MLP training – theory

Architecture – Multilayer Perceptron (MLP)

- **IDED** Neurons partitioned into **layers**; one input layer, one output layer, possibly several hidden layers
- layers numbered from 0; the input layer has number 0
	- \blacktriangleright E.g. three-layer network has two hidden layers and one output layer
- \blacktriangleright Neurons in the *i*-th layer are connected with all neurons in the $i + 1$ -st layer
- \triangleright Architecture of a MLP is typically described by numbers of neurons in individual layers (e.g. 2-4-3-2)

Notation:

- \blacktriangleright Denote
	- \blacktriangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops
	- \blacktriangleright y_j is the output of the neuron *j after the computation stops*

(define $y_0 = 1$ is the value of the formal unit input)

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops
	- \blacktriangleright y_j is the output of the neuron *j after the computation stops*

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ii} is the weight of the connection **from** *i* to *j*

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- \blacktriangleright Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops
	- \blacktriangleright y_j is the output of the neuron *j after the computation stops*

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ij} is the weight of the connection **from** *i* to *j*

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

 \triangleright i_{\leftarrow} is a set of all *i* such that *i* is adjacent from *i* (i.e. there is an arc **to** j from i)

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- \blacktriangleright Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron j after the computation stops

 $4e^{-5\{1,2\}}$ $2^{\bullet} = (3, 4)$

 \blacktriangleright y_j is the output of the neuron *j after the computation stops*

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ij} is the weight of the connection **from** *i* to *j*

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

- \triangleright i_{\leftarrow} is a set of all *i* such that *i* is adjacent from *i* (i.e. there is an arc **to** j from i)
- \triangleright $j\rightarrow$ is a set of all *i* such that *j* is adjacent to *i* (i.e. there is an arc **from** j to i)

Activity:

 \blacktriangleright inner potential of neuron j:

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

Activity:

inner potential of neuron i :

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

activation function σ_j for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]

Activity:

inner potential of neuron i :

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

- **activation function** σ_j for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]
- State of non-input neuron $j \in Z \setminus X$ after the computation stops:

$$
y_j = \sigma_j(\xi_j)
$$

(y_i depends on the configuration \vec{w} and the input \vec{x} , so we sometimes write $y_i(\vec{w}, \vec{x})$)

Activity:

inner potential of neuron i :

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

- **activation function** σ_j for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]
- State of non-input neuron $j \in Z \setminus X$ after the computation stops:

$$
y_j = \sigma_j(\xi_j)
$$

(y_i depends on the configuration \vec{w} and the input \vec{x} , so we sometimes write $y_i(\vec{w}, \vec{x})$)

The network computes a function $\mathbb{R}^{|X|}$ do $\mathbb{R}^{|Y|}$. Layer-wise computation: First, all input neurons are assigned values of the input. In the ℓ -th step, all neurons of the ℓ -th layer are evaluated.

MLP – learning

Learning:

 \blacktriangleright Given a **training set** $\mathcal T$ of the form

$$
\left\{ \left(\vec{x}_k, \vec{d}_k \right) \quad \middle| \quad k = 1, \ldots, p \right\}
$$

Here, every $\vec{x}_k \in \mathbb{R}^{|\mathcal{X}|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|\mathcal{Y}|}$ is the desired network output. For every $j \in Y$, denote by d_{ki} the desired output of the neuron *j* for a given network input \vec{x}_{k} (the vector \vec{d}_{k} can be written as $\left(d_{kj}\right)_{j\in\mathsf{Y}}).$

MLP – learning

Learning:

 \blacktriangleright Given a **training set** $\mathcal T$ of the form

$$
\left\{ \left(\vec{x}_k, \vec{d}_k \right) \quad \middle| \quad k = 1, \ldots, p \right\}
$$

Here, every $\vec{x}_k \in \mathbb{R}^{|\mathcal{X}|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|\mathcal{Y}|}$ is the desired network output. For every $j \in Y$, denote by d_{ki} the desired output of the neuron *j* for a given network input \vec{x}_{k} (the vector \vec{d}_{k} can be written as $\left(d_{kj}\right)_{j\in\mathsf{Y}}).$

Error function: $\mathcal{T}_{s}\left\{ (\vec{x}_{16}), (\vec{x}_{27}) \right\}$ $E(\vec{w}) = \sum_{n=1}^{p}$ $E_k(\vec{w})$ $E = E_1 + E_2$ $k=1$ where $E_k(\vec{w}) = \frac{1}{2}$ $\left(y_j(\vec{w}, \vec{x}_k) - d_{kj}\right)^2$ $\boldsymbol{\nabla}$ j∈Y

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})
$$

is a weight update of w_{ii} in step $t + 1$ and $0 < \varepsilon(t) \leq 1$ is a learning rate in step $t + 1$.

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})
$$

is a weight update of w_{ij} in step $t + 1$ and $0 < \varepsilon(t) \leq 1$ is a learning rate in step $t + 1$.

Note that $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})$ is a component of the gradient ∇E , i.e. the weight update can be written as $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot \nabla E(\vec{w}^{(t)})$.

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}
$$

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}
$$

where for every $k = 1, \ldots, p$ holds

$$
\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

 ∂E_{μ} ∂w_{η} $\partial\widetilde{\mathfrak{w}}_{\dot{\delta}^\Lambda}$ ∂y_i since \cup $\sqrt{ }$ نرم $\partial \leftarrow$ $\gamma \wedge$

For every w_{ji} we have

∂E $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p$ $k=1$ ∂E^k ∂wji

where for every $k = 1, ..., p$ holds

∂E^k $\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j}$ ∂y^j $\cdot \sigma_i'$ $_j'(\xi_j) \cdot y_j$

and for every $j \in Z \setminus X$ we get

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{-1}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj} \qquad \text{for } j \in Z \setminus (Y \cup X)
$$

• If
$$
\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}
$$
 for all $j \in \mathbb{Z}$, then

$$
\sigma'_j(\xi_j) = \lambda_j y_j(1 - y_j)
$$

• If
$$
\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}
$$
 for all $j \in \mathbb{Z}$, then

$$
\sigma'_j(\xi_j) = \lambda_j y_j(1 - y_j)
$$

and thus for all $j \in Z \setminus X$:

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\to}} \frac{\partial E_k}{\partial y_r} \cdot \lambda_r y_r (1 - y_r) \cdot w_{rj} \quad \text{for } j \in Z \setminus (Y \cup X)
$$

► If
$$
\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}
$$
 for all $j \in Z$, then
\n
$$
\sigma'_j(\xi_j) = \lambda_j y_j (1 - y_j)
$$
\nand thus for all $j \in Z \setminus X$:
\n
$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$
\n
$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{-1}} \frac{\partial E_k}{\partial y_r} \cdot \lambda_r y_r (1 - y_r) \cdot w_{rj} \quad \text{for } j \in Z \setminus (Y \cup X)
$$
\n► If $\sigma_j(\xi) = a \cdot \tanh(b \cdot \xi_j)$ for all $j \in Z$, then

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows:

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows:

Initialize $\mathcal{E}_{ii} := 0$

(By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

1. forward pass: compute $y_j = y_j(\vec{w}, \vec{x}_k)$ for all $j \in \mathbb{Z}$

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $j \in \mathbb{Z}$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using backpropagation (see the next slide!)

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $j \in \mathbb{Z}$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using backpropagation (see the next slide!)

3. compute
$$
\frac{\partial E_k}{\partial w_{ji}}
$$
 for all w_{ji} using

$$
\frac{\partial E_k}{\partial w_{ji}} := \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $j \in \mathbb{Z}$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using backpropagation (see the next slide!)

3. compute
$$
\frac{\partial E_k}{\partial w_{ji}}
$$
 for all w_{ji} using

$$
\frac{\partial E_k}{\partial w_{ji}} := \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

4.
$$
\mathcal{E}_{ji} := \mathcal{E}_{ji} + \frac{\partial E_k}{\partial w_{ji}}
$$

The resulting \mathcal{E}_{ji} equals $\frac{\partial E}{\partial \mathsf{w}_{ji}}.$

Compute
$$
\frac{\partial E_k}{\partial y_j}
$$
 for all $j \in Z$ as follows:

MLP – backpropagation

Compute
$$
\frac{\partial E_k}{\partial y_j}
$$
 for all $j \in Z$ as follows:
\n► if $j \in Y$, then $\frac{\partial E_k}{\partial y_j} = y_j - d_{kj}$

Compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ as follows:

• if
$$
j \in Y
$$
, then $\frac{\partial E_k}{\partial y_j} = y_j - d_{kj}$

F if $j \in Z \setminus Y \cup X$, then assuming that j is in the ℓ -th layer and assuming that $\frac{\partial E_k}{\partial y_r}$ has already been computed for all neurons in the $\ell + 1$ -st layer, compute

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^+} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj}
$$

(This works because all neurons of $r \in j^{\rightarrow}$ belong to the $\ell + 1$ -st layer.)

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set. (assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set. (assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$
- **3.** computes $\frac{\partial E_k}{\partial \mathbf{w}_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$
- **3.** computes $\frac{\partial E_k}{\partial \mathbf{w}_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

The steps 1. - 3. take linear time.

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$
- **3.** computes $\frac{\partial E_k}{\partial \mathbf{w}_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be estimated ...

Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

Online algorithm:

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial E_k}{\partial w_{ji}} (w_{ji}^{(t)})
$$

is the weight update of w_{ii} in the step $t + 1$ and $0 < \varepsilon(t) \le 1$ is the learning rate in the step $t + 1$.

There are other variants determined by selection of the training examples used for the error computation (more on this later).

SGD

- veights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:
	- ► Choose (randomly) a set of training examples $T \subseteq \{1, \ldots, p\}$
	- \blacktriangleright Compute

$$
\vec{w}^{(t+1)} = \vec{w}^{(t)} + \Delta \vec{w}^{(t)}
$$

where

$$
\Delta \vec{w}^{(t)} = -\varepsilon(t) \cdot \sum_{k \in T} \nabla E_k(\vec{w}^{(t)})
$$

- \triangleright 0 < ε (t) \leq 1 is a learning rate in step t + 1
- $\blacktriangleright \nabla E_k(\vec{w}^{(t)})$ is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by randomly shuffling all data and then choosing minibatches sequentially.