

11. Typescript

Introduction 2

Reasons of usage 2
Preventing bugs 2
Better development experience 3
Code quality 4
Easy to start and adopt 4
Community/Popularity 4

Fundamentals 5
Types 5

The “any” type 5
The “unknown” type 5
Built-in types 6
User-defined Types 6

Array 7
Tuples 7

Enums 8
Type assertions 8
Interfaces 9

Optional Properties 9
Readonly properties 10
Extending Interfaces 10

Classes 10
Inheritance 11

Functions 11
Inferring the types 12
Optional parameters 12
Default parameters 13

Unions and Intersection Types 13
Union Types 14
Intersection Types 14

Generics 15
Utility types 15

Working with Third-Party Types 15

Resources 18

1

Introduction
TypeScript is a programming language, a strict syntactical superset of
JavaScript that transpiles into plain JavaScript and adds optional static typing to
the language.

The language itself is developed and maintained by Microsoft. TypeScript was
first published in October 2012, after two years of internal development at
Microsoft.

TypeScript can be used for developing JavaScript applications for both client-side and
server-side applications as well.

The two most used options of transpiling TypeScript into JavaScript are default TypeScript
checker (tsc) or Babel compiler can be invoked for the process of conversion.

TypeScript adds many features to ECMAScript 6 including:

● Type annotations and compile-time type checking
● Type inference
● Type erasure
● Interfaces
● Enumerated types
● Generics
● Namespaces
● Tuples
● Async/await

Some other features are backported from ECMAScript 5:

● Classes
● Modules
● Arrow syntax for anonymous functions
● Optional parameters and default parameters

Reasons of usage

Preventing bugs
Saying this, of course, TypeScript will not make you software bug free, but it can prevent a
lot of type-related errors by providing static checks.

Top 10 JavaScript errors from 1000+ projects:

● Uncaught TypeError: Cannot read property

● TypeError: ‘undefined’ is not an object (evaluating

2

https://rollbar.com/blog/top-10-javascript-errors/

● TypeError: null is not an object (evaluating

● (unknown): Script error

● TypeError: Object doesn’t support property

● TypeError: ‘undefined’ is not a function

● Uncaught RangeError

● TypeError: Cannot read property ‘length’

● Uncaught TypeError: Cannot set property

● ReferenceError: event is not defined

Most of the presented errors are about mixing up your types, accessing wrong/non-existent
variables or object properties, calling ‘undefined’ function, etc.

All these errors could be prevented by using TypeScript as it’s safe typed strictness warns
us about the possibility of running into an error.

Better development experience
Often, when writing an application in JavaScript, you might wonder “what arguments this
function accepts?”, “what fields are in that object?” or “what properties this component
accepts?”. These things can slow your development process down a lot, especially while
working with new packages and libraries. You have to go through multiple files to find where
the values come from sometimes. With TypeScript integration in your IDE, these problems
are the past.

TypeScript can also save your time because instead of having to lookup documentations of
libraries, TypeScript can suggest to you all the available options, e.g. properties in
components of functions/classes.

3

Code quality
Defining data structures in the beginning, using types and interfaces, forces you to think
about your app’s data structure from the start and make better design decisions.

Easy to start and adopt
If you want to use TypeScript, it’s very easy to get started with it. Or maybe you already are
developing an application for some time that’s already written in plain JavaScript? You can
introduce TS to your existing project incrementally because it also compiles .js files. No need
to rewrite your whole codebase at once. You can do it step by step.

Community/Popularity
TypeScript is getting more and more popular. It’s used by tech companies like Google,
Microsoft, Airbnb, Shopify, Asana, Adobe & Mozilla so we can assume that it reaches their
expectations in terms of scalability - as they are developing large and complex applications.

Source: https://2019.stateofjs.com/javascript-flavors/

4

https://2019.stateofjs.com/javascript-flavors/

Fundamentals

Types
The type system represents the different types of values supported by the language. It
checks the validity of the supplied values, before they are stored or manipulated by the
application. This ensures that the code behaves as expected.

let isDone: boolean = false; // Boolean

let age: number = 22; // Numbers

let color: string = "blue"; // String

let array: number[]; // Array of numbers

let tuple: [string, number] = ["hello", 10]; // Tuples

let data: any; // Any

let u: undefined = undefined; // Undefined

let n: null = null; // Null

let notSure: unknown = 4; // Unknown

notSure = "maybe a string instead";

function sayHello(): void { // Void

 console.log("Hello :)");
}

The “any” type
The any data type is the super type of all types in TypeScript. It denotes a dynamic type.
Using the “any” type is equivalent to opting out of type checking a variable. It is not advised
to use this type if possible.

let value: any;

value = true; // OK
value = 42; // OK
value = "Hello World"; // OK
value = []; // OK
value = {}; // OK

value.foo.bar; // OK
value.trim(); // OK

The “unknown” type
TypeScript 3.0 introduced a new unknown type which is the type-safe counterpart of the
“any” type.

The main difference between “unknown” and “any” is that “unknown” is much less
permissive than ”any”: we have to do some form of checking before performing most

5

operations on values of type “unknown”, whereas we don't have to do any checks before
performing operations on values of type “any”.

let value: unknown;

let value1: unknown = value; // OK
let value2: any = value; // OK
let value3: boolean = value; // Error
let value4: number = value; // Error
let value5: string = value; // Error

value.foo.bar; // Error
value.trim(); // Error
value(); // Error

Built-in types
The following table shows all the build-in TypeScript types:

Data type Keyword Description

Number number Double precision 64-bit floating point values. It can be used
to represent both, integers and fractions.

String string Represents a sequence of Unicode characters

Boolean boolean Represents logical values, true and false

Void void Used on function return types to represent non-returning
functions

Null null Represents an intentional absence of an object value.

Undefined undefined Denotes value given to all uninitialized variables

The null and the undefined types are often a source of confusion. At first they may seem to
do the same thing but the difference is in their meaning. Undefined is used when a value
was not yet defined and has no value (that’s why e.g. accessing non existing property of
object returns undefined), while null is used to specify that this property exists (was defined)
and it specifically has a null (empty) value.

User-defined Types
User-defined types include Enumerations (enums), classes, interfaces, arrays, and tuples.

6

Array

An array is a homogenous collection of values. To simplify, an array is a collection of values
of the same data type. It is a user defined type.

For example an array of numbers or strings:

let list: number[] = [1, 2, 3];
let list: string[] = ["one", "two", "three"];

Tuples
Sometimes there might be a need to store a collection of values of varied types. Arrays will
not serve this purpose. TypeScript gives us a data type called tuple that helps to achieve
such a purpose.

It represents a heterogeneous collection of values. In other words, tuples enable storing
multiple fields of different types.

// Declare a tuple type

let x: [string, number];
// Initialize it

x = ["hello", 10]; // OK
// Initialize it incorrectly

x = [10, "hello"]; // Error
// Type 'number' is not assignable to type 'string'.

// Type 'string' is not assignable to type 'number'.

// Labeled tuple, new in TypeScript 4.0

let y: [a: string, b: number];

7

Enums
Enums are one of the few features TypeScript has which is not a type-level extension of
JavaScript. Enums allow a developer to define a set of named constants. TypeScript
provides both numeric and string-based enums.

// Numeric enums

enum Direction {
 Up = 1, // "= 1" is optional, all other members will auto-increment
 Down,

 Left,

 Right

}

// String enums

enum Direction {
 Up = "UP",
 Down = "DOWN",
 Left = "LEFT",
 Right = "RIGHT"
}

Type assertions
Time to time you might run into a situation where you will know more about a value than
TypeScript could figure out. This could happen when you know the type of some entity more
specifically than its current type.

A type assertion is like a type cast in other languages, but it performs no special checking or
restructuring of data. It has no runtime impact and is used purely by the compiler.

We can perform type assertion by the “as” syntax:

let someValue: unknown = "this is a string";
let strLength: number = (someValue as string).length;

Type assertions are a way to tell the compiler “trust me, I know what I’m doing.”

8

Interfaces
Interfaces define properties, methods, and events, which are the members of the interface.
Interfaces contain only the declaration of the members. It is the responsibility of the deriving
class to define the members. It often helps in providing a standard structure that the deriving
classes would follow.

interface LabeledValue {
 label: string;
}

function printLabel(labeledObj: LabeledValue) {
 console.log(labeledObj.label);
}

let myObj = { size: 10, label: "Size 10 Object" };
printLabel(myObj);

Optional Properties
Not all properties of an interface may be required. Some exist under certain conditions or
may not be there at all.

interface LabeledValue {
 label: string;
 size?: number; /* Optional Property */

}

function printLabel(labeledObj: LabeledValue) {
 console.log(labeledObj.label);
}

// OK

let myObj = { size: 10, label: "Size 10 Object" };
printLabel(myObj);

// OK, ‘size’ property is optional

let mySecObj = { label: "Size Optional Object" };
printLabel(mySecObj);

// Error, "Property 'label' is missing in type"

let myThirdObj = { size: 5 };
printLabel(mySecObj);

9

Readonly properties
Some properties should only be modifiable when an object is first created. You can specify
this by putting “readonly” before the name of the property.

interface Point {
 readonly x: number;
 readonly y: number;
}

let p1: Point = { x: 10, y: 20 };
// Error, "Cannot assign to 'x' because it is a read-only property."

p1.x = 5;

Extending Interfaces
Interfaces can extend each other. This allows you to copy the members of one interface into
another, which gives you more flexibility in how you separate your interfaces into reusable
components. This extendability also means that interfaces are much closer to how JS
objects work.

interface Shape {
 color: string;
}

interface Square extends Shape {
 sideLength: number;
}

let square = {} as Square;
square.color = "blue";
square.sideLength = 10;

/* Extending multiple interfaces */

interface PenStroke {
 penWidth: number;
}

interface PenSquare extends Shape, PenStroke {
 sideLength: number;
}

let penSquare = {} as PenSquare;
penSquare.color = "blue";
penSquare.sideLength = 10;

penSquare.penWidth = 5.0;

Classes
Starting with ECMAScript 2015, also known as ECMAScript 6, JavaScript programmers can
build their applications using this object-oriented class-based (OOP) approach.

10

TypeScript allows developers to use these techniques now, and compile them down to
JavaScript that works across all major browsers and platforms, without having to wait for the
next version of JavaScript.

class Greeter {
 greeting: string;

 constructor(message: string) {
 this.greeting = message;
 }

 greet() {

 return "Hello, " + this.greeting;
 }

}

If you’re familiar with classes in other languages, you may have noticed in the above
examples we haven’t had to use the word public to accomplish this; for instance, C# requires
that each member be explicitly labeled public to be visible. In TypeScript, each member is
public by default. You may still mark a member public explicitly.

TypeScript also supports private and protected modifiers.

Inheritance
One of the most fundamental patterns in class-based programming is being able to extend
existing classes to create new ones using inheritance.

class Animal {
 move(distanceInMeters: number = 0) {
 console.log(`Animal moved ${distanceInMeters}m.`);
 }

}

class Dog extends Animal {
 bark() {

 console.log("Woof! Woof!");
 }

}

const dog = new Dog();
dog.bark();

dog.move(10);

dog.bark();

Functions
Functions are basic building blocks of any JavaScript application. TypedScript functions can
be created by using both named functions or anonymous functions. This allows you to
choose the most appropriate approach for your application, whether you’re building a list of
functions in an API or a one-off function to hand off to another function.

11

// Named function

function add(x: number, y: number): number {
 return x + y;
}

// Anonymous function

let myAdd = function (x: number, y: number): number {
 return x + y;
};

We can add types to each of the parameters and then to the function itself to add a return
type. TypeScript can figure the return type out by looking at the return statements, so we can
also optionally leave this off in many cases.

Inferring the types
TypeScript compiler can figure out the type even if you only have types on one side of the
equation. It is called “contextual typing”, a form of type inference.

let myAdd: (baseValue: number, increment: number) => number =
function (x, y) {
 return x + y;
};

Optional parameters
In JavaScript, every parameter is optional, and users may leave them off as they see fit.
When they do, their value is undefined.

In TypeScript, every parameter is assumed to be required by the function. This doesn’t mean
that it can’t be given null or undefined, but rather, when the function is called, the compiler
will check that the user has provided a value for each parameter. The compiler also
assumes that these parameters are the only parameters that will be passed to the function.

To provide optional parameters in TypeScript by adding a "?” to the end of parameters we
want to be optional.

12

function buildName(firstName: string, lastName?: string) {
 if (lastName) return firstName + " " + lastName;
 else return firstName;
}

// ok, "lastName" is optional

let result1 = buildName("Bob");
// error, too many parameters

let result2 = buildName("Bob", "Adams", "Sr.");
// ok, all parameters provided

let result3 = buildName("Bob", "Adams");

Default parameters
In TypeScript, we can also set a value that a parameter will be assigned if the user does not
provide one, or if the user passes undefined in its place. These are called default-initialized
parameters.

function buildName(firstName: string, lastName = "Smith") {
 return firstName + " " + lastName;
}

// works correctly now, returns "Bob Smith"

let result1 = buildName("Bob");
// still works, returns "Bob Smith"

let result2 = buildName("Bob", undefined);
// error, too many parameters

let result3 = buildName("Bob", "Adams", "Sr.");
// works, returns "Bob Adams"

let result4 = buildName("Bob", "Adams");

Unions and Intersection Types
Sometimes, you run into use-cases where you want to compose or combine different
existing types instead of creating them from scratch. To compose types in TypeScript, we
have Intersection and Union types.

13

Union Types
An union type describes a value that can be one of several types. We use the singular OR
operator “|” (bitwise OR in other languages) to separate each type, so number | string |
boolean is the type of a value that can be a number, a string, or a boolean.

/**

 * Function takes a string and adds "padding" to the left.

 * If 'padding' is a string, then 'padding' is appended to the left

side.

 * If 'padding' is a number, then that number of spaces is added to

the left side.

 */

function padLeft(value: string, padding: string | number) {
 if (typeof padding === "number") {
 return Array(padding + 1).join(" ") + value;
 }

 if (typeof padding === "string") {
 return padding + value;
 }

 throw new Error(`Expected string or number, got '${padding}'.`);
}

padLeft("Hello world", 4); // returns " Hello world"

Intersection Types
Intersection types are closely related to union types, but they are used very differently. An
intersection type combines multiple types into one. This allows you to add together existing
types to get a single type that has all the features you need. We use the singular AND
operator “&” (bitwise AND in other languages) to intersect the wanted types.

interface IStudent {
 id: string;
 age: number;
}

interface IWorker {
 companyId: string;
}

type A = IStudent & IWorker;

let x: A;
x.age = 5;

x.companyId = 'CID5241';
x.id = 'ID3241';

14

Generics
In languages like C# and Java, one of the main tools in the toolbox for creating reusable
components is generics, that is, being able to create a component that can work over a
variety of types rather than a single one. This allows users to consume these components
and use their own types.

For example, the identity function is a function that will return back whatever is passed in:

function identity<T>(arg: T): T {
 return arg;
}

// Explicitly set "T" to be string as one of the arguments to the

function call

let output = identity<string>("myString");
// ^ = let output: string

// type argument inference

// the compiler set the value of "T" for us automatically based on

the type of the argument passed

let output = identity("myString");
// ^ = let output: string

We’ve now added a type variable T to the identity function. This T allows us to capture the
type the user provides (e.g. number), so that we can use that information later. Here, we use
T again as the return type.

Utility types
TypeScript provides several utility types to facilitate common type transformations. These
utilities are available globally. They can come in handy from time to time to shorten your
code or clean up the logic of your types.

You can find all the available utility types and their description in the TypeScript Handbook -
Utility Types.

Working with Third-Party Types
As many solutions for the problems you are dealing with while developing an application are
already dealt with, we tend to use third-party solutions in the form of libraries.

One of the problems you can and will run into, is using a third party library written in
JavaScript in your TypeScript codebase and run into this:

15

https://www.typescriptlang.org/docs/handbook/utility-types.html
https://www.typescriptlang.org/docs/handbook/utility-types.html

There are two ways for to deal with this problem:

1. Importing typings from @types/[library_name] (project DefinitelyTyped)

DefinitelyTyped is a massive GitHub repository that stores types for most JavaScript
libraries. It’s structured as a monorepo, so types for every compatible JavaScript library are
present here. These types are published to the npm namespace @types, e.g. @types/react
or @types/styled-components.

16

2. Define your own types

Creating our own types is pretty easy in TypeScript. By default, TypeScript will automatically
pick up any type definitions that are inside the @types directory in node_modules, as well as
any index.d.ts files. This means you can create an index.d.ts file wherever you want in your
project, and TypeScript will use it. It is suggested, we organize the types inside the “@types”
directory in our application:

Inside the index.d.ts file, you can declare all the types you want for that package. Make sure
to declare the module or namespace that you want the types to be defined inside.

17

Resources

● TypeScript Documentation
○ https://www.typescriptlang.org/docs/home.html

● TypeScript Playground
○ https://www.typescriptlang.org/play

● React +TypeScript Cheatsheets
○ https://github.com/typescript-cheatsheets/react-typescript-cheatsheet

● JSON to TypeScript
○ https://app.quicktype.io

● TypeSearch (TS typings for JS libraries)
○ https://microsoft.github.io/TypeSearch

● Adding/Using TypeScript in create-react-app
○ https://create-react-app.dev/docs/adding-typescript

18

https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/play
https://github.com/typescript-cheatsheets/react-typescript-cheatsheet
https://app.quicktype.io/
https://microsoft.github.io/TypeSearch
https://create-react-app.dev/docs/adding-typescript

