from i)

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops
	- \blacktriangleright y_j is the output of the neuron *j after the computation stops*

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ij} is the weight of the connection **from** *i* to *j*

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

- \triangleright i_{\leftarrow} is a set of all *i* such that *i* is adjacent from *i* (i.e. there is an arc **to** j from i)
- \triangleright $j\rightarrow$ is a set of all *i* such that *j* is adjacent to *i* (i.e. there is an arc **from** j to i)

Activity:

 \blacktriangleright inner potential of neuron j:

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

Activity:

inner potential of neuron i :

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

activation function σ_j for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]

Activity:

inner potential of neuron i :

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

- **activation function** σ_j for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]
- State of non-input neuron $j \in Z \setminus X$ after the computation stops:

$$
y_j = \sigma_j(\xi_j)
$$

(y_i depends on the configuration \vec{w} and the input \vec{x} , so we sometimes write $y_i(\vec{w}, \vec{x})$)

Activity:

inner potential of neuron i :

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

- **activation function** σ_j for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]
- State of non-input neuron $j \in Z \setminus X$ after the computation stops:

$$
y_j = \sigma_j(\xi_j)
$$

(y_i depends on the configuration \vec{w} and the input \vec{x} , so we sometimes write $y_i(\vec{w}, \vec{x})$)

The network computes a function $\mathbb{R}^{|X|}$ do $\mathbb{R}^{|Y|}$. Layer-wise computation: First, all input neurons are assigned values of the input. In the ℓ -th step, all neurons of the ℓ -th layer are evaluated.

MLP – learning

Learning:

 \blacktriangleright Given a **training set** $\mathcal T$ of the form

$$
\left\{ \left(\vec{x}_k, \vec{d}_k \right) \quad \middle| \quad k = 1, \ldots, p \right\}
$$

Here, every $\vec{x}_k \in \mathbb{R}^{|\mathcal{X}|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|\mathcal{Y}|}$ is the desired network output. For every $j \in Y$, denote by d_{ki} the desired output of the neuron *j* for a given network input \vec{x}_{k} (the vector \vec{d}_{k} can be written as $\left(d_{kj}\right)_{j\in\mathsf{Y}}).$

MLP – learning

Learning:

 \blacktriangleright Given a **training set** $\mathcal T$ of the form

$$
\left\{ \left(\vec{x}_k, \vec{d}_k \right) \quad \middle| \quad k = 1, \ldots, p \right\}
$$

Here, every $\vec{x}_k \in \mathbb{R}^{|\mathcal{X}|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|\mathcal{Y}|}$ is the desired network output. For every $j \in Y$, denote by d_{ki} the desired output of the neuron *j* for a given network input \vec{x}_{k} (the vector \vec{d}_{k} can be written as $\left(d_{kj}\right)_{j\in\mathsf{Y}}).$

Error function:

$$
E(\vec{w}) = \sum_{k=1}^p E_k(\vec{w})
$$

where

$$
E_k(\vec{w}) = \frac{1}{2} \sum_{j \in Y} (y_j(\vec{w}, \vec{x}_k) - d_{kj})^2
$$

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})
$$

is a weight update of w_{ii} in step $t + 1$ and $0 < \varepsilon(t) \leq 1$ is a learning rate in step $t + 1$.

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})
$$

is a weight update of w_{ij} in step $t + 1$ and $0 < \varepsilon(t) \leq 1$ is a learning rate in step $t + 1$.

Note that $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})$ is a component of the gradient ∇E , i.e. the weight update can be written as $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot \nabla E(\vec{w}^{(t)})$.

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}
$$

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}
$$

where for every $k = 1, \ldots, p$ holds

$$
\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}
$$

where for every $k = 1, \ldots, p$ holds

$$
\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

and for every $j \in Z \setminus X$ we get

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}
$$

where for every $k = 1, \ldots, p$ holds

$$
\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

and for every $j \in Z \setminus X$ we get

∂E^k

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\to}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj} \qquad \text{for } j \in Z \setminus (Y \cup X)
$$

(Here all y_i are in fact $y_i(\vec{w}, \vec{x}_k)$).

• If
$$
\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}
$$
 for all $j \in \mathbb{Z}$, then

$$
\sigma'_j(\xi_j) = \lambda_j y_j(1 - y_j)
$$

• If
$$
\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}
$$
 for all $j \in \mathbb{Z}$, then

$$
\sigma'_j(\xi_j) = \lambda_j y_j(1 - y_j)
$$

and thus for all $j \in Z \setminus X$:

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\to}} \frac{\partial E_k}{\partial y_r} \cdot \lambda_r y_r (1 - y_r) \cdot w_{rj} \quad \text{for } j \in Z \setminus (Y \cup X)
$$

• If
$$
\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}
$$
 for all $j \in Z$, then

$$
\sigma'_j(\xi_j) = \lambda_j y_j(1 - y_j)
$$

and thus for all $j \in Z \setminus X$:

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\to}} \frac{\partial E_k}{\partial y_r} \cdot \lambda_r y_r (1 - y_r) \cdot w_{rj} \quad \text{for } j \in Z \setminus (Y \cup X)
$$

• If
$$
\sigma_j(\xi) = a \cdot \tanh(b \cdot \xi_j)
$$
 for all $j \in Z$, then

$$
\sigma'_j(\xi_j)=\frac{b}{a}(a-y_j)(a+y_j)
$$

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows:

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows:

Initialize $\mathcal{E}_{ii} := 0$

(By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

1. forward pass: compute $y_j = y_j(\vec{w}, \vec{x}_k)$ for all $j \in \mathbb{Z}$

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $j \in \mathbb{Z}$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using backpropagation (see the next slide!)

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $j \in \mathbb{Z}$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using backpropagation (see the next slide!)

3. compute
$$
\frac{\partial E_k}{\partial w_{ji}}
$$
 for all w_{ji} using

$$
\frac{\partial E_k}{\partial w_{ji}} := \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $j \in \mathbb{Z}$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using backpropagation (see the next slide!)

3. compute
$$
\frac{\partial E_k}{\partial w_{ji}}
$$
 for all w_{ji} using

$$
\frac{\partial E_k}{\partial w_{ji}} := \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

4.
$$
\mathcal{E}_{ji} := \mathcal{E}_{ji} + \frac{\partial E_k}{\partial w_{ji}}
$$

The resulting \mathcal{E}_{ji} equals $\frac{\partial E}{\partial \mathsf{w}_{ji}}.$

Compute
$$
\frac{\partial E_k}{\partial y_j}
$$
 for all $j \in Z$ as follows:

MLP – backpropagation

Compute
$$
\frac{\partial E_k}{\partial y_j}
$$
 for all $j \in Z$ as follows:
\n► if $j \in Y$, then $\frac{\partial E_k}{\partial y_j} = y_j - d_{kj}$

Compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ as follows:

• if
$$
j \in Y
$$
, then $\frac{\partial E_k}{\partial y_j} = y_j - d_{kj}$

F if $j \in Z \setminus Y \cup X$, then assuming that j is in the ℓ -th layer and assuming that $\frac{\partial E_k}{\partial y_r}$ has already been computed for all neurons in the $\ell + 1$ -st layer, compute

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^+} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj}
$$

(This works because all neurons of $r \in j^{\rightarrow}$ belong to the $\ell + 1$ -st layer.)

Complexity of the batch algorithm

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Complexity of the batch algorithm

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

Complexity of the batch algorithm

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set. (assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set. (assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$
- **3.** computes $\frac{\partial E_k}{\partial \mathbf{w}_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$
- **3.** computes $\frac{\partial E_k}{\partial \mathbf{w}_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

The steps 1. - 3. take linear time.

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$
- **3.** computes $\frac{\partial E_k}{\partial \mathbf{w}_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be estimated ...

Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial E_k}{\partial w_{ji}} (w_{ji}^{(t)})
$$

is the weight update of w_{ii} in the step $t + 1$ and $0 < \varepsilon(t) \le 1$ is the learning rate in the step $t + 1$.

There are other variants determined by selection of the training examples used for the error computation (more on this later).

SGD

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:
	- ► Choose (randomly) a set of training examples $T \subseteq \{1, \ldots, p\}$
	- \blacktriangleright Compute

$$
\vec{w}^{(t+1)} = \vec{w}^{(t)} + \Delta \vec{w}^{(t)}
$$

where

$$
\Delta \vec{w}^{(t)} = -\varepsilon(t) \cdot \sum_{k \in T} \nabla E_k(\vec{w}^{(t)})
$$

- \triangleright 0 < ε (t) \leq 1 is a learning rate in step t + 1
- $\blacktriangleright \nabla E_k(\vec{w}^{(t)})$ is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by randomly shuffling all data and then choosing minibatches sequentially.