

10. Deployment

Introduction 2

Build 2
Styles and Assets 2
Typescript files 3
Code splitting 4
Caching and hashes 4
Metadata and SEO 5

Environment variables 6
Runtime variables 6
Build time variables 6

Temporary Environment variables in shell 7
Permanent Environment variables in .env file 7

Progressive Web App 8
PWA in Create React App 8
manifest.json 8

Hosting options 9
Github Pages 9

gh-pages package 9
Conclusion 10

Firebase Hosting 10
Conclusion 11

1

Introduction
The goals of development and production builds differ greatly. During development, we want
to have a good source mapping, localhost server with live reloading etc. On the other hand
in production, our goal shifts to minified bundles, lightweight source maps and optimized
assets in order to provide best performance.

Build
When using create-react-app (CRA) a lot of things are already provided, so that you
can create a production build easily. You just need to run a yarn build command, which
will create a build directory, with all the necessary files. Inside the build/static folder, there
will be your JavaScript and CSS files. It may seem like an easy process, but a lot of things
are happening under the hood. CRA uses webpack internally to build your project. Below is
a simplified view of what is actually happening during the build process.

Styles and Assets
There are various options of styling the application. You can, for example, include pure CSS
files alongside your React components, use SASS stylesheets, or CSS modules. No matter
what option you choose, the styles need to be compiled into CSS and included in your build
static files, or will be dynamically generated during runtime. During the build, there can be
some PostCSS tools (like Autoprefixer) applied, that can optimize them, add vendor prefixes
to help you ensure cross-browser compatibility.

2

/* Before auto-prefixing */

.example {
 transition: all .5s;
}

Static assets work similarly to styles. You often import these files directly into the JS
modules and the underlying bundling engine will include them in the bundle. The imported
file will be eventually translated into an actual path of the image.

Typescript files
Since browsers understand only JavaScript, we again need to transform our code into a
browser-understandable format. The transformation process includes compiling Typescript
into JavaScript and omitting the type annotations, converting JSX, polyfilling/transpilling the
code to ensure cross-browser compatibility and minifying the resulting code.

3

/* After auto-prefixing */

.example {
 -webkit-transition: all .5s;
 -o-transition: all .5s;
 transition: all .5s;
}

import React from 'react';
// Tell webpack this file uses logo img

import logo from './logo.png';

console.log(logo); // /logo.84287d09.png

function Header() {
 // Import result is the URL of your image
 return ;
}

export default Header;

// ORIGINAL CODE

const App : React.FC = () => <div>Hello world</div>;

// TRANSPILED CODE

var App = function App() {
 return /*#__PURE__*/React.createElement("div", null, "Hello world");
};

Code splitting
Build tools like Webpack in CRA compile your code into bundles, which allows for much
greater optimizations and minification compared to keeping code in modules (each file is a
ES6 module). Downside of this is that when a user wants to access your single page app,
he/she needs to download ALL of it’s bundled code even for parts he may never even go to.
Code splitting is a technique that allows you to split your codebase into multiple bundles via
dynamic imports that will be fetched only when necessary. This feature can have a major
impact on load time when used correctly.

Caching and hashes
Since fetching resources over the network is both slow and expensive:

● Page needs to wait for them to be loaded,
● Limited mobile data plan charges money for the downloaded data.

We need to provide a way of limiting the unnecessary resource fetching. The solution to this
issue is the browser’s HTTP Cache. It is effective, supported in all browsers and does not
require too much work to establish.

All HTTP requests that the browser makes are routed to the browser cache to check whether
there is a valid cached response that can be used to fulfill the request. If it finds a match, the
response is loaded from cache and there is no need to fetch them over the network.

Even though the HTTP Cache solved our problems of unnecessary resource fetching, it
created a new problem. If we want to upload a new version of the resources, we need to
make sure that the browser will use the new resource, rather than the cached one. To solve
our new problem, we need to change the URL of the resource, every time we change the
file, to download the version. Typically, this is done by embedding a fingerprint of the file, in
its filename.

4

The process of providing fingerprint is part of the build process. If we want to use the “best of
the both worlds” approach, we can split our code into an application code and a vendor
code. Vendor code includes modules that were imported from node_modules and it often
tends to change less frequently than our application code, and we will be able to enroll new
features, without redownloading the whole codebase.
The production build, created by CRA will have following javascript files:

● main.[hash].chunk.js

○ Our core application code App.js, etc
● [number].[hash].chunk.js

○ Vendor code, or other code splitting chunks
● runtime-main.[hash].js

○ Webpack runtime logic files

Metadata and SEO
After your page is built and deployed, it may be accessed in many different ways and actual
real people opening the page is just one use case. Features like preview links or indexability
by search engines are expected to work and that’s something that frontend developers
should properly set up. Getting deep into Search Engine Optimizations isn’t a part of this
course (since React’s client-side rendering doesn’t play well with indexing bots) but as an
example we can prepare at least some basics.

Nice starting point can be https://metatags.io/ where you can prepare basic meta tags for
various sites to use when showing preview links.

5

<!-- Primary Meta Tags -->

<title>Meta Tags — Preview, Edit and Generate</title>
<meta name="title" content="...">
<meta name="description" content="...">

<!-- Open Graph / Facebook -->

<meta property="og:type" content="...">
<meta property="og:url" content="...">
<meta property="og:title" content="...">
<meta property="og:description" content="...">
<meta property="og:image" content="...">

<!-- Twitter -->

<meta property="twitter:card" content="summary_large_image">
<meta property="twitter:url" content="...">
<meta property="twitter:title" content="...">
<meta property="twitter:description" content="...">
<meta property="twitter:image" content="...">

https://metatags.io/

Environment variables
There are multiple environments, where the application can be running. The environments
can generally be divided into categories like Local, Testing, Staging or Production. The
actual number and types of environment can vary depending on the character of the
application and internal company processes. But there will always be at least a Local and a
Production environment present. If we want to use the same codebase for each of them, we
need to provide a way of setting environment variables that will control the behavior of our
application. Example of things, we often control can be following:

● Redirects for API endpoints
● Turning on/off analytic data processing and error reporting
● Authentication keys

There are two ways of providing Environment variables to the application, the runtime, and
build time embedding.

Runtime variables
Runtime variables can be beneficial, when you need to change a configuration during the
run time. It allows you to build the application only once and deploy the same build to
multiple environments, change the configuration after deployment, load configuration from
external source. Additionally, it will save time, since the build pipelines often take a long
period of time to finish. Since CRA produces only static bundle, it is impossible to read them
at runtime. One of the approaches, to use runtime variables, is adding a placeholder to the
index.html file and making the server replace them before sending the response. In the
example below, the server that serves our application, will replace the __SERVER_DATA__
with a runtime value. This approach is not used as often as build time variables, since it is
more difficult to implement and maintain.

Build time variables
Most of the time, using the custom build time variables is enough for the most common
use-cases, since it is easier to implement. The most commonly used library is dotenv, which
allows you to load variables from .env file into process.env object. In this section, we will
describe ways how you can define environment variables inside the CRA environment,

6

<!doctype html>
<html lang="en">
 <head>
 <script>
 window.RUNTIME_ENV = __SERVER_DATA__;

 </script>
...

which is using dotenv library internally.

By default, you have available the NODE_ENV variable, and any other variables starting with
REACT_APP_. As mentioned above, these environment variables will be defined for you
inside the process.env object. For example if you create a variable named
REACT_APP_FOO, you will find it in your JS as process.env.REACT_APP_FOO.

Value of the NODE_ENV variable is assigned based on the way you run the application. In
the table below, you can find the corresponding values based on the way you start (build)
the application.

Just with the default NODE_ENV variable, you can easily write code that will be conditionally
run based on the value.

In CRA, you have two options for providing your own environment variables:

Temporary Environment variables in shell
This approach is temporary and will only live for the life of the shell session. The way of
setting the variable differs, depending on the OS where you run your application. Example:

Permanent Environment variables in .env file
In order to declare permanent variables, you need to create a file called .env in the root of
your project. The structure of the file is simple:

7

command process.NODE_ENV value

yarn start ‘development’

yarn test ‘test’

yarn build ‘production’

if (!process.env.NODE_ENV || process.env.NODE_ENV === "development"){
 // dev code
} else {
 // production code
}

$ REACT_APP_TEMP_VAR=tempVar yarn start

REACT_APP_VARIABLE_NAME=variable_value

In CRA, you can define multiple .env files that will be evaluated based on the environment,
where your application runs. The options you will use most commonly are following:

● .env - default
● .env.development, .env.test, .env.production. - environment-specific

Progressive Web App
In short, Progressive Web Apps are websites that can behave as native apps, work offline
and make use of caching techniques to load faster and be more responsive. Many websites
(like Twitter) are PWAs without you even realizing, just try to disable your internet connection
and you will see that they still load without content.

PWA in Create React App
Create React App implements everything a PWA needs to function. All you need to do is
initialize the provided service worker (since CRA 4 no longer in default template). You can
try out the template by creating a new react app:

You will find a new src/service-worker.ts and
src\serviceWorkerRegistration.ts files containing default configuration of caching
and everything required to register a service worker. In order to use it, it needs to be
registered in the index.tsx file first.

Behind the scenes, CRA is using the Workbox library that you can fully utilize in customizing
your service worker. If you want to know more about the concept of Web Workers API that
the service worker is based on, here is further reading.

manifest.json
The web app manifest is a JSON file that tells the browser about your Progressive Web App
and how it should behave when installed on the user's desktop or mobile device. A typical
manifest file includes the app name, the icons the app should use, and the URL that should
be opened when the app is launched.
You can read about it’s fields and description here.

8

yarn create react-app my-app --template cra-template-pwa-typescript

serviceWorker.register();

https://developers.google.com/web/tools/workbox/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json

Hosting options
There are many free hosting services where you can host your single page React
application. We will take a look at Github’s Github Pages service and Google’s Firebase
Hosting.

Github Pages
This is by far the easiest option (assuming you are using Github for hosting your git
repository). Each repository can be published directly from your versioned source code.

Prerequisites are:

● Repository must be public (or with Pro account you can publish private repositories)
● Select where the source files are (branch and/or specific folder)

And that’s it.
You can set it up in the settings tab in the web interface of your Github repository. By default,
the page will be hosted on https://GITHUB_USERNAME.github.io/REPOSITORY_NAME url.

There is also one special case where if you create a repository named
GITHUB_USERNAME.github.io it will be hosted on https://GITHUB_USERNAME.github.io
directly.

To redeploy the page all you need to do is push a new commit to the GHPages source
branch.

gh-pages package

To make it even easier for deploying CRA apps specifically, there is a gh-pages package
which you can use to deploy your app with a single command.

After adding this package to your dev dependencies you need to make some changes to
your package.json.

9

yarn add -D gh-pages

{

 // ...
 // homepage is optional with GITHUB_USERNAME.github.io special case
 "homepage": "https://GITHUB_USERNAME.github.io/REPOSITORY_NAME",
 // ...
 "scripts": {

Now by running yarn deploy your app will get built by react-scripts and pushed to
gh-pages branch in your repository.

Conclusion
There are few negatives to keep in mind though. Deployed site is completely static which
means that in order to achieve some server-side functionality you would have to look for
other solutions.

Another problem is that if you want to use client side routing (React Router), you will need to
find some workaround (HashRouter in React Router’s case) that works around the fact that
there is no way of setting up custom routes for GH Pages hosted sites.

Firebase Hosting
Second hosting option we will discuss is one provided by Firebase. This option is free* in a
sense that it is limited to 10GB of storage and 360Mb of data transferred per day. But for
smaller hobby projects it should be more than enough.

To deploy to Firebase Hosting you will need to install the firebase-tools package. Note
we are using yarn global add instead of yarn add since we are installing a CLI tool and not a
project dependency.

Note:
You also need to add the yarn bin directory to your path so this global CLI too can be easily
run from your command line. You can see your yarn bin path by running yarn global
bin.

Then you need to login to your Firebase account using the firebase tools CLI.

Now we can initialize the hosting project. This will take us through a setup process, where
you can configure everything required.

10

 "predeploy": "yarn build",
 "deploy": "gh-pages -d build",
 // ..

yarn global add firebase-tools

firebase login

firebase init hosting

https://reactrouter.com/web/api/HashRouter

First choose the existing project option and select a firebase project you want your hosted
site to be linked to.

Then set the public directory to the build folder where index.html file will be since that is
the output directory of react-scripts build. Also we want to set up single page
application routing.

One of quite recent features is integration with Github repositories. It will automatically set up
Github Actions that build and deploy your page when you commit to the repository.

Note:
This is the most basic setup and there are many ways to improve it. For example instead of
deploying on every commit to master you can change it so it’s deployed from a new
production branch on PR merge.

Now that initialization is done you should see few new files added firebase.json,
.firebaserc, few yml files setting up Github actions in .github\workflows\ folder.
After committing these changes your page should be automatically deployed by GIthub
Actions and accessible on either PROJECT_ID.web.app or PROJECT_ID.firebaseapp.com
urls.

Conclusion
Unlike GH Pages, Firebase Hosting works with SPA client-side routing which is nice. Also
since you already need to have a Firebase project set up, you can more easily use other
services such as Cloud Functions etc.
One thing to keep in mind though is that Firebase Hosting has limits for free accounts, which
you most likely won’t hit with some hobby project, but it’s another reason to keep
optimisations such as caching in mind.

11

? Please select an option: Use an existing project
? Select a default Firebase project for this directory: project-id (Project)

? What do you want to use as your public directory? build
? Configure as a single-page app (rewrite all urls to /index.html)? Yes

? For which GitHub repository would you like to set up a GitHub workflow?
(format: user/repository) user/repository
? Set up the workflow to run a build script before every deploy? Yes
? What script should be run before every deploy? yarn && yarn build
? Set up automatic deployment to your site's live channel when a PR is merged?
No

? What is the name of the GitHub branch associated with your site's live
channel? master

