
8. Async 
 
Asynchronous code execution in JavaScript 1 

Basic Architecture 2 

Non-Blocking example: 3 

Blocking example: 5 

Callbacks 6 

Callback hell 6 

Promises 7 

Chaining 9 

Async/Await 10 

Error handling with async/await 11 
An important consideration regarding async/await 11 

Implementation 11 
 
 
Asynchronous code execution in JavaScript 
According to Wikipedia: Asynchrony in computer programming refers to the occurrence of            
events independently of the main program flow and ways to deal with such events. 
 
In programming languages like Java or C# the “main program flow” happens on the main thread                
and “the occurrence of events independently of the main program flow” means that some code               
is running on a different thread that is executed in parallel to the “main program flow”. 
 
This is not the case with JavaScript. That is because a JavaScript program is single threaded                
and all code is executed in a sequence, not in parallel. In JavaScript this is handled by using                  
what is called an “asynchronous non-blocking I/O model”. What that means is that while the               
execution of JavaScript is blocking, I/O operations are not. 
 
I/O operations can be: 
1. fetching data over the internet with Ajax or over WebSocket connections, 
2. querying data from a database such as MongoDB, 
3. accessing the filesystem with the NodeJS “fs” module. 
 
All these kinds of operations are done in parallel to the execution of your code and it is not                   
JavaScript that does these operations; to put it simply, the underlying engine does it. 
  

 



Basic Architecture 

 
 

1. Heap - Objects are allocated in a heap which is just a name to denote a large mostly                  
unstructured region of memory 

 
2. Stack - This represents the single thread provided for JavaScript code execution. Function calls              

form a stack of frames (more on this below) 
 

3. Browser or Web APIs are built into your web browser, and are able to expose data from the                  
browser and surrounding computer environment and do useful complex things with it. They are              
not part of the JavaScript language itself, rather they are built on top of the core JavaScript                 
language, providing you with extra tools to use in your JavaScript code. For example, the               
Geolocation API provides some simple JavaScript constructs for retrieving location data so you             
can say, plot your location on a Google Map. In the background, the browser is actually using                 
some complex lower-level code (e.g. C++) to communicate with the device’s GPS hardware (or              
whatever is available to determine position data), retrieve position data, and return it to the               
browser environment to use in your code. But again, this complexity is abstracted away from               
you by the API 
 

 



Non-Blocking example: 

 
Here we have the main function which has 2 console.log commands logging ‘A’ and ‘C’ to the                 
console. Between them is a setTimeout call which logs ‘B’ to the console with 0ms wait time. 
 
Function Flow: 

1. The call to the main function is first pushed into the stack (as a frame). 
2. Then the browser pushes the first statement in the main function into the stack which is                

console.log(‘A’). This statement is executed and upon completion that frame is popped out.             
Letter A is logged to the console. 

3. The next statement (setTimeout() with callback exec() and 0ms wait time) is pushed into the call                
stack and execution starts. setTimeout function uses a Browser API to delay a callback to the                
provided function. The frame (with setTimeout) is then popped out once the handover to the               
browser is complete (for the timer). 

4. console.log(‘C’) is pushed to the stack while the timer runs in the browser for the callback to the                  
exec() function. In this particular case, as the delay provided was 0ms, the callback will be                
added to the message queue as soon as the browser receives it (ideally). 

5. After the execution of the last statement in the main function, the main() frame is popped out of                  
the call stack, thereby making it empty. For the browser to push any message from the queue to                  
the call stack, the call stack has to be empty first. That is why even though the delay provided in                    
the setTimeout() was 0 seconds, the callback to exec() has to wait till the execution of all the                  
frames in the call stack is complete. 

6. Now the callback exec() is pushed into the call stack and executed. The letter B is logged to the                   
console. This is the event loop of javascript. 
 
The delay parameter in setTimeout(function, delayTime) does not stand for the precise time             
delay after which the function is executed. It stands for the minimum wait time after which at                 
some point in time the function will be executed. 

 

function main() { 
  console.log('A'); 
  setTimeout(() => { 
    console.log('B'); 
  }, 0); 
  console.log('C'); 
} 

main(); 
//  Output: 

//  A 

//  C 

//  B 



 
  

 



Blocking example: 

 
1. The function runWhileLoopForNSeconds() does exactly     

what its name describes. It constantly checks if the elapsed          
time from the time it was invoked is equal to the number of             
seconds provided as the argument to the function. The         
main point to remember is that while loop (like many          
others) is a blocking statement meaning its execution        
happens on the call stack and does not use the browser           
APIs. So it blocks all succeeding statements until it finishes          
execution. 

2. So in the above code, even though setTimeout has a delay           
of 0s and the while loop runs for 3s, the exec() call back is              
stuck in the message queue. The while loop keeps on          
running on the call stack (single thread) until 3s has          
elapsed. And after the call stack becomes empty the         
callback exec() is moved to the call stack and executed. 

 

function runWhileLoopForNSeconds(sec: number) { 
  let start = Date.now(), 
    now = start; 
  while (now - start < sec * 1000) { 
    now = Date.now(); 
  } 

} 

function main() { 
  console.log('A'); 
  setTimeout(() => { 
    console.log('B'); 
  }, 0); 
  runWhileLoopForNSeconds(3); 
  console.log('C'); 
} 

main(); 
// Output 

// A 

// ...Main thread is blocked in a while loop for 3 seconds... 

// C 

// B 



3. So the delay argument in setTimeout() does not guarantee the start of execution after the exact                
time elapsed. It serves as a minimum time for the delay part. 

 

Callbacks 
For JavaScript to know when an asynchronous operation has a result (a result being either               
returned data or an error that occurred during the operation), it points to a function that will be                  
executed once that result is ready.  
 
This function is what we call a “callback function”. Meanwhile, JavaScript continues its normal              
execution of code. This is why frameworks that do external calls of different kinds have APIs                
where you provide callback functions to be executed later on. 
 
In our example with the setTimeout call, the callback is the arrow function calling console log. 
 
Here is another example, fetching data from a URL using a module named “request”: 
 

 
As you can see, request takes a function as its last argument. This function is not executed                 
together with the code above. It is saved to be executed later once the underlying I/O operation                 
of fetching data over HTTP(s) is done. 
 

Callback hell 
Callbacks are a good way to declare what will happen once an I/O operation has a result, but                  
what if you want to use that data in order to make another request? You can only handle the                   
result of the request (if we use the example above) within the callback function provided. 
 

 

import request from 'request'; 
 

const sendRequest = request( 
  'https://www.somepage.com', 
  (error, response, body) => { 
    if (error) { 
      // Handle error. 
    } else { 
      // Successful, do something with the response and the body. 
    } 

  }, 

); 



 
As you can see in the example if we want to do multiple asynchronous calls in sequence we                  
need to nest more and more callbacks into each other. This is an anti-pattern called a callback                 
hell. 
 

Promises 
To deal with the callback hell, the Promises were introduced in ES6. 
 
A promise is an object that wraps an asynchronous operation and notifies when it’s done. This                
sounds exactly like callbacks, but the important difference is in the usage of Promises. Instead               
of providing a callback, a promise has its own methods which you call to tell the promise what                  
will happen when it is successful or when it fails. 
The methods a promise provides are then(…) for when a successful result is available (it was                
resolved) and catch(…)  for when something went wrong (it was rejected). 
 
Using a promise looks like this: 
 

 

import request from 'request'; 
 

const sendRequest = request( 
  'https://www.somepage.com', 
  (error, response, body) => { 
    if (error) { 
      // Handle error. 
    } else { 
      // Successful, do something with the response and the body. 
      request( 
        `https://www.somepage.com/${response}`, 
        (nextError, nextResponse, nextBody) => { 
          if (nextError) { 
            // Handle error. 
          } else { 
            // Successful, do something with the response and the body. 
          } 

        }, 

      ); 

    } 

  }, 

); 



 
One important side note here is that “someAsyncOperation(someParams)” is not a Promise            
itself but a function that returns a Promise. 
 
The true power of promises is shown when you have several asynchronous operations that              
depend on each other, just like in the example above for the callback hell. 
So let’s revisit the case where we have a request that depends on the result of another request.                  
This time we are going to use a method called fetch that is similar to request but it uses                   
promises instead of callbacks. This is also to point out that callbacks and promises are not                
interchangeable. 
  

 

someAsyncOperation(someParams) 
  .then(result => { 
    // Do something with the result 
  }) 

  .catch(error => { 
    // Handle error 
  }); 



Chaining 
As the Promise.prototype.then() and Promise.prototype.catch() methods return promises, they         
can be chained. 

 
Using fetch, the code would instead look like this: 
 

 
Instead of nesting callbacks inside callbacks inside callbacks, you chain .then() calls together             
making it more readable and easier to follow. Every .then() should either return a new               
Promise or just a value or object which will be passed to the next .then()  in the chain. 
 
Another important thing to notice is that even though we are doing two different asynchronous               
requests we only have one .catch() where we handle our errors. That’s because any error               
that occurs in the Promise chain will stop further execution and an error will end up in the                  
nearest .catch()  in the chain. 

 

fetch('http://www.somepage.com') 
  // Get the text from Response object 
  // this is also async operation returning promise 
  .then(response => response.text()) 
  // Now we can use the text to create new fetch promise 
  .then(text => fetch(`http://www.somepage.com/${text}`)) 
  .then(response => { 
    // Reponse being the result of the second request 
    // Handle response 
  }) 

  // If any of the above promises are rejected 
  // this catch will handle the error 
  .catch(error => { 
    // Handle error 
  }); 



 
Async/Await 
Async/Await is a language feature that is a part of the ES8 standard. It is the next step in the                    
evolution of handling asynchronous operations in JavaScript. It gives you two new keywords to              
use in your code: async  and await . 
 
Async is for declaring that a function will handle asynchronous operations and await is used to                
declare that we want to “await” the result of an asynchronous operation inside a function that                
has the async keyword. 
 

 
You can only use the await keyword on “awaitable” functions. A function is “awaitable” if it                
returns a Promise (all functions marked async  must return a Promise). 
 
That basically means that this will work: 
 

 

  

 

const fetchJson = async (path: string) => { 
  const result = await fetch(`http://www.somepage.com/${path}`); 
  const json = await result.json(); 
  return json; 
}; 

const myFetch = (url: string) => 
  new Promise<string>((resolve, reject) => { 
    if (!url) { 
      reject(`Url can't be empty.`); 
      return; 
    } 

    resolve('Hi'); 
  }); 

 

const fetchJson = async (path: string) => { 
  const result = await myFetch(`http://www.somepage.com/${path}`); 
  return result; 
}; 



Error handling with async/await 
Inside the scope of an async function you can use try/catch for error handling and even though                 
you await an asynchronous operation, any errors will end up in that catch block: 
 

 
As with promises and .catch() you also need only one try/catch to catch all errors from any                 
number of awaited promises inside the block. 

An important consideration regarding async/await 
Async/await may make your asynchronous calls look more synchronous but it is still executed              
the same way as if it were using a callback or promise based API. The asynchronous I/O                 
operations will still be processed in parallel and the code handling the responses in the async                
functions will not be executed until that asynchronous operation has a result. Also, even though               
you are using async/await you have to sooner or later resolve it as a Promise in the top level of                    
your program. This is because async and await are just syntactic sugar for automatically              
creating, returning and resolving Promises. 
 
 
 
Firebase and Firestore 
 
Firebase is a collection of cloud services and tools managed by Google. While these services               
are primarily aimed at enterprise customers, many of them have also free plans that you can                
use in your hobby projects. In the next assignment you will be using Firestore, which is a cloud                  
database from Firebase. 
 
We will be loosely following the official Firebase setup guide and follow up guides for Firestore                
and Auth. 

Creating a project 
First you need to log in to firebase using a google account on their homepage. After you are                  
logged in you can create a new project. Since we want to only use the Firestore, we won’t be                   
needing all the google analytics for our project. 

 

const fetchJson = async (path: string) => { 
  try { 
    const result = await myFetch(`http://www.somepage.com/${path}`); 
    return result; 
  } catch (error) { 
    // Handle error 
  } 

}; 

https://firebase.google.com/docs/web/setup
https://firebase.google.com/


Registering application 
Console is the web interface of your firebase apps. Here you can find and manage all the tools                  
and services. Now to use the services in our code we need to add a new app to the project. You                     
can think of them as the frontend applications communicating with the project services. In our               
case it will be one ReactJS web application. 
You can either add a new application in the overview or through the Project settings in the left                  
panel. After we create the app, under Firebase SDK snippet > Config you can see a code                 
snippet for firebaseConfig  object that we will later use in our code. 

Cloud Firestore 
We can now select the Cloud Firestore in the Develop section in the left panel and create a                  
new database for our app. By selecting test mode we can skip setting up request permissions                
for 30 days, which will speed up the setup. Next you need to select the location where the data                   
will be physically stored, eur3 (europe-west) should be the best option. 
 
Now that we have a database set up we need to create some collections. A collection                
represents a table of the database (although not so strict). 

Authentication 
Authentication is another service provided by Firebase. There are many supported options like             
Google, Facebook or even Github sign in, but for demonstration purposes we will be using plain                
old Email/Password sign in since it doesn’t require any other setup (normally I would              
recommend against using this outdated method). In the console go to Authentication tab and              
enable the Email/Password sign in. 

Implementation: Init 
After setting everything up in the Firebase console, we can get to implementation. Start by               
adding the firebase package.  
 

 
Now we need to initialize the firebase app. Add new file utils/firebase.ts where all Firebase               
related code will be placed. Copy firebaseConfig from the project settings page mentioned             
before. 
 

 

yarn add firebase 

import firebase from "firebase/app"; 
import "firebase/firestore"; 
import "firebase/auth"; 
 

// Your web app's Firebase configuration 

const firebaseConfig = { 

https://console.firebase.google.com/


Implementation: Auth 
Documentation on how to implement Authentication can be found here. Since provided            
examples are for general JS, we need to come up with a React solution. For the                
onAuthStateChanged which provides user login status, we can write a custom hook that saves              
this info into a state. 
 

 

  apiKey: "API_KEY", 
  authDomain: "PROJECT_ID.firebaseapp.com", 
  databaseURL: "https://PROJECT_ID.firebaseio.com", 
  projectId: "PROJECT_ID", 
  storageBucket: "PROJECT_ID.appspot.com", 
  messagingSenderId: "SENDER_ID", 
  appId: "APP_ID" 
}; 

 

// Initialize Firebase 

firebase.initializeApp(firebaseConfig); 

// Hook providing logged in user information 

export const useLoggedInUser = () => { 
  // Hold user info in state 
  const [user, setUser] = useState<firebase.User>(); 
 

  // Setup onAuthStateChanged once when component is mounted 
  useEffect(() => { 
    firebase.auth().onAuthStateChanged(u => setUser(u ?? undefined)); 
  }, []); 

 

  return user; 
}; 

 

// Sign up handler 

export const signUp = (email: string, password: string) => 
  firebase.auth().createUserWithEmailAndPassword(email, password); 
 

// Sign in handler 

export const signIn = (email: string, password: string) => 

https://firebase.google.com/docs/auth/web/start


 
Since firebase takes care of the user session now we no longer need the useLoggedIn               
custom hook from the previous lesson. Replace that with the new hook and also update               
everything else related (logout button etc.). 
 

 
We also need to update the Login component. Both signUp and signIn are async functions               
returning a Promise. We can demonstrate both approaches here. What’s also nice is that on               
error Firebase returns an informative error message which we can directly show to the user. 
 

 

  firebase.auth().signInWithEmailAndPassword(email, password); 
 

// Sign out handler 

export const signOut = () => firebase.auth().signOut(); 

const App: FC = () => { 
  // Styles 
  const classes = useStyles(); 
 

  // Login state 
  const user = useLoggedInUser(); 

<CardActions> 
  <Button 
    variant='text' 
    size='large' 
    color='primary' 
    // Handling promise with async/await 
    onClick={async () => { 
      try { 
        await signUp(user, password); 
      } catch (err) { 
        setError(err.message); 
      } 

    }} 
  > 
    Create account 

  </Button> 
  <Button 

https://firebase.google.com/docs/auth/web/auth-state-persistence


Implementation: Firestore 
Last thing to implement remains the Firestore database. Similar to firebase.auth() all            
firestore related functions can be accessed through firebase.firestore() . Since we will           
be accessing data from firestore all over the application, we can simply export this object from                
utils/firebase.ts to make it easier to use. 
 

 
To demonstrate how to work with data in firestore, we will implement a simple reviews system.                
On the /about page will be all reviews pulled from the reviews collection and then we will be                  
able to submit a new review on /review page which will be accessible from /about. We can start                  
by declaring types for the data we will be using. I’ve decided to put these types to                 
utils/firebase.ts since we are using the User  type from there. 
Another step we can do is to export the specific collection we will be using to make it safer and                    
also this way we can properly type it so it’s easier to work with. 
 

 

    variant='text' 
    size='large' 
    color='primary' 
    // Handling promise with chained handlers 
    onClick={() => 
      signIn(user, password).catch(err => setError(err.message)) 
    } 
  > 
    Login 

  </Button> 
</CardActions> 

// Firestore database 

export const db = firebase.firestore(); 

// Simplified user type for referencing users 

export type User = Pick<firebase.User, 'uid' | 'email'>; 
 

// Holds information about a review 

export type Review = { 
  by: User; 
  stars: number; 
  description?: string; 
} 

 



 
Now we can update the About page and add a ReviewPreview component that renders a               
single review (you can find code for these in the next assignment). In the About page we need                  
to add code that fetches all reviews from firestore db. Since we want to subscribe to changes                 
only once we wrap the function in useEffect that runs when component mounts and saves the                
response inside component’s state. 
 

 
The data from state can be used just like any other value. 
 

 
Lastly, onto the Review page. Again complete code can be found in the assignment, example               
below shows how to add a new document to a collection. 
 

 

// We can simply cast this type to narrow our collection to Review type 

// Safer way would be to use .withConverter() method 

export const reviewsCollection = db.collection('reviews') 
  as firebase.firestore.CollectionReference<Review>; 

import { reviewsCollection, Review } from '../utils/firebase'; 
 

const About: FC = () => { 
  const [error, setError] = useState<string>(); 
  const [reviews, setReviews] = useState<Review[]>([]); 
  useEffect(() => { 
    // Call .onSnapshot() to listen to changes 
    reviewsCollection.onSnapshot( 
      snapshot => { 
        // Access .docs property of snapshot 
        setReviews(snapshot.docs.map(doc => doc.data())); 
      }, 

      err => setError(err.message), 
    ); 

  }, []); 

{reviews.map((r, i) => ( 
  <Grid key={i} xs={12} sm={6} item> 
    <ReviewPreview {...r} /> 
  </Grid> 
))} 



 
There are many more methods for managing the data which you can find nicely explained in the                 
firebase documentation. 

 

const handleSubmit = async () => { 
  try { 
    // Call .add() and pass new Record as an argument 
    await reviewsCollection.add({ 
      stars, 
      description, 
      by: { 
        uid: user?.uid ?? '', 
        email: user?.email ?? '', 
      }, 

    }); 

    // After awaiting previous call we can redirect back to /about page 
    push('/about'); 
  } catch (err) { 
    setError(err.what); 
  } 

}; 

https://firebase.google.com/docs/firestore/quickstart

