PV 168
Seminar 13

Prerequisites for the seminar

e NetBeans IDE 12.0

o Download from https://netbeans.apache.org/download/index.html

https://netbeans.apache.org/download/index.html

Address Database

e Loads list of addresses in Czech Republic (DataLoader)

e Find all addresses matching given (possibly incomplete) specification
(AddressFinder)

e Executes performance test to help evaluate CPU and Memory consumption
(PerformanceTest)

e There are multiple implementations of AddressFinder using various data
structures and search algorithms

e Concrete implementation is selected with dialog box when the application is
started

SimpleAddressFinder

e Stores data as simple List, no optimized structure
e Search is done sequentially, all addresses must be traversed

e Multiple search strategies:
o ForEachSearchStrategy — based on for-each loop (#1)
o StreamSearchStrategy — based on Streams (#2)
o ParallelStreamSearchStrategy — based on parallel Streams. Parallel streams utilize
multiple threads with Fork/Join framework. Threads count corresponds to CPU count. (#3)

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

IndexedAddressFinder

e Stores data in map-based structure.

e The search process consist of two steps
o Finding the collection of addresses with appropriate AddressBase (municipality, municipality
district, street, and district).
o Then finding addresses within this collection with appropriate orientation number and/or house
number.

e The first step is implemented as a map lookup to avoid sequential search.

e Multiple implementations exist for the second step:
o IndexedAddressGroup — addresses with the same AddressBase are stored in Maps, find
by number(s) is done as map lookup (#4)
o SimpleAddressGroup — addresses with the same AddressBase are stored in simple List,
find by number(s) is done sequentially (#5)

Profiler

e Tools for evaluation of application performance
o CPUtime
o Memory usage

e Profiler integrated in IntelliJ IDEA does not provide good support for memory
usage profiling

Instructions (screenshots on next slides)

Clone the project https://qitlab.fi.muni.cz/pv168/address-database
Open the project in NetBeans

Set Java Platform to JDK 11 or newer

o Right click on project AddressDatabse in left panel and choose Properties
o Select category Build > Compile and choose Java Platform
o If you don'’t see suitable JDK there, click on Manage Java Platforms... to add JDK

Open profiler (menu Profile > Profile Project or Ctrl+F2)

Configure Sesion by selecting profile Telemetry

Run the application in profiler | P Profile|~

Choose AddressFinder implementation #1

Check the results (notice the detail numbers when hovering over the graphs)

https://gitlab.fi.muni.cz/pv168/address-database

How to set JDK in NetBeans

®
P S O C

<default ¢

Proje:

| 2

>
>
>
>
>

cts X | Files Services
v @ AddressDatabasce

] Sourr New >
u: Z—;Z:' Build
‘g Test Clean and Build
g Java Build with Dependencies
'@ Proj¢ Clean

Generate Javadoc

Run

Debug

Profile

Execute Java Shell

Test ~F6
Run Selenium Tests

Run Maven >
Set Configuration >

Open POM

Reload POM
Open Required Projects »
Close

Rename...

Move...

Copy...

Delete [

Find... HF
Inspect and Transform...
Git >
History >

Categories:

Qo

@
o]
o]
@

© © © ¢

General

Sources
Configurations
JavaScript Libraries
Build

@ Compile

Run

Java Shell

Actions

JavaScript

© RequireJs

@ Oracle JET
License Headers
Formatting

@ CheckStyle Formatting
Hints

Project Properties - AddressDatabase

Java Platform: | JDK 14 (Default)

Compile on Save (requires nb-javac plugin)

If selected, files are compiled when you save them.

Manage Java Platforms...

This option saves you time when you run or debug your application or tests in the IDE.

Learn More about Compile On Save feature in Maven projects

Generate Debugging Info

Report Uses of Deprecated APIs

Profiler window

@ AddressDatabase | pom.xml X |

' Configure Session ~|

Configure and Start Profiling

1. Click the Configure Session button in toolbar and select the desired profiling mode:
Telemetry Monitor CPU and Memory usage, number of threads and loaded classes

@ Methods Profile method execution times and invocation counts, including call trees
ﬁ Objects Profile size and count of allocated objects, including allocation paths
Threads Monitor thread states and times

Locks Collect lock contention statistics

a SQL Queries Display executed SQL queries, their duration and invocation paths

2. Click the Profile button in toolbar once the session is configured to start profiling.

3. Use the Profile dropdown arrow to change profiling settings for the session.

Tips & Tricks: Snapshots

e Methods and Objects profiles allow to take snapshots of the results
o Useful for later comparison results for different AddressFinder implementations
o Unfortunately there is no such option for Telemetry

e Snapshot is taken if you confirm it in dialog when the application finishes
e Snapshots can be saved to disk
o Forlong term comparison

e Saved snapshots can be renamed
o Inwindow Snapshots (menu Window > Profiling > Snapshots)
o Better identification, e.g. AddressFinder #1

Tips & Tricks: Taking Snapshot

The profiled application has finished execution.

U Do you want to take a snapshot of the collected results?

Do not show this message again

Tips & Tricks: Saving Snapshot

ressDatabase | pom.xml X | é 12:47:47 AM* X

E E' View: B R Aggregation: | Methods ¥ i}
Name Total Time Total Time (CPU)

» O Java2D Queue Flusher [| 19,953 ms (100%) 123 ms (100%)
> [main [19,531ms (100% 14,644 ms (100%)
» D Finalizer [| 9,690 ms (100%) 10.9ms (100%)
» 0 AWT-Shutdown || 7,525 ms (100%) 0.0 ms (-%)
> D AWT-EventQueue-0 [| 7,146 ms (100%) 3,850 ms (100%)
» & Common-Cleaner [| 5,476 ms (100%) 12.7 ms (100%)
» = Reference Handler [| 5,463 ms (100%) 5,463 ms (100%)
» O AWT-Shutdown [| 2,965 ms (100%) 0.0 ms (-%)
» O AWT-Shutdown [2,675 ms (100%) 0.0 ms (-%)
» O AWT-Shutdown [| 1,637 ms (100%) 0.0 ms (-%)
» D AWT-Shutdown [| 1,380 ms (100%) 0.0 ms (-%)
> D TimerQueue [| 1,333 ms (100%) 0.0 ms (-%)
» = AppKit Thread [| 680 ms (100%) 657 ms (100%)
» [process reaper 0.0 ms (-%) 0.0 ms (-%)
» [Java2D Disposer 0.0 ms (-%) 0.0 ms (-%)
» [0 DestroyjavaVM 0.0 ms (-%) 0.0 ms (-%)
» O AWT-Shutdown 0.0 ms (-%) 0.0 ms (-%)

Tips & Tricks: Renaming Saved Snapshot

Hep [© © < % 100% @@ <) 6 MSnapshors * [e]
I3 Projects 81 ' o
[T Files %82 Elig ik ,
A
Favorites 323 &5 AddressDatabase
& Services 85
Navigator 87 Snapshots:
Lc Action Items ¥6 Typ‘ :alme
Tasks 886 =
3 output o 12:47:47 AM
Editor $80
Debugging >
Profiling > & Snapshots
Web > LI Profiling Points
IDE Tools »
Configure Window »
Reset Windows
Close Window #$W
Close All Documents {+88W
Close Other Documents
Document Groups > :
Documents... {tFa K" i =) i}

Seminar Task 1 (AddressFinder #1)

e Run the application with Telemetry profile
o Check Memory graph to see used heap size after loading the data.
o Check the output tab to see average time per single search
o Write down both numbers
e Run the application with Methods profile
o Check where the application spent most of the time in main thread
e Run the application with Objects profile

o Check which object types occupied most of the heap

Seminar Task 2 (AddressFinder #2)

e Run the application with Telemetry profile
o Check Memory graph to see used heap size after loading the data.
o Check the output tab to see average time per single search
o Write down both numbers
e Run the application with Methods profile
o Check where the application spent most of the time in main thread
e Run the application with Objects profile

o Check which object types occupied most of the heap

e Discuss and write down answers to these questions:
o Is there any significant difference in CPU time or memory consumption compared to #17?

Seminar Task 3 (AddressFinder #3)

e Run the application with Telemetry profile
o Check Memory graph to see used heap size after loading the data.
o Check the output tab to see average time per single search and CPU count
o Write down all three numbers
e Run the application with Methods profile
o Check where the application spent most of the time in main thread
o Check where the application spent most of the time in ForkJoinPool.* threads
e Run the application with Objects profile
o Check which object types occupied most of the heap
e Discuss and write down answers to these questions:

o Is there any significant difference in CPU time or memory consumption compared to #1 or #27?
o How many ForkJoinPool.* threads were running?

Seminar Task 4 (AddressFinder #4)

e Run the application with Telemetry profile
o Check Memory graph to see used heap size after loading the data.
o Check the output tab to see average time per single search
o Write down both numbers
e Run the application with Methods profile
o Check where the application spent most of the time in main thread
e Run the application with Objects profile

o Check which object types occupied most of the heap

e Discuss and write down answers to these questions:
o Is there any significant difference in CPU time or memory consumption compared to #1 — #3?

Seminar Task 5 (AddressFinder #5)

e Run the application with Telemetry profile
o Check Memory graph to see used heap size after loading the data.
o Check the output tab to see average time per single search
o Write down both numbers
e Run the application with Methods profile
o Check where the application spent most of the time in main thread
e Run the application with Objects profile

o Check which object types occupied most of the heap

e Discuss and write down answers to these questions:
o Is there any significant difference in CPU time or memory consumption compared to #1 — #47

Seminar Task 6 (Evaluation)

Which implementation was the least CPU efficient (slowest) one?
Which implementation was the most CPU efficient (fastest) one?
How much did parallel processing in #3 help?

What is the cost of optimization in #47? Is it worth it?

Which implementation would you recommend to use?

Link to slides

https://is.muni.cz/auth/el/fi/podzim2020/PV168/um/seminare/PV168-seminar-13.pdf

https://is.muni.cz/auth/el/fi/podzim2020/PV168/um/seminare/PV168-seminar-13.pdf

Conclusion

Any questions?

