
About The Class Motivation GPU Architecture C for CUDA Sample Code

Introduction, CUDA Basics

Jǐŕı Filipovič

Fall 2020

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Language

COVID version of the class

video presentations

online consultations

I understand that

my English is not perfect

your English may not be perfect

during consultations, feel free to ask me in Czech/Slovak

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

About the class

The class is focused on algorithm design and programming of
general purpose computing applications on many-core vector
processors

We will focus to CUDA GPUs first:

C for CUDA is good for teaching (easy API, a lot of examples
available, mature compilers and tools)

restricted to NVIDIA GPUs and x86 CPUs (with PGI)

After learning CUDA, we focus to OpenCL

programming model very similar to CUDA, easy to learn when
you already know CUDA

can be used with various HW devices

we will focus on code optimizations for x86, Intel MIC (Xeon
Phi) and AMD GPUs

The class is practically oriented – besides efficient parallelization,
we will focus on writing efficient code.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

About the class

The class is focused on algorithm design and programming of
general purpose computing applications on many-core vector
processors
We will focus to CUDA GPUs first:

C for CUDA is good for teaching (easy API, a lot of examples
available, mature compilers and tools)

restricted to NVIDIA GPUs and x86 CPUs (with PGI)

After learning CUDA, we focus to OpenCL

programming model very similar to CUDA, easy to learn when
you already know CUDA

can be used with various HW devices

we will focus on code optimizations for x86, Intel MIC (Xeon
Phi) and AMD GPUs

The class is practically oriented – besides efficient parallelization,
we will focus on writing efficient code.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

About the class

The class is focused on algorithm design and programming of
general purpose computing applications on many-core vector
processors
We will focus to CUDA GPUs first:

C for CUDA is good for teaching (easy API, a lot of examples
available, mature compilers and tools)

restricted to NVIDIA GPUs and x86 CPUs (with PGI)

After learning CUDA, we focus to OpenCL

programming model very similar to CUDA, easy to learn when
you already know CUDA

can be used with various HW devices

we will focus on code optimizations for x86, Intel MIC (Xeon
Phi) and AMD GPUs

The class is practically oriented – besides efficient parallelization,
we will focus on writing efficient code.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

What is offered

You will learn:

architecture of NVIDIA and AMD GPUs, Xeon Phi

architecture-aware design of data-parallel algorithms

programming in C for CUDA and OpenCL

performance tuning and profiling

basic tools and libraries for CUDA GPUs

use cases

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

What is expected from you

During the semester, you will work on a practically oriented project

important part of your total score in the class

the same task for everybody, we will compare speed of your
implementation

50 + 20 points of total score

working code: 25 points
efficient implementation: 25 points
speed of your code relative to your class mates: at most 20
points (only to improve your final grading)

Exam (oral or written, depending on the number of students)

50 points

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Grading

For those finishing by exam:

A: 92–100

B: 86–91

C: 78–85

D: 72–77

E: 66–71

F: 0–65 pts

For those finishing by colloquium:

50 pts

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Materials – CUDA

CUDA documentation (installed as a part of CUDA Toolkit,
downloadable from developer.nvidia.com)

CUDA C Programming Guide (most important properties of
CUDA)

CUDA C Best Practices Guide (more detailed document
focusing on optimizations)

CUDA Reference Manual (complete description of C for
CUDA API)

other useful documents (nvcc guide, PTX language
description, library manuals, . . .)

CUDA article series, Supercomputing for the Masses

http://www.ddj.com/cpp/207200659

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Materials – OpenCL

OpenCL 1.1 Specification

AMD Accelerated Parallel Processing Programming Guide

Intel OpenCL SDK Programming Guide

Writing Optimal OpenCL Code with Intel OpenCL SDK

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Materials – Parallel Programming

Ben-Ari M., Principles of Concurrent and Distributed
Programming, 2nd Ed. Addison-Wesley, 2006

Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill,
Patterns for Parallel Programming, Addison-Wesley, 2004

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Motivation – GPU arithmetic performance

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Motivation – GPU memory bandwidth

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Motivation – programming complexity

OK, GPUs are more powerful, but GPU programming is
substantially more difficult, right?

well, it is more difficult comparing to writing serial C/C++
code...

but can we compare it to serial code?

Moore’s Law

Number of transistors on a single chip doubles every 18 months

Corresponding growth of performance comes from

in the past: frequency increase, instruction parallelism,
out-of-order instruction processing, caches, etc.

today: vector instructions, increase in number of cores

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Motivation – programming complexity

OK, GPUs are more powerful, but GPU programming is
substantially more difficult, right?

well, it is more difficult comparing to writing serial C/C++
code...

but can we compare it to serial code?

Moore’s Law

Number of transistors on a single chip doubles every 18 months

Corresponding growth of performance comes from

in the past: frequency increase, instruction parallelism,
out-of-order instruction processing, caches, etc.

today: vector instructions, increase in number of cores

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Motivation – programming complexity

OK, GPUs are more powerful, but GPU programming is
substantially more difficult, right?

well, it is more difficult comparing to writing serial C/C++
code...

but can we compare it to serial code?

Moore’s Law

Number of transistors on a single chip doubles every 18 months

Corresponding growth of performance comes from

in the past: frequency increase, instruction parallelism,
out-of-order instruction processing, caches, etc.

today: vector instructions, increase in number of cores

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Motivation – paradigm change

Moore’s Law consequences:

in the past:changes were important for compiler developers;
application developers didn’t need to worry

today: in order to utilize state-of-the-art processors, it is
necessary to write parallel and vectorized code

it is necessary to find parallelism in the problem being solved,
which is a task for a programmer, not for a compiler (at least
for now)
writing efficient code for modern CPUs is similarly difficult as
writing for GPUs

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Electrostatic Potential Map

Important problem from computational chemistry

we have a molecule defined by position and charges of its
atoms

the goal is to compute charges at a 3D spatial grid around the
molecule

In a given point of the grid, we have

Vi =
∑
j

wj

4πε0rij

Where wj is charge of the j-th atom, rij is Euclidean distance
between atom j and the grid point i and ε0 is vacuum permittivity.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Electrostatic Potential Map

Initial implementation

suppose we know nothing about HW, just know C++

algorithm needs to process 3D grid such that it sums potential
of all atoms for each grid point

we will iterate over atoms in outer loop, as it allows to
precompute positions of grid points and minimizes number of
accesses into input/output array

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Electrostatic Potential Map

void coulomb (const sAtom∗ atoms , const int nAtoms ,
const float gs , const int gSize , float ∗grid) {

for (int a = 0 ; a < nAtoms ; a++) {
sAtom myAtom = atoms [a] ;
for (int x = 0 ; x < gSize ; x++) {

float dx2 = powf ((float) x ∗ gs − myAtom . x , 2 . 0 f) ;
for (int y = 0 ; y < gSize ; y++) {

float dy2 = powf ((float) y ∗ gs − myAtom . y) ;
for (int z = 0 ; z < gSize ; z++) {

float dz = (float) z ∗ gs − myAtom . z ;
float e = myAtom . w / sqrtf (dx2 + dy2 + dz∗dz) ;
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}
}

}
}

}

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Electrostatic Potential Map

Execution on 4-core CPU at 3.6GHz (Sandy Bridge) + GeForce
GTX 1070 (Pascal)

naive implementation 164.7 millions of atoms evaluated per
second (MEvals/s)

476.9 Mevals/s when optimized cache: 2.9× speedup

2,577 Mevals/s when vectorized: 15.6× speedup

9,914 Mevals/s when parallelized: 60.2× speedup

537,900 Mevals/s GPU version: 3266× speedup

GPU speedup over already tuned CPU code is 54×, but the
optimization effort is similar for CPU and GPU. In this class, you
will learn how to optimize the code.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Electrostatic Potential Map

Execution on 4-core CPU at 3.6GHz (Sandy Bridge) + GeForce
GTX 1070 (Pascal)

naive implementation 164.7 millions of atoms evaluated per
second (MEvals/s)

476.9 Mevals/s when optimized cache: 2.9× speedup

2,577 Mevals/s when vectorized: 15.6× speedup

9,914 Mevals/s when parallelized: 60.2× speedup

537,900 Mevals/s GPU version: 3266× speedup

GPU speedup over already tuned CPU code is 54×, but the
optimization effort is similar for CPU and GPU. In this class, you
will learn how to optimize the code.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Electrostatic Potential Map

Execution on 4-core CPU at 3.6GHz (Sandy Bridge) + GeForce
GTX 1070 (Pascal)

naive implementation 164.7 millions of atoms evaluated per
second (MEvals/s)

476.9 Mevals/s when optimized cache: 2.9× speedup

2,577 Mevals/s when vectorized: 15.6× speedup

9,914 Mevals/s when parallelized: 60.2× speedup

537,900 Mevals/s GPU version: 3266× speedup

GPU speedup over already tuned CPU code is 54×, but the
optimization effort is similar for CPU and GPU. In this class, you
will learn how to optimize the code.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Electrostatic Potential Map

Execution on 4-core CPU at 3.6GHz (Sandy Bridge) + GeForce
GTX 1070 (Pascal)

naive implementation 164.7 millions of atoms evaluated per
second (MEvals/s)

476.9 Mevals/s when optimized cache: 2.9× speedup

2,577 Mevals/s when vectorized: 15.6× speedup

9,914 Mevals/s when parallelized: 60.2× speedup

537,900 Mevals/s GPU version: 3266× speedup

GPU speedup over already tuned CPU code is 54×, but the
optimization effort is similar for CPU and GPU. In this class, you
will learn how to optimize the code.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Electrostatic Potential Map

Execution on 4-core CPU at 3.6GHz (Sandy Bridge) + GeForce
GTX 1070 (Pascal)

naive implementation 164.7 millions of atoms evaluated per
second (MEvals/s)

476.9 Mevals/s when optimized cache: 2.9× speedup

2,577 Mevals/s when vectorized: 15.6× speedup

9,914 Mevals/s when parallelized: 60.2× speedup

537,900 Mevals/s GPU version: 3266× speedup

GPU speedup over already tuned CPU code is 54×, but the
optimization effort is similar for CPU and GPU. In this class, you
will learn how to optimize the code.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Why are GPUs so powerful?

Types of Parallelism

Task parallelism

decomposition of a task into the problems that may be
processed in parallel
usually more complex tasks performing different actions
usually more frequent (and complex) synchronization
ideal for small number of high-performance processors

Data parallelism

parallelism on the level of data structures
usually the same operations on many items of a data structure
finer-grained parallelism allows for simple construction of
individual processors

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Why are GPUs so powerful?

From programmer’s perspective

some problems are rather data-parallel, some task-parallel
(graph traversal vs. matrix multiplication)

From hardware perspective

processors for data-parallel tasks may be simpler

it is possible to achieve higher arithmetic performance with
the same size of a processor

simpler memory access patterns allow for high-throughput
memory designs

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

GPU Architecture

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

GPU Architecture

Main differences compared to CPU

high parallelism: hundreds thousands threads needed to utilize
high-end GPUs

SIMT model: subsets of threads runs in lock-step mode

distributed on-chip memory: subsets of threads shares their
private memory

restricted caching capabilities: small cache, often read-only

Algorithms usually need to be redesigned to be efficient on GPU.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

GPU Architecture

Within the system:

co-processor with dedicated memory (discrete GPU)

asynchronous processing of instructions

attached using PCI-E to the rest of the system (discrete GPU)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

CUDA

CUDA (Compute Unified Device Architecture)

architecture for parallel computations developed by NVIDIA

provides a new programming model, allows efficient
implementation of general GPU computations

may be used in multiple programming languages

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

G80 Processor

G80

the first CUDA processor

16 multiprocessors

each multiprocessor

8 scalar processors
2 units for special functions
up to 768 threads

HW for thread switching and scheduling

threads are grouped into warps by 32

SIMT

native synchronization within the multiprocessor

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

G80 Memory Model

Memory model

8192 registers shared among all threads of a multiprocessor

16 kB of shared memory

local within the multiprocessor
as fast as registry (under certain constraints)

constant memory

cached, read-only

texture memory

cached with 2D locality, read-only

global memory

non cached, read-write

data transfers between global memory and system memory
through PCI-E

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

G80 Processor

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

C for CUDA

C for CUDA is an extension of C for parallel computations

explicit separation of host (CPU) and device (GPU) code

thread hierarchy

memory hierarchy

synchronization mechanisms

API

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Thread Hierarchy

Thread hierarchy

threads are organized into blocks

blocks form a grid

problem is decomposed into sub-problems that can be run
independently in parallel (blocks)

individual sub-problems are divided into small pieces that can
be run cooperatively in parallel (threads)

all threads from a block run on the same multiprocessor

scales well

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Thread Hierarchy

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Memory Hierarchy

More memory types:

different visibility

different lifetime

different speed and behavior

brings good scalability

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Memory Hierarchy

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

We want to sum vectors a and b and store the result in vector c

We need to find parallelism in the problem.
Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.
i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find id of the thread?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

We want to sum vectors a and b and store the result in vector c
We need to find parallelism in the problem.

Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.
i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find id of the thread?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

We want to sum vectors a and b and store the result in vector c
We need to find parallelism in the problem.
Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.
i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find id of the thread?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

We want to sum vectors a and b and store the result in vector c
We need to find parallelism in the problem.
Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.

i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find id of the thread?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

We want to sum vectors a and b and store the result in vector c
We need to find parallelism in the problem.
Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.
i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find id of the thread?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Thread Hierarchy

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Thread and Block Identification

C for CUDA has built-in variables:

threadIdx.{x, y, z} tells position of a thread in a block

blockDim.{x, y, z} tells size of the block

blockIdx.{x, y, z} tells position of the block in grid (z always
equals 1)

gridDim.{x, y, z} tells grid size (z always equals 1)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

Thus we calculate the position of the thread (grid and block are
one-dimensional):

int i = blockIdx . x∗blockDim . x + threadIdx . x ;

Whole function for parallel summation of vectors:

__global__ void addvec (float ∗a , float ∗b , float ∗c){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
c [i] = a [i] + b [i] ;

}

The function defines so called kernel; we specify how meny threads
and what structure will be run when calling.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

Thus we calculate the position of the thread (grid and block are
one-dimensional):

int i = blockIdx . x∗blockDim . x + threadIdx . x ;

Whole function for parallel summation of vectors:

__global__ void addvec (float ∗a , float ∗b , float ∗c){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
c [i] = a [i] + b [i] ;

}

The function defines so called kernel; we specify how meny threads
and what structure will be run when calling.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

Thus we calculate the position of the thread (grid and block are
one-dimensional):

int i = blockIdx . x∗blockDim . x + threadIdx . x ;

Whole function for parallel summation of vectors:

__global__ void addvec (float ∗a , float ∗b , float ∗c){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
c [i] = a [i] + b [i] ;

}

The function defines so called kernel; we specify how meny threads
and what structure will be run when calling.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

Thus we calculate the position of the thread (grid and block are
one-dimensional):

int i = blockIdx . x∗blockDim . x + threadIdx . x ;

Whole function for parallel summation of vectors:

__global__ void addvec (float ∗a , float ∗b , float ∗c){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
c [i] = a [i] + b [i] ;

}

The function defines so called kernel; we specify how meny threads
and what structure will be run when calling.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

Function Type Quantifiers

C syntax enhanced by quantifiers defining where the code is
executed and from where it can be called:

device function is run on device (GPU) only and can be
called from the device code only

global function is run on device (GPU) only and can be
called from the host (CPU) code only

host function is run on host only and can be called from
the host only

host and device may be combined – function is
compiled for both then

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into c

use the result in c :-)

When managed memory is used (requires GPU with computing
capability 3.0 and CUDA 6.0 or better), steps written in italics are
not required.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into c

use the result in c :-)

When managed memory is used (requires GPU with computing
capability 3.0 and CUDA 6.0 or better), steps written in italics are
not required.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into c

use the result in c :-)

When managed memory is used (requires GPU with computing
capability 3.0 and CUDA 6.0 or better), steps written in italics are
not required.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into c

use the result in c :-)

When managed memory is used (requires GPU with computing
capability 3.0 and CUDA 6.0 or better), steps written in italics are
not required.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into c

use the result in c :-)

When managed memory is used (requires GPU with computing
capability 3.0 and CUDA 6.0 or better), steps written in italics are
not required.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into c

use the result in c :-)

When managed memory is used (requires GPU with computing
capability 3.0 and CUDA 6.0 or better), steps written in italics are
not required.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into c

use the result in c :-)

When managed memory is used (requires GPU with computing
capability 3.0 and CUDA 6.0 or better), steps written in italics are
not required.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

CPU code that fills a and b and computes c
#include <s t d i o . h>
#define N 64
int main (){

float ∗a , ∗b , ∗c ;
cudaMallocManaged(&a , N∗sizeof (∗ a)) ;
cudaMallocManaged(&b , N∗sizeof (∗ b)) ;
cudaMallocManaged(&c , N∗sizeof (∗ c)) ;
for (int i = 0 ; i < N ; i++) {

a [i] = i ;
b [i] = i ∗3 ;

}

// GPU code w i l l be he r e

for (int i = 0 ; i < N ; i++)
printf (”%f , ” , c [i]) ;

cudaFree (a) ; cudaFree (b) ; cudaFree (c) ;

return 0 ;
}

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

GPU Memory Management

Using managed memory, CUDA maintains memory transfers
between CPU and GPU automatically.

memory coherency is guaranteed

GPU memory cannot be used when any GPU kernel is running
Memory operations can be programmed explicitly

cudaMalloc (void∗∗ devPtr , size_t count) ;
cudaFree (void∗ devPtr) ;
cudaMemcpy (void∗ dst , const void∗ src , size_t count ,

enum cudaMemcpyKind kind) ;

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

Running the kernel:

kernel is called as a function; between the name and the
arguments, there are triple angle brackets with specification of
grid and block size

we need to know block size and their count

we will use 1D block and grid with fixed block size

the size of the grid is determined in a way to compute the
whole problem of vector sum

For vector size divisible by 32:

#define BLOCK 32
addvec<<<N/BLOCK , BLOCK>>>(a , b , c) ;

How to solve a general vector size?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Sum of Vectors

We will modify the kernel source:

__global__ void addvec (float ∗a , float ∗b , float ∗c , int n){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
if (i < n) c [i] = a [i] + b [i] ;

}

And call the kernel with sufficient number of threads:

addvec<<<N/BLOCK + 1 , BLOCK>>>(a , b , c , N) ;

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture C for CUDA Sample Code

An Example – Running It

Now we just need to compile it :-)

nvcc -o vecadd vecadd.cu

Where to work with CUDA?

on a remote computer: airacuda.fi.muni.cz (more machines
will appear), accounts will be made

your own machine: download and install CUDA toolkit and
SDK from developer.nvidia.com

Jǐŕı Filipovič Introduction, CUDA Basics

	About The Class
	What is offered
	What is expected from you

	Motivation
	Performance
	Motivation – how much speedup can we get?

	GPU Architecture
	Performance
	CUDA GPU
	G80

	C for CUDA
	Architecture

	Sample Code
	Code
	Running It

