
Crypto libraries
introduction

Milan Brož
xbroz@fi.muni.cz

PV181, FI MUNI, Brno

Open source
cryptographic libraries

 Linux environment – up to you:

 Fedora / VirtualBox VM (see course materials)

 Your own distro – need to install development env.:
● libgcrypt: Fedora: libgcrypt-devel; Debian/Ubuntu: libgcrypt20-dev

● OpenSSL:Fedora: openssl-devel; Debian/Ubuntu: libssl-dev

● libsodium:Fedora: libsodium-devel; Debian/Ubuntu: libsodium-dev

 aisa.fi.muni.cz (OpenSSL only)

 All examples in C language

 Home assignments (10 points each)

 Videocall for discussion (check mail)

Lab environment
VirtualBox image

 Unpack zip archive from IS
 Open VirtualBox (click blue icon – config file)
 Login and password is pv181

(same for sudo and root password)

 Examples on gitlab (and in /home/pv181 in VM)
git clone https://gitlab.fi.muni.cz/xbroz/pv181.git
make clean; make; ./example

Cryptographic libraries
Goals for this lab

 Crypto libraries and API / abstraction
 More practical and implementation view
 Why legacy code, compatibility and standards
 Coding practices
 Defensive approach

It will fail, be prepared for it :-)

Why implementation matters
 It works, but …
 How many possible bugs do you see?
/* Read a key from Linux RNG */
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{
 int fd;
 char key[32];

 fd = open("/dev/random", O_RDONLY);
 read(fd, key, 32);
 close(fd);
 /* Do something with the key[] */
 memset(key, 0, 32);
 return 0;
}

Why implementation matters
 How many possible bugs do you see?

– No check for return code, open(), read()

– Posible reading from invalid fd (no random at all)

– Partial read() is not detected

– Failed read() is not detected
(mandatory access control can block reading)

– Magic numbers (one constant on several places)

– Compiler can optimize memset() out
(secret key remains in memory)

– No error exit code, cannot check for failure

Why implementation matters
 Fixes? Let’s see example 0 in git.

 It is better to use a crypto library.
 Usually, maintainers implement it correctly :-)

https://xkcd.com/221/

Some (not too old) books

More practically oriented books:

 Jean-Phillipe Aumasson
Serious Cryptography:
A Practical Introduction
to Modern Encryption (2017)

 Ferguson, Schneier, Kohno
Cryptography Engineering:
Design Principles and Practical
Applications (2010)

Cryptographic libraries
Introduction

 Open-source / Proprietary
 Static + embedded / dynamically linked
 Low or high level abstractions
 Multiplatform
 Stable API and ABI
 Security or platform specific features

 Safe memory use, side-channel resistance, …
 HW acceleration support, “secure” HW support

Example libs (C and Linux)
abstraction from low to high

 Nettle
 libgcrypt
 OpenSSL

 LibreSSL (clone), BoringSSL (Google)
 NSS

 Network Security Services (Mozilla)
 NaCl ("salt")

 more common as libsodium

Today: examples in libgcrypt, OpenSSL and libsodium

Crypto libraries

 Random Number Generator (RNG) access
 Hash, keyed-hash (HMAC, msg authentication)
 Symmetric ciphers and modes
 Asymmetric ciphers
 Certificate support, ASN.1, ...
 Key exchange, key derivation
 Helpers

 secure memory
 safe comparison
 network / sockets
 ...

