
PV 168
Seminar 13



Prerequisites for the seminar
● NetBeans IDE 12.0

○ Download from https://netbeans.apache.org/download/index.html

https://netbeans.apache.org/download/index.html


Address Database
● Loads list of addresses in Czech Republic (DataLoader)
● Find all addresses matching given (possibly incomplete) specification 

(AddressFinder)
● Executes performance test to help evaluate CPU and Memory consumption 

(PerformanceTest)
● There are multiple implementations of AddressFinder using various data 

structures and search algorithms
● Concrete implementation is selected with dialog box when the application is 

started



SimpleAddressFinder

● Stores data as simple List, no optimized structure
● Search is done sequentially, all addresses must be traversed
● Multiple search strategies:

○ ForEachSearchStrategy – based on for-each loop (#1)
○ StreamSearchStrategy – based on Streams (#2)
○ ParallelStreamSearchStrategy – based on parallel Streams. Parallel streams utilize 

multiple threads with Fork/Join framework. Threads count corresponds to CPU count. (#3)

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html


IndexedAddressFinder

● Stores data in map-based structure. 
● The search process consist of two steps

○ Finding the collection of addresses with appropriate AddressBase (municipality, municipality 
district, street, and district). 

○ Then finding addresses within this collection with appropriate orientation number and/or house 
number.

● The first step is implemented as a map lookup to avoid sequential search.
● Multiple implementations exist for the second step:

○ IndexedAddressGroup – addresses with the same AddressBase are stored in Maps, find 
by number(s) is done as map lookup (#4)

○ SimpleAddressGroup – addresses with the same AddressBase are stored in simple List, 
find by number(s) is done sequentially (#5)



Profiler
● Tools for evaluation of application performance

○ CPU time
○ Memory usage

● Profiler integrated in IntelliJ IDEA does not provide good support for memory 
usage profiling 😕



Instructions (screenshots on next slides)
● Clone the project https://gitlab.fi.muni.cz/pv168/address-database
● Open the project in NetBeans
● Set Java Platform to JDK 11 or newer

○ Right click on project AddressDatabse in left panel and choose Properties
○ Select category Build > Compile and choose Java Platform
○ If you don’t see suitable JDK there, click on Manage Java Platforms… to add JDK

● Open profiler (menu Profile > Profile Project or Ctrl+F2) 
● Configure Sesion by selecting profile Telemetry
● Run the application in profiler
● Choose AddressFinder implementation #1
● Check the results (notice the detail numbers when hovering over the graphs)

https://gitlab.fi.muni.cz/pv168/address-database


How to set JDK in NetBeans



Profiler window



Tips & Tricks: Snapshots
● Methods and Objects profiles allow to take snapshots of the results

○ Useful for later comparison results for different AddressFinder implementations 
○ Unfortunately there is no such option for Telemetry

● Snapshot is taken if you confirm it in dialog when the application finishes
● Snapshots can be saved to disk

○ For long term comparison

● Saved snapshots can be renamed
○ In window Snapshots (menu Window > Profiling > Snapshots)
○ Better identification, e.g. AddressFinder #1



Tips & Tricks: Taking Snapshot



Tips & Tricks: Saving Snapshot



Tips & Tricks: Renaming Saved Snapshot



● Run the application with Telemetry profile
○ Check Memory graph to see used heap size after loading the data.
○ Check the output tab to see average time per single search
○ Write down both numbers

● Run the application with Methods profile
○ Check where the application spent most of the time in main thread

● Run the application with Objects profile
○ Check which object types occupied most of the heap

Seminar Task 1 (AddressFinder #1)



● Run the application with Telemetry profile
○ Check Memory graph to see used heap size after loading the data.
○ Check the output tab to see average time per single search
○ Write down both numbers

● Run the application with Methods profile
○ Check where the application spent most of the time in main thread

● Run the application with Objects profile
○ Check which object types occupied most of the heap

● Discuss and write down answers to these questions:
○ Is there any significant difference in CPU time or memory consumption compared to #1?

Seminar Task 2 (AddressFinder #2)



● Run the application with Telemetry profile
○ Check Memory graph to see used heap size after loading the data.
○ Check the output tab to see average time per single search and CPU count
○ Write down all three numbers

● Run the application with Methods profile
○ Check where the application spent most of the time in main thread
○ Check where the application spent most of the time in ForkJoinPool.* threads

● Run the application with Objects profile
○ Check which object types occupied most of the heap

● Discuss and write down answers to these questions:
○ Is there any significant difference in CPU time or memory consumption compared to #1 or #2?
○ How many ForkJoinPool.* threads were running?

Seminar Task 3 (AddressFinder #3)



● Run the application with Telemetry profile
○ Check Memory graph to see used heap size after loading the data.
○ Check the output tab to see average time per single search
○ Write down both numbers

● Run the application with Methods profile
○ Check where the application spent most of the time in main thread

● Run the application with Objects profile
○ Check which object types occupied most of the heap

● Discuss and write down answers to these questions:
○ Is there any significant difference in CPU time or memory consumption compared to #1 – #3?

Seminar Task 4 (AddressFinder #4)



● Run the application with Telemetry profile
○ Check Memory graph to see used heap size after loading the data.
○ Check the output tab to see average time per single search
○ Write down both numbers

● Run the application with Methods profile
○ Check where the application spent most of the time in main thread

● Run the application with Objects profile
○ Check which object types occupied most of the heap

● Discuss and write down answers to these questions:
○ Is there any significant difference in CPU time or memory consumption compared to #1 – #4?

Seminar Task 5 (AddressFinder #5)



● Which implementation was the least CPU efficient (slowest) one?
● Which implementation was the most CPU efficient (fastest) one?
● How much did parallel processing in #3 help?
● What is the cost of optimization in #4? Is it worth it?
● Which implementation would you recommend to use?

Seminar Task 6 (Evaluation)



Link to slides
https://is.muni.cz/auth/el/fi/podzim2020/PV168/um/seminare/PV168-seminar-13.pdf

https://is.muni.cz/auth/el/fi/podzim2020/PV168/um/seminare/PV168-seminar-13.pdf


Conclusion
Any questions?


