

Module 11: Switch Security Configuration

Switching, Routing and Wireless Essentials v7.0 (SRWE)

Module Objectives

Module Title: Switch Security Configuration

Module Objective: Configure switch security to mitigate LAN attacks

Topic Title	Topic Objective
Implement Port Security	Implement port security to mitigate MAC address table attacks.
Mitigate VLAN Attacks	Explain how to configure DTP and native VLAN to mitigate VLAN attacks.
Mitigate DHCP Attacks	Explain how to configure DHCP snooping to mitigate DHCP attacks.
Mitigate ARP Attacks	Explain how to configure ARP inspection to mitigate ARP attacks.
Mitigate STP Attacks	Explain how to configure PortFast and BPDU Guard to mitigate STP Attacks.

11.1 Implement Port Security

Secure Unused Ports

Layer 2 attacks are some of the easiest for hackers to deploy but these threats can also be mitigated with some common Layer 2 solutions.

- All switch ports (interfaces) should be secured before the switch is deployed for production use. How a port is secured depends on its function.
- A simple method that many administrators use to help secure the network from unauthorized access is to disable all unused ports on a switch. Navigate to each unused port and issue the Cisco IOS **shutdown** command. If a port must be reactivated at a later time, it can be enabled with the **no shutdown** command.
- To configure a range of ports, use the **interface range** command.

Switch(config) # interface range type module/first-number - last-number

Mitigate MAC Address Table Attacks

The simplest and most effective method to prevent MAC address table overflow attacks is to enable port security.

- Port security limits the number of valid MAC addresses allowed on a port. It allows an administrator to manually configure MAC addresses for a port or to permit the switch to dynamically learn a limited number of MAC addresses. When a port configured with port security receives a frame, the source MAC address of the frame is compared to the list of secure source MAC addresses that were manually configured or dynamically learned on the port.
- By limiting the number of permitted MAC addresses on a port to one, port security can be used to control unauthorized access to the network.

Enable Port Security

Port security is enabled with the **switchport port-security** interface configuration command.

Notice in the example, the **switchport port-security** command was rejected. This is because port security can only be configured on manually configured access ports or manually configured trunk ports. By default, Layer 2 switch ports are set to dynamic auto (trunking on). Therefore, in the example, the port is configured with the **switchport mode access** interface configuration command.

Note: Trunk port security is beyond the scope of this course.

S1(config)# interface f0/1
S1(config-if)# switchport port-security
Command rejected: FastEthernet0/1 is a dynamic port.
S1(config-if)# switchport mode access
S1(config-if)# switchport port-security
S1(config-if)# end
S1#

Enable Port Security (Cont.)

Use the **show port-security interface** command to display the current port security settings for FastEthernet 0/1.

- Notice how port security is enabled, the violation (co dělat v případě porušení) mode is shutdown, and how the maximum number of MAC addresses is 1.
- If a device is connected to the port, the switch will automatically add the device's MAC address as a secure MAC. In this example, no device is connected to the port.

Note: If an active port is configured with the **switchport port-security** command and more than one device is connected to that port, the port will transition to the error-disabled state.

S1# show port-security int	er	face f0/1
Port Security		Enabled
Port Status		Secure-shutdown
Violation Mode		Shutdown
Aging Time		0 mins
Aging Type		Absolute
SecureStatic Address Aging		Disabled
Maximum MAC Addresses		1
Total MAC Addresses		0
Configured MAC Addresses		0
Sticky MAC Addresses		0
Last Source Address:Vlan		0000.0000.0000:0
Security Violation Count		0
S1#		

Enable Port Security (Cont.)

After port security is enabled, other port security specifics can be configured, as shown in the example.

S1(config-if)# switchport port-security ?
 aging Port-security aging commands
 mac-address Secure mac address
 maximum Max secure addresses
 violation Security violation mode
 <cr>
S1(config-if)# switchport port-security

Limit and Learn MAC Addresses

To set the maximum number of MAC addresses allowed on a port, use the following command:

Switch(config-if)# switchport port-security maximum value

- The default port security value is 1.
- The maximum number of secure MAC addresses that can be configured depends the switch and the IOS.
- In this example, the maximum is 8192.

S1(config)# interface f0/1
S1(config-if)# switchport port-security maximum ?
 <1-8192> Maximum addresses
S1(config-if)# switchport port-security maximum

Limit and Learn MAC Addresses (Cont.)

The switch can be configured to learn about MAC addresses on a secure port in one of three ways:

1. Manually Configured: The administrator manually configures a static MAC address(es) by using the following command for each secure MAC address on the port:

Switch(config-if) # switchport port-security mac-address mac-address

2. Dynamically Learned: When the **switchport port-security** command is entered, the current source MAC for the device connected to the port is automatically secured but is not added to the running configuration. If the switch is rebooted, the port will have to re-learn the device's MAC address.

3. Dynamically Learned – Sticky: The administrator can enable the switch to dynamically learn the MAC address and "stick" them to the running configuration by using the following command:

Switch(config-if) # switchport port-security mac-address sticky Saving the running configuration will commit the dynamically learned MAC address to NVRAM.

Limit and Learn MAC Addresses (Cont.)

The example demonstrates a complete port security configuration for FastEthernet 0/1.

- The administrator specifies a maximum of 4 MAC addresses, manually configures one secure MAC address, and then configures the port to dynamically learn additional secure MAC addresses up to the 4 secure MAC address maximum.
- Use the show port-security interface and the show port-security address command to verify the configuration.

S1(config)# interface fa0/1	1		
S1(config-if)# switchport m	mode access		
<pre>S1(config-if)# switchport p</pre>	port-security		
<pre>S1(config-if)# switchport p</pre>	port-security maximum 4		
S1(config-if)# switchport	port-security mac-address aaaa	.bbbb.12	234
S1(config-if)# switchport	port-security mac-address stic	ky	
S1(config-if)# end			
S1# show port-security inte	erface fa0/1		
Port Security	: Enabled		
	: Secure-up		
Violation Mode	: Shutdown		
Aging Time	: 0 mins		
Aging Type	: Absolute		
SecureStatic Address Aging	: Disabled		
Maximum MAC Addresses	: 4		
Total MAC Addresses	: 1		
Configured MAC Addresses	: 1		
Sticky MAC Addresses	: 0		
Last Source Address:Vlan			
Security Violation Count	: 0		
S1# show port-security add	ress		
	Address Table		
Vlan Mac Address 1		Ports	Remaining Age (mins)
1 appa bbbb 1024 (E-0/1	
1 aaaa.0000.1234	SecureConfigured	Fa0/1	
	(excluding one mac per port) tem (excluding one mac per por		92

Port Security Aging

Port security aging can be used to set the aging time for static and dynamic secure addresses on a port and two types of aging are supported per port:

- **Absolute** The secure addresses on the port are deleted after the specified aging time.
- **Inactivity** The secure addresses on the port are deleted if they are inactive for a specified time.

Use aging to remove secure MAC addresses on a secure port without manually deleting the existing secure MAC addresses.

• Aging of statically configured secure addresses can be enabled or disabled on a per-port basis.

Use the **switchport port-security aging** command to enable or disable static aging for the secure port, or to set the aging time or type.

Switch(config-if) # switchport port-security aging {static | time time | type {absolute | inactivity}}

Port Security Aging (Cont.)

The example shows an administrator configuring the aging type to 10 minutes of inactivity.

The **show port-security** command confirms the changes.

S1(config)# interface fa0/1 S1(config-if)# switchport port-security aging time 10 S1(config-if)# switchport port-security aging type inactivity S1(config-if)# end S1# show port-security interface fa0/1 Port Security : Enabled Port Status : Secure-shutdown Violation Mode : Restrict Aging Time : 10 mins Aging Type : Inactivity SecureStatic Address Aging : Disabled Maximum MAC Addresses : 4 Total MAC Addresses : 1 Configured MAC Addresses : 1 Sticky MAC Addresses : 0 Last Source Address:Vlan : 0050.56be.e4dd:1 Security Violation Count : 1

Port Security Violation Modes

If the MAC address of a device attached to a port differs from the list of secure addresses, then a port violation occurs and the port enters the error-disabled state.

• To set the port security violation mode, use the following command:

Switch(config-if) # switchport port-security violation {shutdown | restrict | protect}

The following table shows how a switch reacts based on the configured violation mode.

Mode	Description
shutdown (default)	The port transitions to the error-disabled state immediately, turns off the port LED, and sends a syslog message. It increments the violation counter. When a secure port is in the error-disabled state, an administrator must re-enable it by entering the shutdown and no shutdown commands.
restrict	The port drops packets with unknown source addresses until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the maximum value. This mode causes the Security Violation counter to increment and generates a syslog message.
protect	This is the least secure of the security violation modes. The port drops packets with unknown MAC source addresses until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the maximum value. No syslog message is sent.

Port Security Violation Modes (Cont.)

The example shows an administrator changing the security violation to "Restrict".

The output of the **show port-security interface** command confirms that the change has been made.

S1(config)# interface f0/1 S1(config-if)# switchport port-security violation restrict S1(config-if)# end S1# S1# show port-security interface f0/1 Port Security : Enabled Port Status : Secure-shutdown Violation Mode : Restrict Aging Time _____ : 0 mins Aging Type : Absolute SecureStatic Address Aging : Disabled Maximum MAC Addresses : 4 Total MAC Addresses : 1 Configured MAC Addresses : 1

Sticky MAC Addresses : 0

Security Violation Count : 1

S1#

Last Source Address:Vlan : 0050.56be.e4dd:1

Ports in error-disabled State

When a port is shutdown and placed in the error-disabled state, no traffic is sent or received on that port.

A series of port security related messages display on the console, as shown in the following example.

Note: The port protocol and link status are changed to down and the port LED is turned off.

*Sep 20 06:44:54.966: %PM-4-ERR_DISABLE: psecure-violation error detected on Fa0/18, putting Fa0/18 in err-disable state *Sep 20 06:44:54.966: %PORT_SECURITY-2-PSECURE_VIOLATION: Security violation occurred, caused by MAC address 000c.292b.4c75 on port FastEthernet0/18. *Sep 20 06:44:55.973: %LINEPROTO-5-PPDOWN: Line protocol on Interface FastEthernet0/18, changed state

to down

*Sep 20 06:44:56.971: %LINK-3-UPDOWN: Interface FastEthernet0/18, changed state to down

Ports in error-disabled State (Cont.)

- In the example, the show interface command identifies the port status as err-disabled. The output of the show port-security interface command now shows the port status as secure-shutdown. The Security Violation counter increments by 1.
- The administrator should determine what caused the security violation If an unauthorized device is connected to a secure port, the security threat is eliminated before re-enabling the port.
- To re-enable the port, first use the shutdown command, then, use the no shutdown command.

S1# show interface fa0/18		
FastEthernet0/18 is down,]	li	ne protocol is down (err-disabled)
(output omitted)		
S1# show port-security inte	er	face fa0/18
Port Security		Enabled
Port Status		Secure-shutdown
Violation Mode		Shutdown
Aging Time		0 mins
Aging Type		Absolute
SecureStatic Address Aging		Disabled
Maximum MAC Addresses		1
Total MAC Addresses		1
Configured MAC Addresses		1
Sticky MAC Addresses		0
Last Source Address:Vlan		c025.5cd7.ef01:1
Security Violation Count		1
S1#		

Verify Port Security

After configuring port security on a switch, check each interface to verify that the port security is set correctly, and check to ensure that the static MAC addresses have been configured correctly.

To display port security settings for the switch, use the **show port-security** command.

- The example indicates that all 24 interfaces are configured with the **switchport port-security** command because the maximum allowed is 1 and the violation mode is shutdown.
- No devices are connected, therefore, the CurrentAddr (Count) is 0 for each interface.

(Count)	(Count)	(Count)	
1	 0		Shutdown
1	0	0	Shutdown
1	0	0	Shutdown
)			
1	0	0	Shutdown
	1 1) 1	1 0 1 0) 1 0	1 0 0 1 0 0

Verify Port Security (Cont.)

Use the **show port-security interface** command to view details for a specific interface, as shown previously and in this example.

S1# show port-security inte	rface fastethernet 0/18
Port Security	: Enabled
Port Status	: Secure-up
Violation Mode	: Shutdown
Aging Time	: 0 mins
Aging Type	: Absolute
SecureStatic Address Aging	: Disabled
Maximum MAC Addresses	: 1
Total MAC Addresses	: 1
Configured MAC Addresses	: 0
Sticky MAC Addresses	: 0
Last Source Address:Vlan	: 0025.83e6.4b01:1
Security Violation Count	: 0
S1#	

Verify Port Security (Cont.)

To verify that MAC addresses are "sticking" to the configuration, use the **show run** command as shown in the example for FastEthernet 0/19.

S1# show run | begin interface FastEthernet0/19
interface FastEthernet0/19
switchport mode access
switchport port-security maximum 10
switchport port-security
switchport port-security mac-address sticky
switchport port-security mac-address sticky 0025.83e6.4b02
(output omitted)
S1#

Verify Port Security (Cont.)

To display all secure MAC addresses that are manually configured or dynamically learned on all switch interfaces, use the **show port-security address** command as shown in the example.

Secure	e Mac Address Tabi	1e 		
Vlan	Mac Address	Туре	Ports	Remaining Age (mins)
1	0025.83e6.4b01	SecureDynamic	Fa0/18	
1	0025.83e6.4b02	SecureSticky	Fa0/19	

Total Addresses in System (excluding one mac per port) : 0 Max Addresses limit in System (excluding one mac per port) : 8192 S1#

Hrátky s časem

Parameter	Description
static	Enable aging for statically configured secure addresses on this port.
time time	Specify the aging time for this port. The range is 0 to 1440 minutes. If the time is 0, aging is disabled for this port.
type absolute	Set absolute aging type. All the secure addresses on this port age out exactly after the time (minutes) specified and are removed from the secure address list.
type inactivity	Set the inactivity aging type. The secure addresses on this port age out only if there is no data traffic from the secure source address for the specified time period.

Typická konfigurace

Switch(config-if)#

```
switchport mode access
switchport port-security
switchport port-security maximum 2
switchport port-security violation shutdown
switchport port-security mac-address sticky
switchport port-security aging time 120
```

Jiný typický příklad

Switch(config)#hostname S2 S2(config)#interface fastEthernet 0/1 S2(config-if)#switchport mode access S2(config-if)#switchport port-security S2(config-if)#switchport port-security maximum 1 S2(config-if)#switchport port-security mac-address sticky S2(config-if)#switchport port-security violation shutdown S2(config-if)#exit S2(config)#

Packet Tracer – Implement Port Security

In this Packet Tracer, you will complete the following objectives:

- Part 1: Configure Port Security
- Part 2: Verify Port Security

11.2 Mitigate VLAN Attacks

VLAN Attacks Review

A VLAN hopping attack can be launched in one of three ways:

- Spoofing DTP messages from the attacking host to cause the switch to enter trunking mode. From here, the attacker can send traffic tagged with the target VLAN, and the switch then delivers the packets to the destination.
- Introducing a rogue switch and enabling trunking. The attacker can then access all the VLANs on the victim switch from the rogue switch.
- Another type of VLAN hopping attack is a double-tagging (or double-encapsulated) attack. This attack takes advantage of the way hardware on most switches operate.

Steps to Mitigate VLAN Hopping Attacks

Use the following steps to mitigate VLAN hopping attacks:

Step 1: Disable DTP (auto trunking) negotiations on nontrunking ports by using the **switchport mode access** interface configuration command.

Step 2: Disable unused ports and put them in an unused VLAN.

Step 3: Manually enable the trunk link on a trunking port by using the **switchport mode trunk** command.

Step 4: Disable DTP (auto trunking) negotiations on trunking ports by using the **switchport nonegotiate** command.

Step 5: Set the native VLAN to a VLAN other than VLAN 1 by using the **switchport trunk native vlan** *vlan_number* command.

S1(config)# interface range fa0/1 - 16 S1(config-if-range)# switchport mode access S1(config-if-range)# exit S1(config)# S1(config)# interface range fa0/17 - 20 S1(config-if-range)# switchport mode access S1(config-if-range)# switchport access vlan 1000 S1(config-if-range)# exit S1(config)# S1(config)# interface range fa0/21 - 24 S1(config)# interface range fa0/21 - 24 S1(config-if-range)# switchport mode trunk S1(config-if-range)# switchport nonegotiate S1(config-if-range)# switchport trunk native vlan 999 S1(config-if-range)# end S1#

11.3 Mitigate DHCP Attacks

DHCP Attack Review

The goal of a DHCP starvation attack is to an attack tool such as Gobbler to create a Denial of Service (DoS) for connecting clients.

Recall that DHCP starvation attacks can be effectively mitigated by using port security because Gobbler uses a unique source MAC address for each DHCP request sent. However, mitigating DHCP spoofing attacks requires more protection.

Gobbler could be configured to use the actual interface MAC address as the source Ethernet address, but specify a different Ethernet address in the DHCP payload. This would render port security ineffective because the source MAC address would be legitimate.

DHCP spoofing attacks can be mitigated by using DHCP snooping on trusted ports.

Gobbler se specializuje pouze na útoky DHCP

- Nástroj určený k auditu různých aspektů sítí DHCP, od detekce, zda je DHCP spuštěn v síti, až po provedení útoku odmítnutí služby. Gobbler také využívá DHCP a Ethernet, aby umožnil distribuované skenování falešných portů s přidaným bonusem schopnosti čichat odpověď od falešného hostitele. Tento nástroj je založen na důkazu koncepčního kódu "DHCP Gobbler", který je k dispozici na adrese networkpenetration.com.
- Gobbler jde dokonce o krok dále než Yersinia. Některé servery DHCP pravidelně odesílají požadavky ARP (Address Resolution Protocol) nebo echo pakety Internet Control Message Protocol (ICMP), aby zkoumaly adresy IP, které mohl server znovu získat. Servery neprovádějí tuto kontrolu z bezpečnostních důvodů; místo toho to dělají proto, že klienti někdy nevypnou při přidělení své IP adresy.
- Autoři Gobbleru pozorovali toto chování serveru DHCP a vybavili Gobblera schopností působit proti reakci na ARP požadavky!

DHCP Snooping

DHCP snooping filters DHCP messages and rate-limits DHCP traffic on untrusted ports.

- Devices under administrative control (e.g., switches, routers, and servers) are trusted sources.
- Trusted interfaces (e.g., trunk links, server ports) must be explicitly configured as trusted.
- Devices outside the network and all access ports are generally treated as untrusted sources.

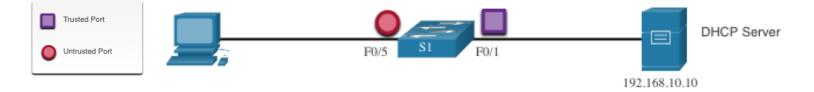
A DHCP table is built that includes the source MAC address of a device on an untrusted port and the IP address assigned by the DHCP server to that device.

- The MAC address and IP address are bound together.
- Therefore, this table is called the DHCP snooping binding table.

Steps to Implement DHCP Snooping

Use the following steps to enable DHCP snooping:

Step 1. Enable DHCP snooping by using the **ip dhcp snooping** global configuration command.


Step 2. On trusted ports, use the **ip dhcp snooping trust** interface configuration command.

Step 3: On untrusted interfaces, limit the number of DHCP discovery messages that can be received using the **ip dhcp snooping limit rate** *packets-per-second* interface configuration command.

Step 4. Enable DHCP snooping by VLAN, or by a range of VLANs, by using the **ip dhcp snooping** *vlan* global configuration command.

DHCP Snooping Configuration Example

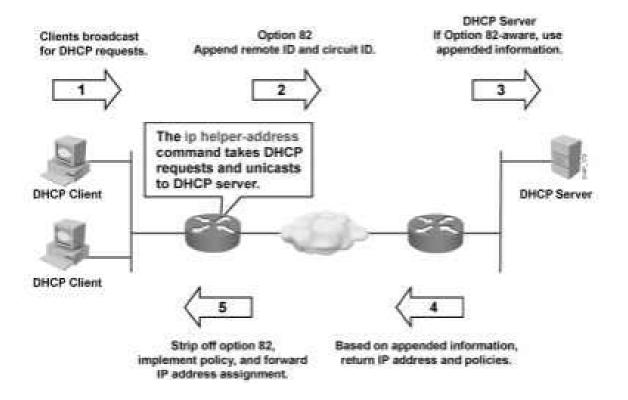
Refer to the DHCP snooping sample topology with trusted and untrusted ports.

- DHCP snooping is first enabled on S1.
- The upstream interface to the DHCP server is explicitly trusted.
- F0/5 to F0/24 are untrusted and are, therefore, rate limited to six packets per second.
- Finally, DHCP snooping is enabled on VLANS 5, 10, 50, 51, and 52.

```
Sl(config)# ip dhcp snooping
Sl(config)# interface f0/1
Sl(config-if)# ip dhcp snooping trust
Sl(config-if)# exit
Sl(config)# interface range f0/5 - 24
Sl(config-if-range)# ip dhcp snooping limit rate 6
Sl(config-if)# exit
Sl(config)# ip dhcp snooping vlan 5,10,50-52
Sl(config)# end
Sl#
```

DHCP Snooping Configuration Example (Cont.)

Use the **show ip dhcp snooping** privileged EXEC command to verify DHCP snooping settings.


Use the **show ip dhcp snooping binding** command to view the clients that have received DHCP information.

Note: DHCP snooping is also required by Dynamic ARP Inspection (DAI).

Sl# show ip dhcp snooping Switch DHCP snooping					
DHCP snooping is co 5,10,50-52	onfigured on fol	lowing VLAN	s:		
DHCP snooping is op none	perational on fo	llowing VLA	Ns:		
DHCP snooping is c		following	L3 Interfaces:		
Insertion of option					
remote-id: 0cd9	alt format: vlan				
Option 82 on untrus					
Verification of hwa	addr field is en	abled			
Verification of gia					
DHCP snooping trus					
Interface	Trusted	Allow o	ntion Rate		
FastEthernet0/1 Custom circuit-id	yes				(pps)
FastEthernet0/1	yes ds: no	yes	 unlim		
FastEthernet0/1 Custom circuit-id FastEthernet0/5 Custom circuit-id FastEthernet0/6	yes is: no is: no	yes no	 unlim		
FastEthernet0/1 Custom circuit-id FastEthernet0/5 Custom circuit-id FastEthernet0/6 Custom circuit-id	yes is: no is: no is:	yes no	 unlim 6		
FastEthernet0/1 Custom circuit-ic FastEthernet0/5 Custom circuit-ic FastEthernet0/6 Custom circuit-ic S1# show ip dhcp so	yes is: no is: no is: nooping binding	yes no no	 unlim 6	ited	
FastEthernet0/1 Custom circuit-id FastEthernet0/5 Custom circuit-id FastEthernet0/6 Custom circuit-id Sl# show ip dhcp sa MacAddress	yes is: no is: no is: nooping binding IpAddress	yes no no Lease(sec)	unlim 6 6 Type	ited VLAN	

Relay Agent Option Support

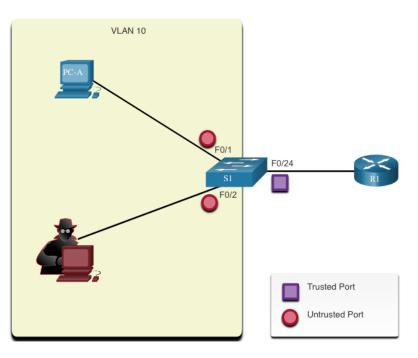
Last Updated on Mon, 26 Aug 2019 | Cisco Internetworks

11.4 Mitigate ARP Attacks

Mitigate ARP Attacks Dynamic ARP Inspection

In a typical ARP attack, a threat actor can send unsolicited ARP replies to other hosts on the subnet with the MAC Address of the threat actor and the IP address of the default gateway. To prevent ARP spoofing and the resulting ARP poisoning, a switch must ensure that only valid ARP Requests and Replies are relayed.

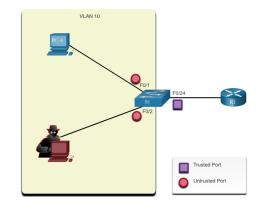
Dynamic ARP inspection (DAI) requires DHCP snooping and helps prevent ARP attacks by:


- Not relaying invalid or gratuitous ARP Replies out to other ports in the same VLAN.
- Intercepting (odchyt) all ARP Requests and Replies on untrusted ports.
- Verifying each intercepted packet for a valid IP-to-MAC binding.
- Dropping and logging ARP Replies coming from invalid to prevent ARP poisoning.
- Error-disabling the interface if the configured DAI number of ARP packets is exceeded.

DAI Implementation Guidelines

To mitigate the chances of ARP spoofing and ARP poisoning, follow these DAI implementation guidelines:

- Enable DHCP snooping globally.
- Enable DHCP snooping on selected VLANs.
- Enable DAI on selected VLANs.
- Configure trusted interfaces for DHCP snooping and ARP inspection.


It is generally advisable to configure all access switch ports as untrusted and to configure all uplink ports that are connected to other switches as trusted.

DAI Configuration Example

In the previous topology, S1 is connecting two users on VLAN 10.

- DAI will be configured to mitigate against ARP spoofing and ARP poisoning attacks.
- DHCP snooping is enabled because DAI requires the DHCP snooping binding table to operate.
- Next, DHCP snooping and ARP inspection are enabled for the PCs on VLAN10.
- The uplink port to the router is trusted, and therefore, is configured as trusted for DHCP snooping and ARP inspection.

Sl(config)#	ip	dhcp snooping
Sl(config)#	ip	dhcp snooping vlan 10
Sl(config)#	ip	arp inspection vlan 10
Sl(config)#	int	terface fa0/24
Sl(config-if)#	ip dhcp snooping trust
Sl(config-if)#	ip arp inspection trust

DAI Configuration Example (Cont.)

DAI can also be configured to check for both destination or source MAC and IP addresses:

- **Destination MAC** Checks the destination MAC address in the Ethernet header against the target MAC address in ARP body.
- **Source MAC** Checks the source MAC address in the Ethernet header against the sender MAC address in the ARP body.
- **IP address** Checks the ARP body for invalid and unexpected IP addresses including addresses 0.0.0.0, 255.255.255.255, and all IP multicast addresses.

DAI Configuration Example (Cont.)

The **ip arp inspection validate** {[**src-mac**] [**dst-mac**] [**ip**]} global configuration command is used to configure DAI to drop ARP packets when the IP addresses are invalid.

- It can be used when the MAC addresses in the body of the ARP packets do not match the addresses that are specified in the Ethernet header.
- Notice in the following example how only one command can be configured. Nesčítá se.
- Therefore, entering multiple **ip arp inspection validate** commands overwrites the previous command.
- To include more than one validation method, enter them on the same command line as shown in the output.

```
Sl(config)# ip arp inspection validate ?
  dst-mac Validate destination MAC address
  ip Validate IP addresses
  src-mac Validate source MAC address
Sl(config)# ip arp inspection validate src-mac
Sl(config)# ip arp inspection validate ip
Sl(config)# do show run | include validate
  ip arp inspection validate ip
Sl(config)# do show run | include validate
  ip arp inspection validate src-mac dst-mac ip
Sl(config)# do show run | include validate
  ip arp inspection validate src-mac dst-mac ip
Sl(config)# do show run | include validate
```

11.5 Mitigate STP Attacks

PortFast and BPDU Guard

Recall that network attackers can manipulate the Spanning Tree Protocol (STP) to conduct an attack by spoofing the root bridge and changing the topology of a network.

To mitigate STP attacks, use PortFast and Bridge Protocol Data Unit (BPDU) Guard:

PortFast

- PortFast immediately brings a port to the forwarding state from a blocking state, bypassing the listening and learning states.
- Apply to all end-user access ports.

BPDU Guard

- BPDU guard immediately error disables a port that receives a BPDU.
- Like PortFast, BPDU guard should only be configured on interfaces attached to end devices.

Configure PortFast

PortFast bypasses the STP listening and learning states to minimize the time that access ports must wait for STP to converge.

- Only enable PortFast on access ports.
- PortFast on inter switch links can create a spanning-tree loop.

PortFast can be enabled:

- On an interface Use the spanningtree portfast interface configuration command.
- Globally Use the spanning-tree portfast default global configuration command to enable PortFast on all access ports.

S1(config)# interface fa0/1
S1(config-if)# switchport mode access
S1(config-if)# spanning-tree portfast

%Warning: portfast should only be enabled on ports connected to a single host. Connecting hubs, concentrators, switches, bridges, etc... to this interface when portfast is enabled, can cause temporary bridging loops. Use with CAUTION

%Portfast has been configured on FastEthernet0/1 but will only have effect when the interface is in a non-trunking mode.

S1(config-if)# exit

S1(config)# spanning-tree portfast default

%Warning: this command enables portfast by default on all interfaces. You should now disable portfast explicitly on switched ports leading to hubs, switches and bridges as they may create temporary bridging loops. S1(config)# exit

Configure PortFast (Cont.)

To verify whether PortFast is enabled globally you can use either the:

- show running-config | begin span command
- show spanning-tree summary command

To verify if PortFast is enabled an interface, use the **show running-config interface** *type/number* command.

The show **spanning-tree interface** *type/number* **detail** command can also be used for verification.

Configure BPDU Guard

An access port could receive an unexpected BPDUs accidentally or because a user connected an unauthorized switch to the access port.

- If a BPDU is received on a BPDU Guard enabled access port, the port is put into error-disabled state.
- This means the port is shut down and must be manually re-enabled or automatically recovered through the **errdisable recovery cause psecure_violation** global command.

BPDU Guard can be enabled:

- On an interface Use the spanning-tree bpduguard enable interface configuration command.
- Globally Use the spanning-tree portfast bpduguard default global configuration command to enable BPDU Guard on all access ports.

S1(config)# interface fa0/1 S1(config-if)# spanning-tree bpduguard enable S1(config-if)# exit S1(config)# spanning-tree portfast bpduguard default S1(config)# end S1# show spanning-tree summary Switch is in pvst mode Root bridge for: none Extended system ID is enabled Portfast Default is enabled PortFast BPDU Guard Default is enabled Portfast BPDU Filter Default is disabled Loopguard Default is disabled EtherChannel misconfig guard is enabled UplinkFast is disabled BackboneFast is disabled Configured Pathcost method used is short (output omitted) S1#

11.6 Module Practice and Quiz

Otázky z praxe

Téma 11.1

Jaké problémy může zabezpečení portů způsobit legitimním uživatelům? Jaký režim narušení zabezpečení portu (port security violation mode) se jeví jako nejúčinnější pro obecné nasazení a proč?

Téma 11.2

Existuje nevýhoda konfigurace portů jako statický accass nebo statický trunk? Jakou výhodu podle vás poskytuje označení nativní VLAN v celé organizaci?

Téma 11.3

Jak může DHCP Snooping negativně ovlivnit uživatele, který má oprávnění k připojení k síti LAN? Co děje s daty, která shromažďuje DHCP Snooping, který je tak základní pro jiné mechanismy zabezpečení LAN?

Téma 11.4

Co se stane, když jiné zařízení předstírá, že je výchozí bránou v síti LAN? Proč si myslíte, že porty směřující upstream jsou obvykle konfigurovány jako trusted (důvěryhodné) pro Dynamic ARP Inspection?

Téma 11.5

Jakou výhodu poskytuje PortFast běžnému připojenému uživateli? Proč není port nastavený jako PortFast ve stavu error-disable, když přijímá rámce BPDU?

Module Practice and Quiz Packet Tracer – Switch Security Configuration

In this Packet Tracer activity, you will:

- Secure unused ports
- Implement port security
- Mitigate VLAN hopping attacks
- Mitigate DHCP attacks
- Mitigate ARP attacks
- Mitigate STP attacks
- Verify the switch security configuration

Module Practice and Quiz Lab – Switch Security Configuration

In this lab, you will:

- Secure unused ports
- Implement port security
- Mitigate VLAN hopping attacks
- Mitigate DHCP attacks
- Mitigate ARP attacks
- Mitigate STP attacks
- Verify the switch security configuration

Module Practice and Quiz What Did I Learn In This Module?

- All switch ports (interfaces) should be secured before the switch is deployed for production use.
- By default, Layer 2 switch ports are set to dynamic auto (trunking on).
- The simplest and most effective method to prevent MAC address table overflow attacks is to enable port security.
- The switch can be configured to learn about MAC addresses on a secure port in one of three ways: manually configured, dynamically learned, and dynamically learned sticky.
- If the MAC address of a device attached to the port differs from the list of secure addresses, then a port violation occurs. By default, the port enters the error-disabled state. When a port is placed in the error-disabled state, no traffic is sent or received on that port.
- Mitigate VLAN Hopping attacks by disabling DTP negotiations, disabling unused ports, manually setting trunking where required, and using a native VLAN other than VLAN 1.

Module Practice and Quiz What Did I Learn In This Module? (Cont.)

- The goal of a DHCP starvation attack is to create a Denial of Service (DoS) for connecting clients. DHCP spoofing attacks can be mitigated by using DHCP snooping on trusted ports.
- DHCP snooping determines whether DHCP messages are from an administrativelyconfigured trusted or untrusted source. It then filters DHCP messages and rate-limits DHCP traffic from untrusted sources.
- Dynamic ARP inspection (DAI) requires DHCP snooping and helps prevent ARP attacks by verifying ARP traffic.
- Implement Dynamic ARP Inspection to mitigate ARP spoofing and ARP poisoning.
- To mitigate Spanning Tree Protocol (STP) manipulation attacks, use PortFast and Bridge Protocol Data Unit (BPDU) Guard.

··II··II·· CISCO