

7. React - hooks

Lifecycle of component 1
First render (Mounting) 2
Rerender (Updating) 2
Unmounting 3

Hooks - lifecycle of function components 3

“useState” hook 4
Functional updates 4
Merging state 4

“useEffect” hook 5
Dependency array 5
Cleanup 6
Implementation 7

“useMemo” hook 8
Implementation 8

“useCallback” hook 9
Implementation 9

Custom hook 10

Lifecycle of component
So let’s have a closer look at the main job of React (but also other js frameworks), in which point
React component comes into existence, what happens at this point and when the component is
removed from DOM.
The main job of React is to figure out how to modify the DOM to match what the components
want to be rendered on the screen.

1

We created a simple Tic-Tac-Toe game, where we have the following tree of main components
(some components are ignored for clarity): App -> Board -> Square -> PlayerIcon
-> Typography / Cross / Circle .
We also created a condition if we wanted to show a Cross icon, a Circle icon or index inside the
button.

First render (Mounting)
Everything is initialized into default state and rendered as follows.

1. index.tsx as a starting point renders App component into <div id=”root” /> .
2. App renders Board.
3. Board state is initialized with an array of numbers, player state is initialized with “X” and

renders 9 Square components with PlayerIcons inside.
4. Each PlayerIcon receives a number, so no icons are rendered at the beginning.

At the moment of component being added to DOM, the component is mounting.

It needs to be mentioned, because usage in practice is very common, while using class
components, there are lifecycle methods fired during first render in this order (some of them are
missing, only needed in advanced usage, out of scope of this course):

- constructor - initialize stuff like state
- render - only required method in class component
- componentDidMount - invoked only once right after first render

Since we are focusing on function components only, these methods are not available to us, and
the concepts are slightly different, which we’ll come back to later.

Rerender (Updating)
So what happens after we click on a Square with number 5 on it?

2

1. Square 5 invokes the onSquareClicked(5) handler passed to it’s onClick callback which
updates boardValues and also switches player to “O”.

2. Now since the state of the Board component has changed, it needs to be rerendered.
3. Code inside its body is run again and all its children are also rerendered.
4. Square 5 now receives different children and therefore renders a Cross icon.

In class component the lifecycle methods are invoked in the order:

- render - invoked with new state, props
- componentDidUpdate - method invoked after render, but careful Icarus, there is danger

of circular rerendering

Unmounting
And what happens to component Typography, when it is replaced with a Cross icon? Simply, it’s
destroyed, removed, deleted…

There is one lifecycle method invoked before component is unmounted:

- componentWillUnmount - use it when you want to clean something after yourself

Hooks - lifecycle of function components
Hooks are a new concept in React world that lets you use state and other lifecycle related
features without using class components. Hooks are plain JavaScript functions that need to
follow few important rules:

1. They need to always be called each rerender, they can’t be called inside loops,
conditions or nested functions.

3

const Board: FC<Props> = ({ isLoggedIn }) => {
 if (!isLoggedIn) {
 return <div>Oooops</div>;
 }

 // ERROR: If isLoggedIn is false, state hooks below wouldn't be called
 // State
 const [player, setPlayer] = useState<Player>('X');
 const [board, setBoard] = useState<BoardState>({});
 // ...

2. Must be used by Function Components or other hooks, don’t call them from regular
JS functions. To properly function they need to be called by React render loop.

“useState” hook

During the first render - mounting phase, the state value is taken from the value of
initialState argument. The setState is a function used to replace state with a new value
which triggers a rerender of the component.

During subsequent rerenders - updating phase, state value stays the same and
initialState is no longer used.

Functional updates
Setters also accept a function that receives the previous state in its first argument. Example
from our Tic Tac Toe assignment.

Both examples usually give the same result, so the question is, why would I want to use the
longer one? Well imagine a situation, where you want to call setPlayer from a child component.
With the first approach, you need to pass both the value and the setter to child the component.
With the second approach, there is no need to pass player prop because setPlayer has the
information about the previous player, this is a way to avoid unnecessary prop drilling.

Merging state
Important information about the state setting is that setState function (unlike with class
component state) does not automatically merge update objects. That’s why we need to set new
board values in our Tic Tac Toe assignment this way.

4

const [state, setState] = useState(initialState);

setPlayer(player === 'O' ? 'X' : 'O');
setPlayer(p => (p === 'O' ? 'X' : 'O'));

setBoard(b => ({ ...b, [index]: player }));

“useEffect” hook

This hook lets you run code in function components only when necessary such as performing
side effects like data fetching, setting up a subscription and so on. You can think of this hook as
componentDidMount, componentDidUpdate and componentWillUnmount from class
components combined.

Example usage of hooks can be added into Status component:

By adding this hook, React knows that the Status component needs to do something after
render. In this case setup document title. Placing useEffect inside the component lets us access
the name prop from the Status function, because the variable is already in a scope.
useEffect is by default called right after first render and after every update, in other words
useEffect is executed after mounting and also updating.

Dependency array
So far we would be able to achieve the same goal by simply putting all the code inside the hook
into the body of the function. To use this hook properly, we need to provide a dependency array
as its second argument.

Each rerender, React compares values in this array with the values from previous render and
only runs the provided function if these dependencies have changed. In this case, we have a

5

useEffect(() => { /* Do stuff */ }, [/* Dependencies */]);

const Status: FC<Props> = ({ player, winner, onRestart }) => {
 const classes = useStyles({ winner });
 useEffect(() => {
 document.title = `Player ${player}'s turn`;
 });

 // ...

useEffect(() => {
 document.title = `Player ${player}'s turn`;
}, [player]);

dependency on player prop of Status component, which only changes when the Board
component passes another player to it.

Keep in mind that dependencies of useEffect are compared by reference equality, which means
that in the example below, variable copy changes every render because each time it is a new
array instance even though it’s value is the same.

If you want useEffect hook to be called exactly once at the moment of mounting, pass an
empty array as a second argument. This is not the same as not providing a dependencies
array since in that case the code runs every rerender.

Cleanup
At the moment of unmounting of the component, an optional cleanup function is called.
Common us case for it is for example with event listener functions.

6

const copy = [...original];
useEffect(() => {
 console.log(`Copy changed.`);
}, [copy]);

useEffect(() => {
 document.title = `Mounting Title FTW`;
}, []);

const [scroll, setScroll] = useState(window.scrollY);
useEffect(() => {
 const scrollHandler = () => setScroll(window.scrollY);
 window.addEventListener('scroll', scrollHandler);
 return () => {
 window.removeEventListener('scroll', scrollHandler);
 };

}, []);

Implementation
In our Tic Tac Toe app we are calling the setWinner setter function inside the
onSquareClicked handler with the new value of getWinner every time a square is clicked.

We also need to call it inside the onBoardRestart handler to set it back to undefined.

This behavior can be optimized by useEffect. Since board is in the dependency list, this effect
will run each time it’s value changes, no matter from what source.

7

const onSquareClicked = (index: Indexes) => {
 if (board[index]) return;
 const newBoard = { ...board, [index]: player };
 setBoard(newBoard);
 setPlayer((p) => (p === "O" ? "X" : "O"));

 // Update winner
 setWinner(getWinner(newBoard));
};

const onBoardRestart = () => {
 setPlayer("X");
 setBoard({});
 setWinner(undefined);
};

const onSquareClicked = (index: Indexes) => {
 if (board[index]) return;
 setBoard(b => ({ ...b, [index]: player }));
 setPlayer((p) => (p === "O" ? "X" : "O"));
};

const onBoardRestart = () => {
 setPlayer("X");
 setBoard({});

“useMemo” hook
It’s quite similar to useEffect, with one major difference, in that it returns a value. It is used to
speed up and to optimise your app by storing the results of expensive function calls by returning
the cached result when it’s dependencies don’t change between renders. Inside useMemo,
there should not be any side effects running, they should be performed within the useEffect
hook instead.

Implementation
With this hook we can simplify our Board component even further. Since the winner is
completely dependent on the current board state and calculating it has no side effects, instead
of holding it as state we can just memoize it.

8

};

// Update winner

useEffect(() => {
 setWinner(getWinner(board));
}, [board]);

// State

const [player, setPlayer] = useState<Player>("X");
const [board, setBoard] = useState<BoardState>({});

// Memoization

const winner = useMemo(() => getWinner(board), [board]);

// Handlers

const onSquareClicked = (index: Indexes) => {
 if (board[index]) return;
 setBoard(b => ({ ...b, [index]: player }));
 setPlayer((p) => (p === "O" ? "X" : "O"));
};

“useCallback” hook
Specialized version of useMemo hook, used for memoizing functions. Most commonly it’s used
for handlers that are passed as props to other components to prevent unnecessary rerenders.

useCallback(fn, deps) is equivalent to useMemo(() => fn, deps) .

Implementation
In our app we have two handlers that are passed to child components, onSquareClicked and
onBoardRestart . With our new knowledge of useCallback hook we can now attempt to
improve these as well. It may seem like we can simply wrap both in useCallback and call it a
day, but it’s also important to think about the usage and benefits.

After converting onBoardRestart to useCallback, we can see that it has no dependencies
and it’s also directly passed to onRestart prop as a value. This means that now the Status
component will no longer be unnecessarily re-rendering because it was receiving new reference
to our previously non hook callback. So far so good.

9

const onBoardRestart = () => {
 setPlayer("X");
 setBoard({});
};

const onBoardRestart = useCallback(() => {
 setPlayer('X');
 setBoard({});
}, []);

// Usage

<Status player={player} winner={winner} onRestart={onBoardRestart} />

const onSquareClicked = useCallback((index: Indexes) => {
 if (board[index]) return;
 setBoard(b => ({ ...b, [index]: player }));

Second callback now has a dependency to the board state value which is okay. What’s
complicating it now is it’s usage. This time it’s not passed as a value but called inside an inline
arrow function. Because of this, the Square component receives different reference each
render anyway. In this case there is no benefit from using useCallback so we are better off just
keeping the handler as it was before.

Custom hook
React provides also other types of hooks, it is even possible to create your own ones. Let’s
begin with something trivial.

10

 setPlayer(p => (p === 'O' ? 'X' : 'O'));
}, [board]);

// Usage

<Square onClick={() => onSquareClicked(i)}>

const App: FC = () => {
 // Number counter
 const [counter, setCounter] = useState(0);
 // Effect to set number into Title
 useEffect(() => {
 document.title = `${counter}`;
 }, [counter]);
 // Handler for button onClick method
 const incrementCounter = () => setCounter(p => ++p);

 return (
 <div className='App'>
 <header className='App-header'>

 <p>{counter}</p>
 <button onClick={incrementCounter}>CLICK</button>
 </header>
 </div>
);

To create a custom hook we just copy out logic from the App component into a single function.
One important rule about creating custom hooks is that their name needs to start with “use”.
(like useFoo, useCounter, useEtc…), otherwise App fails to compile with an error:

React Hook "useState" is called in function "counter" which is neither a React function
component nor a custom React Hook function

After extracting all the logic, out custom hook may look something like this:

And finally it’s usage in the App component.

11

};

// Initial value can be passed to the hook as an argument

function useCounter(initialValue = 0) {
 // Number counter
 const [counter, setCounter] = useState(initialValue);
 // Effect to set number into Title
 useEffect(() => {
 document.title = `${counter}`;
 }, [counter]);
 // Handler for button onClick method
 const incrementCounter = () => setCounter(p => ++p);

 // Return only variables that we need to use outside of hook
 return [counter, incrementCounter] as const;
}

function App() {
 const [counter, incrementCounter] = useCounter(5);

 return (
 <div className='App'>
 <header className='App-header'>

 <p>{counter}</p>

12

 <button onClick={incrementCounter}>CLICK</button>
 </header>
 </div>
);

}

