
PV248 Python 1/29 October 22, 2020

PV248 Python
Petr Ročkai

Part 1: Object Model
In this lecture, we will look at the role and the semantics of objects. In
particular, we will look at the basic structure of a Python program and
note that pretty much everything is an object.

3Objects
• the basic ‘unit’ of OOP
• also known as ‘instances’
• they bundle data and behaviour
• provide encapsulation
• local (object) invariants
• make code re-use easier

In object-oriented programming, an object is the basic building block of
a program. Please note that in some contexts, objects are instead called
instances, or class instances. We will use both terms interchangeably.
The traditional notion of an object holds that it is an entity which
bundles data and behaviour. This view works quite well in Python.
However, for the time being, let’s forget the standard story about how
the data is enclosed in a wall made of methods. This does not work in
Python anyway, since attributes (data) are public.
The real benefit is that holding data in discrete packages, accompanied
by the relevant chunks of functionality, allows us to think in terms
of local invariants. A typical object wraps up a chunk of state, but of
course not all combinations of values in its attributes need to be valid
(and rarely are, for non-trivial objects). The constraints which govern
valid states are what we call (local) invariants.
The methods (behaviour) are then written in such a way that they
move the object from valid states to other valid states: in other words,
they preserve invariants. In a correctly designed API, it should be
impossible to get an object into an invalid state by only interacting
with it through its public interface.
Finally, objects make it simpler to re-use code, through polymorphism,
composition and inheritance. This was, in fact, one of the original
motivations for OOP.

4Classes
• each (Python) object belongs to a class
• templates for objects
• calling a class creates an instance
∘ my_foo = Foo()

• classes themselves are also objects

Like with plain old data, where values are classified into data types, it
is often advantageous to classify objects (which are a kind of value)
into classes (which are a kind of data type).
Like any other data type, a class prescribes the structure of the data
(attributes) and operations on its values (methods). The distinct feature
of class-based object-oriented languages is the ease with which we can
create new data types with complex, user-defined operations.
Aside: in Python-speak, since double underscores are so common, they
have a special name: ‘dunder’. We will call them that in this subject,
since we will encounter quite a few of them.
Syntactically, classes in Python behave like functions, which create
new instances of the class when called. In addition to creating a new
empty object, it will also immediately call the __init__method of that

object, forwarding any arguments passed to the original call.
Finally, and this is specific to Python, classes are themselves objects,
and it is possible to interact with them at runtime. We will get back to
this idea shortly.

5Types vs Objects
• class system is a type system
• since Python 3, types are classes
• everything is dynamic in Python
∘ variables are not type-constrained

Since classes are essentially data types, a class system is essentially
a type system. In fact, all data types in Python are actually classes.
Each object dynamically belongs to a class: in Python, variables do
not carry types (i.e. each variable in Python can hold a value of any
type). However, values (objects) do, and it is impossible to accidentally
coerce an object into a different class – we say that Python has a strong
dynamic type system.

6Poking at Classes
• you can pass classes as function parameters
• you can create classes at runtime
• and interact with existing classes:
∘ {}.__class__, (0).__class__
∘ {}.__class__.__class__

∘ compare type(0), etc.
∘ n = numbers.Number(); n.__class__

Of course, since this is Python, classes also exist at runtime: and as we
will eventually learn, everything in Python that exists at runtime is
an object. Hence, classes are also objects with attributes and methods
and it is possible to interact with them like with any other object. This
is rarely useful, but it does serve to illustrate a point about Python.
To demonstrate that classes really are objects, the slide gives a few
examples of valid Python expressions. Try them yourself and think
about what they mean.

7Encapsulation
• objects hide implementation details
• classic types structure data
∘ objects also structure behaviour

• facilitates loose coupling

While strictly speaking, there is no encapsulation in Python (hiding
of data is not enforced), it is commonly approximated: attributes can
be named with a single leading underscore to signify they are ‘private’
and directly accessing those outside of the class itself is frowned upon.
But there is no enforcement mechanism.
Encapsulation is really just a way to structure your code to make local
invariants (as mentioned earlier) easier to reason about. All code that
could possibly violate a local constraint is bundled up within a class.
If some outside code changes the data (attributes) directly and breaks
the invariant, it is going to get exactly what it asked for.

PV248 Python 2/29 October 22, 2020

The partitioning of program state that is achieved through encapsula-
tion is also known as loose coupling. This is an important property of
good programs.

8Loose Coupling
• coupling is a degree of interdependence
• more coupling makes things harder to change
∘ it also makes reasoning harder

• good programs are loosely coupled
• cf. modularity, composability

Coupling is a measure of how tangled the program is – how many
other things break when you change one thing, and how far away
the damage spreads out from the change. Consider a ticket booking
system that started out as a small local thing, with only a few venues.
But the system grew and now you are adding venues from another
city – but for that, you need to change how venues are stored, since
you do not have a ‘city’ field (they were all local).
In a loosely coupled system, you add the attribute (or a database col-
umn) and that’s pretty much it: you may need to adjust a few methods
of the venue class, but outside of the class, nothing needs to change.
In a tightly coupled system, on the other hand, it could easily turn
out that now the reservation emails are completely jumbled. This
might sound like a stretch, but consider a system which stores all the
attributes in a list, and each component simply hard-codes themeaning
of each index.
So reservation[4] is the venue name, and reservation[7] is the cus-
tomer’s family name. But you add the city, say as index 5, and now
all other fields have shifted, and your entire application is completely
broken and you are sending out mails that start ‘Dear Britney Spears’.
Of course, this is terrible programming and the example is slightly
artificial, but things like this do happen.

9Polymorphism
• objects are (at least in Python) polymorphic
• different implementation, same interface
∘ only the interface matters for composition

• facilitates genericity and code re-use
• cf. ‘duck typing’

One of the principles that helps to achieve loosely coupled programs
is polymorphism, where different objects can fill the same role. This
encourages loose coupling, because polymorphic objects separate the
interface from the implementation quite strictly. If a function must be
able to work with objects of different types, it can only do so through
a fairly well-defined interface. The same principle applies to object
composition.
One area where polymorphism is very important is generic functions:
consider len, which is a builtin Python function that gives you a num-
ber of elements in a collection. It works equally well for lists, sets,
dictionaries and so on. Or consider the for loop, that likewise works
for multiple collection types. Or the addition operator: you can add
integers, floating point numbers, but also strings or lists. Those are all
different manifestations of polymorphism.
We have already mentioned that Python is a very dynamic language
(and this will come upmanymore times in the future). Where polymor-
phism is concerned, this dynamic nature translates into duck typing:
types are not rigorous entities like in other languages. This essentially
says, that for type-checking purposes, if it quacks like a duck andwalks
like a duck, it may as well be a duck. Hence, a function that expects a
duck will accept anything that has sufficiently duck-like behaviour. In
particular, it needs to provide the right methods with the right signa-

tures.

10Generic Programming
• code re-use often saves time
∘ not just coding but also debugging
∘ re-usable code often couples loosely

• but not everything that can be re-used should be
∘ code can be too generic
∘ and too hard to read

Programming the same thing over and over again for slightly altered
circumstances gets boring very quickly. And it is not a very efficient
use of time. A lot of programming boils down to identifying such repet-
itive patterns and isolating the common parts. Many of the constructs
in programming languages exist to allow exactly this:

• loops let us repeat statements over multiple values,
• functions let us execute a set of statements in different contexts

(and with diferent values),
• conditionals allow us to write a sequence of statements that is al-

most the same in different circumstances,
• user-defined data types (records, classes) allow us to give structure

to our data once and use it in many places.

Generic programming is a technique which mainly gives additional
power to functions and objects. Under normal circumstances, func-
tions are parametrized by values which are all of the same type. That
is, functions take arguments, which have fixed types, but the values
that are passed to the function vary from invocation to invocation.
With generic programming, the types can also vary. In Python, generic
programming is so pervasive that you may fail to even notice it. You
can often pass sets or lists into the same function, without even think-
ing about it. Or integers vs floating-point numbers. And so on. How-
ever, this is not a given. On the other hand, this level of flexibility is
also part of the reason why Python programs execute slowly.

11Attributes
• data members of objects
• each instance gets its own copy
∘ like variables scoped to object lifetime

• they get names and values

Objects can have attributes (and in fact, most objects do). Attributes
form the data associated with an object (as opposed to methods, which
form the behaviours).
Attributes behave like variables, but instead of a running function,
they are associated with an object. Each instance gets their own copy
of attributes, just like each instance of a running function gets its own
copy of local variables.
Also like variables, attributes have names and those names are bound
to values (within each object instance). Alternatively, you can think of
attributes like key-value pairs in a dictionary data structure. Inciden-
tally, this is how most objects are actually implemented in Python.

12Methods
• functions (procedures) tied to objects
• implement the behaviour of the object
• they can access the object (self)
• their signatures (usually) provide the interface
• methods are also objects

PV248 Python 3/29 October 22, 2020

Methods are basically just functions, with two differences. The first is
semantic: they are associated with the object and are allowed to access
and change its internal state. In Python, this is essentially by custom
– any function can, in principle, change the internal state of objects.
However, in other languages, this is often not the case.
The second is syntactic: the first argument of a method is the object on
which it should operate, but when the method is called, this argument
is not passed in explicitly. Instead, we write instance.method() and this
‘dot syntax’ does two things:

1. First, it looks up the method to call: different classes (and hence,
different objects) can provide different methods under the same
name. In this sense, objects and classes work as a namespace.

2. It passes the object on the left side of the dot to the method as its
first parameter.

The list of methods, along with the number and (implied) types of their
arguments forms the interface of the object. In Python, it is also fairly
normal that some attributes are part of the interface. However, this
is not as bad as it sounds, because Python can transparently map at-
tribute access (both read andwrite) tomethod calls, using the @property
decorator. This means that exposing attributes is not necessarily a vi-
olation of encapsulation and loose coupling. We will talk about this
ability in a later lecture.
Finally, aswehavementioned earlier, everything that exists at runtime
is an object: methods exist at runtime, and methods are also objects
(just like regular functions).

13Class and Instance Methods
• methods are usually tied to instances
• recall that classes are also objects
• class methods work on the class (cls)
• static methods are just namespaced functions

• decorators @classmethod, @staticmethod

Besides ‘standard’ methods, which operate on objects (instances), in
Python there are two other method types: static, which are really just
plain functions hidden inside a class, and class methods which treat
the class as an object. They are declared using decorators, like this:

@staticmethod

def a_static_method(x, y):

pass

Design-wise, static and class methods are of minor significance.

14Inheritance

shape

ellipse rectangle

circle square

• class Ellipse(Shape): ...

• usually encodes an is-a relationship

In object oriented programs, inheritance plays two roles. The first
is organizational: classes are arranged into a hierarchy where each
subclass is a more specific version of its superclass. Instances of a
subclass are automatically also instances of the superclass. We say that

a circle is an ellipse which is a shape. Any interfaces and behaviours
common to all shapes are also present on ellipses, circles, rectangles
and so on.
The second role is code re-use. While the organizational role is undis-
puted, using inheritance for code re-use is somewhat controversial.
This is because it often, though not always, goes against the former,
which is seen as more important.
In the specific picture, maximizing code re-use through inheritance
would invert the hierarchy: circle has a single diameter, while an
ellipse has two semi-axes. Likewise, a square has one side length, but
rectangle has two. The attributes of an ellipse are a superset of the
attributes of a circle, and the same with square vs rectangle. Hence,
re-use would push us to derive an ellipse from a circle and a rectangle
from a square. But not every rectangle is a square – we have saved a
bit of code, but ruined the hierarchy.

15Multiple Inheritance
• more than one base class is possible
• many languages restrict this
• Python allows general M-I
∘ class Bat(Mammal, Winged): pass

• ‘true’ M-I is somewhat rare
∘ typical use cases: mixins and interfaces

In both cases (inheritance as an organisational principle, as well as
inheritance for code re-use), it sometimesmakes sense for a given class
to havemore than one superclass. In general multiple inheritance, this
is allowed without restrictions: a bat inherits both traits of mammals
(e.g. that females may be pregnant) and of winged creatures (say, a
wingspan). Class hierarchies with this type of multiple inheritance are
rare in practice, since they become hard to reason about quite quickly.
There are two types of restricted multiple inheritance: one is mixins,
which exist for code re-use, but do not participate in the is-a relation-
ship. The second is interfaces, which is the exact opposite: they provide
organization, but no code. In Python, interfaces are often known as
Abstract Base Classes.

16Mixins
• used to pull in implementation
∘ not part of the is-a relationship
∘ by convention, not enforced by the language

• common bits of functionality
∘ e.g. implement __gt__, __eq__ &c. using __lt__

∘ you only need to implement __lt__ in your class

Mixins are a form of inheritance (usually multiple inheritance) where
only code re-use is a concern. That is, the base class and the derived
class are not related conceptually. Some languages have a special ‘mixin’
construct for this, though more often, this is simply a convention.
Programmers understand that they should not use the base type as
a general form of all its derived classes. Python belongs to this latter
category.

PV248 Python 4/29 October 22, 2020

17Interfaces
• realized as ‘abstract’ classes in Python
∘ just throw a NotImplemented exception
∘ document the intent in a docstring

• participates in is-a relationships
• partially displaced by duck typing
∘ more important in other languages (think Java)

Interfaces are the dual to mixins: they only exist to give structure to
the object hierarchy, but do not provide any code sharing. In Python,
interfaces are rarely used, because duck typing covers most of the use
cases traditionally served by interfaces.
Nonetheless, when an interface is called for in Python, there is no
special syntax: by convention, an interface is a class with no attributes
and with methods which all throw NotImplemented.

18Composition
• attributes of objects can be other objects
∘ (also, everything is an object in Python)

• encodes a has-a relationship
∘ a circle has a center and a radius
∘ a circle is a shape

Object composition is another important approach to code re-use (os-
tensibly much more important than inheritance, even though it is
often neglected). Where inheritance encodes an is-a relationship, com-
position encodes a has-a relationship. Since in Python, everything
is an object, each attribute is an instance of object composition. In
languages with data types other than objects, the distinction is more
useful.

19Constructors
• this is the __init__method
• initializes the attributes of the instance
• can call superclass constructors explicitly
∘ not called automatically (unlike C++, Java)
∘ MySuperClass.__init__(self)

∘ super().__init__ (if unambiguous)

We have mentioned local invariants earlier. Object initialization is an
important part of that story – the initialization method is responsible
for putting the object into a consistent ‘blank’ or ‘base’ state. After
initialization, all local invariants should hold. Correctmethods invoked
on consistent objects should keep the object consistent. Together, those
two properties mean that correct objects should never violate their
local invariants.
In Python, there is a bit of a catch: attributes of superclasses are ini-
tialized by the __init__method of that superclass, but this method is
not called automatically when the object is created. Therefore, you
need to always remember to call the __init__method of the superclass
whenever appropriate.

20Class and Object Dictionaries
• most objects are basically dictionaries
• try e.g. foo.__dict__ (for a suitable foo)
• saying foo.xmeans foo.__dict__["x"]
∘ if that fails, type(foo).__dict__["x"] follows
∘ then superclasses of type(foo), according to MRO

• this is what makes monkey patching possible

As we have seen earlier, object attributes behave like dictionaries, and
in many cases, that’s exactly how they are implemented in Python. It
is possible to interact with this dictionary directly, through the (magic)
attribute __dict__. The exceptions are built-in objects like int, str or
list and slot-based objects (more on those in a later lecture).
On objects with dictionaries, saying foo.x is interpreted to mean
foo.__dict__['x']. If the attribute (or method!) is not in the object dic-
tionary, it is looked up in the class dictionary (remember that classes
are objects too). Then superclasses and so on. The protocol is rather
complicated – you can look up the details in the manual.
Remember that in case of methods, in addition to the lookup described
above, the dot syntax also binds the first argument of the method to
the object on the left of the dot.
It is possible to add new methods and attributes to objects with dictio-
naries at runtime (by simply adding them through the __dict__ pseudo-
attribute). This is often called ‘monkey patching’. It is, however, not
possible with objects without dictionaries (though methods can still be
added to their classes, which do have dictionaries).

21Writing Classes

class Person:

def __init__(self, name):

self.name = name

def greet(self):

print("hello " + self.name)

p = Person("you")

p.greet()

The syntax for creating new classes is fairly straight-forward. Just
remember that attributes are always created in the __init__method,
never by writing them as variables alongside methods, like in most
other languages.

22Functions
• top-level functions/procedures are possible
• they are usually ‘scoped’ via the module system
• functions are also objects
∘ try print.__class__ (or type(print))

• some functions are built in (print, len, ...)

While Python is object-based to the extreme, unlike some other lan-
guages (e.g. Java), free-standing functions are allowed, and common.
Groups of related functions are bundled into modules (possibly along
with some classes). Unlike in C, there is no single global namespace for
functions. Like everything else in Python, functions are also objects.
For instance:

def foo():

print("hello")

PV248 Python 5/29 October 22, 2020

>>> type(foo)

<class 'function'>

A few universally-useful functions are built into the interpreter, like
print above, or len, hash, eval, range and so on. A complete list can be
obtained by asking the interpreter, like this:

__builtins__.__dict__.keys()

However, besides functions, this list includes a number of classes: the
standard types (int, dict and so on) and the standard exception classes
(SyntaxError, NameError and so on). To show off the introspection capa-
bilities of Python, let’s get a list of just the built-in functions:

for n, o in __builtins__.__dict__.items():

if type(o) == type(print):

print(n)

Remember though: with great power comes great responsibility.

23Modules in Python
• modules are just normal .py files
• import executes a file by name
∘ it will look into system-defined locations
∘ the search path includes the current directory
∘ they typically only define classes & functions

• import sys → lets you use sys.argv

• from sys import argv→ you can write just argv

In Python, there is no special syntax for creating modules: each source
file can be imported as a module. It is customary that modules do not
execute any ‘top level’ code (that is, statements outside of functions or
classes), though this is not enforced in any way.
There is, however, special syntax for loading modules: the import key-
word. On import foo, Python will look for a file named foo.py, first in
the current directory and if that fails, in the standard library (which is
located in a system-specific location).
When that file is located, it is executed as if it was a normal program,
and at the end, all toplevel names that it has defined become available
as attributes of the module. That is, if foo.py looks like this:

def hello():

print("hello")

then bar.pymay look like this:

import foo

foo.hello()

What this means is that the import in bar.py locates foo.py, executes it,
then collects the toplevel definitions (in this case the function hello)
and makes them available via the ‘dot’ syntax under the name of the
module (foo.hello). Behind the scenes, the module is (of course) an
object and the toplevel definitions from the file being imported are
attached to that object as standard attributes.

Part 2: Memory Management & Builtin Types

25Memory
• most program data is stored in ‘memory’
∘ an array of byte-addressable data storage
∘ address space managed by the OS
∘ 32 or 64 bit numbers as addresses

• typically backed by RAM

Programs primarily consist of two things: code, which drives the CPU,
and data, which drives the program. Even though data has similar
influence over the program as the program has over the processor, we
usually think of data as passive: it sits around, waiting for the program
to do something with it. The program goes through conditionals and
loops and at each turn, a piece of data decides which branch to take
and whether to terminate the loop or perform another iteration. But
of course, we are used to thinking about this in terms of the program
reading and changing the data.
Both the data and the program are stored in memory. This memory is,
from a programmer’s viewpoint, a big array of bytes. There might be
holes in it (indices which you cannot access), but otherwise the analogy
works quite well. Importantly, addresses are really just indices, that is,
numbers.
On the lowest level, most of the memory is the large-capacity dynamic
random-access memory installed in the computer, though some of the
bits and pieces are stored in static RAM on the CPU (cache) or even in
the registers. The hardware, the operating system and the compiler
(or interpreter) all conspire to hide this, though, and let us pretend that
the memory is just an array of bytes.

26Language vs Computer
• programs use high-level concepts
∘ objects, procedures, closures
∘ values can be passed around

• the computer has a single array of bytes
∘ and a bunch of registers

When we write programs, we use high-level abstractions all the time:
from simple functions, through objects all the way to lexical closures.
Let us first consider a very simple procedure, with no local variables,
no arguments and no return value. You could be excused for thinking
that it is the most mundane thing imaginable.
However, consider that a procedure like that must be able to return
to its caller, and for that, it needs to remember a return address. And
this is true for any procedure that is currently executing. This gives
rise to an execution stack, one of the most ubiquitous structures for
organizing memory.
Contrast this with the flat array of bytes that is available at the lowest
level of a computer. It is quite clear that even the simplest programs
written in the simplest programming languages need to organize this
flat memory, and that it is not viable to do this manually.

27Memory Management
• deciding where to store data
• high-level objects are stored in flat memory
∘ they have a given (usually fixed) size
∘ have limited lifetime

This is the domain of memory management. It is an umbrella term

PV248 Python 6/29 October 22, 2020

that covers a wide range of techniques, from very simple to quite
complicated. The basic job of a memory management subsystem is to
decide where to place data.
This data could be more or less anything: in case of the execution stack
we have mentioned earlier, the data is the return addresses and the
organizational principle is a stack. As procedures are called, a new
address is pushed on top of the stack, and when it returns, an address
is popped off. The stack is implemented as a single pointer: the address
of the top of the stack. Pushing moves the address in one direction,
while popping moves it in the opposite direction. Other than that, the
data is stored directly in the flat and otherwise unstructured memory.
Notably, even an extremely simple idea like this gives us very powerful
abstraction.
However, when we say memory management, we usually have some-
thing a little more sophisticated in mind. We owe the simplicity of the
stack to the fact that lifetimes of procedures are strictly nested. That
is, the procedure which started executing last will always be the first
to finish. That means that the data associated with that procedure can
be forgotten before the data associated with its caller. This principle
naturally extends to procedures with local variables.

28Memory Management Terminology
• object: an entity with an address and size
∘ can contain references to other objects
∘ not the same as language-level object

• lifetime: when is the object valid
∘ live: references exist to the object
∘ dead: the object is unreachable – garbage

Not everything in a program is this simple. Some data needs to be
available for a long time, while other pieces of data can be thrown
away almost immediately. Some pieces of data can refer to other pieces
of data (that is, pointers exist). In the context of memory management,
such pieces of data are called objects, which is of course somewhat
confusing.
These two properties (object lifetime and existence of pointers) are
the most important aspects of a memory object, and of memory man-
agement in general. Unsurprisingly, they are also closely related. An
object is alive if anything else that is alive refers to it. Additionally, lo-
cal variables are always alive, since they are directly reachable through
the ‘stack pointer’ (the address of the top of the execution stack).
Objects which are not alive are dead: what happens to those objects
does not matter for further execution of the program. Since their
addresses have been forgotten, the program can never look at the
object again, and the memory it occupies can be safely reclaimed.

29Memory Management by Type
• manual: malloc and free in C
• static automatic
∘ e.g. stack variables in C and C++

• dynamic automatic
∘ pioneered by LISP, widely used

There are three basic types of memory management. There is the
manual memory management provided by the C library through the
malloc and free functions. It is calledmanual because no effort is made
to track the lifetimes of objects automatically. The programmer is fully
responsible for ensuring that objects are released by calling freewhen
their lifetime ends.
If free is called too soon, the program may get very confused when it
tries to store two different objects in the same place in memory. If it is
called too late (i.e. never), the program leaks memory: it will be unable

to re-use memory which is occupied by dead objects. This is wasteful,
and can cause the program to crash because it no longer has space to
store new objects.
Even though it completely ignores lifetimes, themachinery behind this
‘manual’ memory management is rather sophisticated. It needs to keep
track of which pieces of memory are available, and upon request (a call
to malloc), it needs to be able to quickly locate a suitable address. This
address must be such that the next N bytes, where N was provided as
a parameter to malloc, are currently unused. How to do this efficiently
is a topic almost worth its own course.
In comparison, the static automatic approach, which corresponds to
the execution stack, is both simple and efficient. It is automatic in
the sense that the programmer does not need to explicitly deal with
lifetimes, though in this case, that is achieved because their structure
is extremely rigid.
Finally, dynamic automatic memory management combines the ‘good’
aspects of both: the lifetimes can be arbitrary and are tracked automat-
ically.

30Automatic Memory Management
• static vs dynamic
∘ when do we make decisions about lifetime
∘ compile time vs run time

• safe vs unsafe
∘ can the program read unused memory?

The static vs dynamic aspect of an automatic memory management
system governs when the decisions are made about object lifetime. In
a static system, the lifetime is computed ahead of time, e.g. by the
compiler. In a dynamic system, such decisions are made at runtime.
Another aspect of memory management is safety. A program which
uses safe memory management can never get into a situation when
it attempts to use the same piece of memory for two different objects.
There are multiple ways to achieve this, though by far the most com-
mon is to use a dynamic automatic approach to memory management,
which is naturally safe. This is because memory associated with an
object is never reclaimed as long as a reference (a pointer) to the object
exists.
However, other options exist: a program with local variables but no
pointers is also naturally safe, though its memory use is rather re-
stricted. A system with both static lifetimes and with pointers is avail-
able in e.g. Rust (though the principle is much older, see also linear
types).

31Object Lifetime
• the time between malloc and free

• another view: when is the object needed
∘ often impossible to tell
∘ can be safely over-approximated
∘ at the expense of memory leaks

32Static Automatic
• usually binds lifetime to lexical scope
• no passing references up the call stack
∘ may or may not be enforced

• no lexical closures
• examples: C, C++

PV248 Python 7/29 October 22, 2020

33Dynamic Automatic
• over-approximate lifetime dynamically
• usually easiest for the programmer
∘ until you need to debug a space leak

• reference counting, mark & sweep collectors
• examples: Java, almost every dynamic language

34Reference Counting
• attach a counter to each object
• whenever a reference is made, increase
• whenever a reference is lost, decrease
• the object is dead when the counter hits 0
• fails to reclaim reference cycles

35Mark and Sweep
• start from a root set (in-scope variables)
• follow references, mark every object encountered
• sweep: throw away all unmarked memory
• usually stops the program while running
• garbage is retained until the GC runs

36Memory Management in CPython
• primarily based on reference counting
• optional mark & sweep collector
∘ enabled by default
∘ configure via import gc

∘ reclaims cycles

37Refcounting Advantages
• simple to implement in a ‘managed’ language
• reclaims objects quickly
• no need to pause the program
• easily made concurrent

38Refcounting Problems
• significant memory overhead
• problems with cache locality
• bad performance for data shared between threads
• fails to reclaim cyclic structures

39Data Structures
• an abstract description of data
• leaves out low-level details
• makes writing programs easier
• makes reading programs easier, too

40Building Data Structures
• there are two kinds of types in python
∘ built-in, implemented in C
∘ user-defined (includes libraries)

• both kinds are based on objects
∘ but built-ins only look that way

41Mutability
• some objects can be modified
∘ we say they are mutable
∘ otherwise, they are immutable

• immutability is an abstraction
∘ physical memory is always mutable

• in python, immutability is not ‘recursive’

42Built-in: int
• arbitrary precision integer
∘ no overflows and other nasty behaviour

• it is an object, i.e. held by reference
∘ uniform with any other kind of object
∘ immutable

• both of the above make it slow
∘ machine integers only in C-based modules

43Additional Numeric Objects
• bool: True or False
∘ how much is True + True?
∘ is 0 true? is empty string?

• numbers.Real: floating point numbers
• numbers.Complex: a pair of above

44Built-in: bytes
• a sequence of bytes (raw data)
• exists for efficiency reasons
∘ in the abstract is just a tuple

• models data as stored in files
∘ or incoming through a socket
∘ or as stored in raw memory

45Properties of bytes
• can be indexed and iterated
∘ both create objects of type int

∘ try this sequence: id(x[1]), id(x[2])
• mutable version: bytearray
∘ the equivalent of C char arrays

PV248 Python 8/29 October 22, 2020

46Built-in: str
• immutable unicode strings
∘ not the same as bytes
∘ bytes must be decoded to obtain str

∘ (and str encoded to obtain bytes)
• represented as utf-8 sequences in CPython
∘ implemented in PyCompactUnicodeObject

47Built-in: tuple
• an immutable sequence type
∘ the number of elements is fixed
∘ so is the type of each element

• but elements themselves may be mutable
∘ x = [] then y = (x, 0)

∘ x.append(1)→ y == ([1], 0)

• implemented as a C array of object references

48Built-in: list
• a mutable version of tuple
∘ items can be assigned x[3] = 5

∘ items can be append-ed
• implemented as a dynamic array
∘ many operations are amortised O(1)
∘ insert is O(n)

49Built-in: dict
• implemented as a hash table
• some of the most performance-critical code
∘ dictionaries appear everywhere in python
∘ heavily hand-tuned C code

• both keys and values are objects

50Hashes and Mutability
• dictionary keys must be hashable
∘ this implies recursive immutability

• what would happen if a key is mutated?
∘ most likely, the hash would change
∘ all hash tables with the key become invalid
∘ this would be very expensive to fix

51Built-in: set
• implements the math concept of a set
• also a hash table, but with keys only
∘ a separate C implementation

• mutable – items can be added
∘ but they must be hashable
∘ hence cannot be changed

52Built-in: frozenset
• an immutable version of set
• always hashable (since all items must be)
∘ can appear in set or another frozenset
∘ can be used as a key in dict

• the C implementation is shared with set

53Efficient Objects: __slots__
• fixes the attribute names allowed in an object
• saves memory: consider 1-attribute object
∘ with __dict__: 56 + 112 bytes
∘ with __slots__: 48 bytes

• makes code faster: no need to hash anything
∘ more compact in memory→ better cache efficiency

Part 3: Text, JSON and XML
This lecture is the first part of a two-lecture block on persistent storage.
This week, we will first briefly look at working with files, and then
proceed to talk about text files specifically.

55Transient Data
• lives in program memory
• data structures, objects
• interpreter state
• often implicit manipulation
• more on this next week

56Persistent Data
• (structured) text or binary files
• relational (SQL) databases
• object and ‘flat’ databases (NoSQL)
• manipulated explicitly

57Persistent Storage
• ‘local’ file system
∘ stored on HDD, SSD, ...
∘ stored somwhere in a local network

• ‘remote’, using an application-level protocol
∘ local or remote databases
∘ cloud storage &c.

PV248 Python 9/29 October 22, 2020

58Reading Files
• opening files: open('file.txt', 'r')

• files can be iterated

f = open('file.txt', 'r')

for line in f:

print(line)

59Resource Acquisition
• plain open is prone to resource leaks
∘ what happens during an exception?
∘ holding a file open is not free

• pythonic solution: with blocks
∘ defined in PEP 343
∘ binds resources to scopes

60Detour: PEP
• PEP stands for Python Enhancement Proposal
• akin to RFC documents managed by IETF
• initially formalise future changes to Python
∘ later serve as documentation for the same

• <https://www.python.org/dev/peps/>

61Using with

with open('/etc/passwd', 'r') as f:

for line in f:

do_stuff(line)

• still safe if do_stuff raises an exception

62Finalizers
• there is a __del__method
• but it is not guaranteed to run
∘ it may run arbitrarily late
∘ or never

• not very good for resource management

63Context Managers
• with has an associated protocol
• you can use with on any context manager
• which is an object with __enter__ and __exit__

• you can create your own

Part 3.1: Text and Unicode

We will now turn our attention to text and its representation in a
computer.

65Representing Text
• ASCII: one byte = one character
∘ total of 127 different characters
∘ not very universal

• 8-bit encodings: 255 characters
• multi-byte encodings for non-Latin scripts

Representation of text in the computer used to be a relatively simple af-
fair while it was English-only and one byte was one character. Things
are not so simple anymore. Even with 8-bit character sets, the avail-
able alphabet is extremely limited, and can’t even cover latin-based
European languages. This led to huge amount of fragmentation and at
the height of it, essentially each region had its own character encoding.
Some of them had 2 or 3. Non-latin alphabets like Chinese or Japanese
had no hope of fitting into single-byte encodings and have always used
multiple bytes to encode a single character.

66Unicode
• one character encoding to rule them all
• supports all extant scripts and writing systems
∘ and a whole bunch of dead scripts, too

• approx. 143000 code points
• collation, segmentation, comparison, ...

A universal character encoding, with roots in the late 80s and early
90s. Of course, adoption was not immediate, though most computer
systems nowadays use Unicode for representing and processing text.
Nonetheless, you can still encounter software which will default to
legacy 8-bit encodings, or even outright fall apart on Unicode text.
Pretty much all extant scripts and languages are covered by recent re-
visions of Unicode. Besides character encoding, Unicode defines many
other aspects of text processing and rendering. Sorting (collation) of
strings is a huge, complicated topic unto itself. Likewise, segmentation
– finding boundaries of graphemes and words – is a complex area cov-
ered by Unicode. Even seemingly simple matters like string equality
are, in fact, quite hard.

67Code Point
• basic unit of encoding characters
• letters, punctuation, symbols
• combining diacritical marks
• not the same thing as a character
• code points range from 1 to 10FFFF

68Unicode Encodings
• deals with representing code points
• UCS = Universal Coded Character Set
∘ fixed-length encoding
∘ two variants: UCS-2 (16 bit) and UCS-4 (32 bit)

• UTF = Unicode Transformation Format
∘ variable-length encoding
∘ variants: UTF-8, UTF-16 and UTF-32

PV248 Python 10/29 October 22, 2020

69Grapheme
• technically ‘extended grapheme cluster’
• a logical character, as expected by users
∘ encoded using 1 or more code points

• multiple encodings of the same grapheme
∘ e.g. composed vs decomposed
∘ U+0041 U+0300 vs U+0C00: À vs À

70Segmentation
• breaking text into smaller units
∘ graphemes, words and sentences

• algorithms defined by the unicode spec
∘ Unicode Standard Annex #29
∘ graphemes and words are quite reliable
∘ sentences not so much (too much ambiguity)

71Normal Form
• Unicode defines 4 canonical (normal) forms
∘ NFC, NFD, NFKC, NFKD
∘ NFC = Normal Form Composed
∘ NFD = Normal Form Decomposed

• K variants = looser, lossy conversion
• all normalization is idempotent
• NFC does not give you 1 code point per grapheme

72
str vs bytes
• iterating bytes gives individual bytes
∘ indexing is fast – fixed-size elements

• iterating str gives code points
∘ slightly slower, because it uses UTF-8
∘ does not iterate over graphemes

• going back and forth: str.encode, bytes.decode

73Python vs Unicode
• no native support for unicode segmentation
∘ hence no grapheme iteration or word splitting

• convert everything into NFC and hope for the best
∘ unicodedata.normalize()

∘ will sometimes break (we’ll discuss regexes in a bit)
∘ most people don’t bother
∘ correctness is overrated→worse is better

74Regular Expressions
• compiling: r = re.compile(r"key: (.*)")

• matching: m = r.match("key: some value")

• extracting captures: print(m.group(1))

∘ prints some value

• substitutions: s2 = re.sub(r"\s*$", '', s1)

∘ strips all trailing whitespace in s1

75Detour: Raw String Literals
• the r in r"..." stands for raw (not regex)
• normally, \ is magical in strings
∘ but \ is also magical in regexes
∘ nobody wants to write \\s &c.
∘ not to mention \\\\ to match a literal \

• not super useful outside of regexes

76Detour: Other Literal Types
• byte strings: b"abc"→ bytes

• formatted string literals: f"x {y}"

x = 12

print(f"x = {x}")

• triple-quote literals: """xy"""

77Regular Expressions vs Unicode

import re

s = "\u0041\u0300" # À

t = "\u00c0" # À

print(s, t)

print(re.match("..", s), re.match("..", t))

print(re.match("\w+$", s), re.match("\w+$", t))

print(re.match("À", s), re.match("À", t))

78Regexes and Normal Forms
• some of the problems can be fixed by NFC
∘ some go away completely (literal unicode matching)
∘ some become rarer (the ".." and "\w" problems)

• most text in the wild is already in NFC
∘ but not all of it
∘ case in point: filenames on macOS (NFD)

79Decomposing Strings
• recall that str is immutable
• splitting: str.split(':')
∘ None = split on any whitespace

• split on first delimiter: partition
• better whitespace stripping: s2 = s1.strip()

∘ also lstrip() and rstrip()

80Searching and Matching
• startswith and endswith

∘ often convenient shortcuts
• find = index

∘ generic substring search

PV248 Python 11/29 October 22, 2020

81Building Strings
• format literals and str.format

• str.replace – substring search and replace
• str.join – turn lists of strings into a string

Part 3.2: Structured Text

83JSON
• structured, text-based data format
• atoms: integers, strings, booleans
• objects (dictionaries), arrays (lists)
• widely used around the web &c.
• simple (compared to XML or YAML)

84JSON: Example

{

"composer": ["Bach, Johann Sebastian"],

"key": "g",

"voices": {

"1": "oboe",

"2": "bassoon"

}

}

85JSON: Writing
• printing JSON seems straightforward enough
• but: double quotes in strings
• strings must be properly \-escaped during output
• also pesky commas
• keeping track of indentation for human readability
• better use an existing library: `import json`

86JSON in Python
• json.dumps = short for dump to string
• python dict/list/str/... data comes in
• a string with valid JSON comes out

Workflow
• just convert everything to dict and list

• run json.dumps or json.dump(data, file)

87Python Example

d = {}

d["composer"] = ["Bach, Johann Sebastian"]

d["key"] = "g"

d["voices"] = { 1: "oboe", 2: "bassoon" }

json.dump(d, sys.stdout, indent=4)

Beware: keys are always strings in JSON

88Parsing JSON
• import json

• json.load is the counterpart to json.dump from above
∘ de-serialise data from an open file
∘ builds lists, dictionaries, etc.

• json.loads corresponds to json.dumps

89XML
• meant as a lightweight and consistent redesign of SGML
∘ turned into a very complex format

• heaps of invalid XML floating around
∘ parsing real-world XML is a nightmare
∘ even valid XML is pretty challenging

90XML: Example

<Order OrderDate="1999-10-20">

<Address Type="Shipping">

<Name>Ellen Adams</Name>

<Street>123 Maple Street</Street>

</Address>

<Item PartNumber="872-AA">

<ProductName>Lawnmower</ProductName>

<Quantity>1</Quantity>

</Item>

</Order>

91XML: Another Example

<BLOKY_OBSAH>

<STUDENT>

<OBSAH>25 bodů</OBSAH>

<UCO>72873</UCO>

<ZMENENO>20160111104208</ZMENENO>

<ZMENIL>395879</ZMENIL>

</STUDENT>

</BLOKY_OBSAH>

PV248 Python 12/29 October 22, 2020

92XML Features
• offers extensible, rich structure
∘ tags, attributes, entities
∘ suited for structured hierarchical data

• schemas: use XML to describe XML
∘ allows general-purpose validators
∘ self-documenting to a degree

93XML vs JSON
• both work best with trees
• JSON has basically no features
∘ basic data structures and that’s it

• JSON data is ad-hoc and usually undocumented
∘ but: this often happens with XML anyway

94XML Parsers
• DOM = Document Object Model
• SAX = Simple API for XML
• expat = fast SAX-like parser (but not SAX)
• ElementTree = DOM-like but more pythonic

95XML: DOM
• read the entire XML document into memory
• exposes the AST (Abstract Syntax Tree)
• allows things like XPath and CSS selectors
• the API is somewhat clumsy in Python

96XML: SAX
• event-driven XML parsing
• much more efficient than DOM
∘ but often harder to use

• only useful in Python for huge XML files
∘ otherwise just use ElementTree

97XML: ElementTree

for child in root:

print child.tag, child.attrib

Order { OrderDate: "1999-10-20" }

• supports tree walking, XPath
• supports serialization too

Part 4: Databases, SQL

99NoSQL / Non-relational Databases
• umbrella term for a number of approaches
∘ flat key/value and column stores
∘ document and graph stores

• no or minimal schemas
• non-standard query languages

100Key-Value Stores
• usually very fast and very simple
• completely unstructured values
• keys are often database-global
∘ workaround: prefixes for namespacing
∘ or: multiple databases

101NoSQL & Python
• redis (redis-py) module (Redis is Key-Value)
• memcached (another Key-Value store)
• PyMongo for talking to MongoDB (document-oriented)
• CouchDB (another document-oriented store)
• neo4j or cayley (module pyley) for graph structures

102SQL and RDBMS
• SQL = Structured Query Language
• RDBMS = Relational DataBase Management System
• SQL is to NoSQL what XML is to JSON
• heavily used and extremely reliable

103SQL: Example

select name, grade from student;

select name from student where grade < 'C';

insert into student (name, grade) values

('Random X. Student', 'C');

select * from student

join enrollment on student.id = enrollment.student

join group on group.id = enrollment.group;

104SQL: Relational Data
• JSON and XML are hierarchical
∘ or built from functions if you like

• SQL is relational
∘ relations = generalized functions
∘ can capture more structure
∘ much harder to efficiently process

PV248 Python 13/29 October 22, 2020

105SQL: Data Definition
• mandatory, unlike XML or JSON
• gives the data a rather rigid structure
• tables (relations) and columns (attributes)
• static data types for columns
• additional consistency constraints

106SQL: Constraints
• help ensure consistency of the data
• foreign keys: referential integrity
∘ ensures there are no dangling references
∘ but: does not prevent accidental misuse

• unique constraints
• check constraints: arbitrary consistency checks

107SQL: Query Planning
• an RDBMS makes heavy use of indexing
∘ using B trees, hashes and similar techniques
∘ indices are used automatically

• all the heavy lifting is done by the backend
∘ highly-optimized, low-level code
∘ efficient handling of large data

108SQL: Reliability and Flexibility
• most RDBMS give ACID guarantees
∘ transparently solves a lot of problems
∘ basically impossible with normal files

• support for schema alterations
∘ alter table and similar
∘ nearly impossible in ad-hoc systems

109SQLite
• lightweight in-process SQL engine
• the entire database is in a single file
• convenient python module, sqlite3
• stepping stone for a “real” database

110Other Databases
• you can talk to most SQL DBs using python
• postgresql (psycopg2, ...)
• mysql / mariadb (mysql-python, mysql-connector, ...)
• big & expensive: Oracle (cx_oracle), DB2 (pyDB2)
• most of those are much more reliable than SQLite

111SQL Injection

sql = "SELECT * FROM t WHERE name = '" + n + '"'

• the above code is bad, never do it
• consider the following

n = "x'; drop table students --"

n = "x'; insert into passwd (user, pass) ..."

112Avoiding SQL Injection
• use proper SQL-building APIs
∘ this takes care of escaping internally

• templates like insert ... values (?, ?)

∘ the ? get safely substituted by the module
∘ e.g. the executemethod of a cursor

113PEP 249
• informational PEP, for library writers
• describes how database modules should behave
∘ ideally, all SQL modules have the same interface
∘ makes it easy to swap a database backend

• but: SQL itself is not 100% portable

114SQL Pitfalls
• sqlite does not enforce all constraints
∘ you need to pragma foreign_keys = on

• no portable syntax for autoincrement keys
• not all (column) types are supported everywhere
• no portable way to get the key of last insert

115More Resources & Stuff to Look Up
• SQL: https://www.w3schools.com/sql/
• https://docs.python.org/3/library/sqlite3.html

• Object-Relational Mapping
• SQLAlchemy: constructing portable SQL

Part 5: Operators, Iterators and Exceptions

117Callable Objects
• user-defined functions (module-level def)
• user-defined methods (instance and class)
• built-in functions and methods
• class objects
• objects with a __call__method

PV248 Python 14/29 October 22, 2020

118User-defined Functions
• come about from a module-level def
• metadata: __doc__, __name__, __module__
• scope: __globals__, __closure__
• arguments: __defaults__, __kwdefaults__
• type annotations: __annotations__
• the code itself: __code__

119Positional and Keyword Arguments
• user-defined functions have positional arguments
• and keyword arguments
∘ print("hello", file=sys.stderr)

∘ arguments are passed by name
∘ which style is used is up to the caller

• variadic functions: def foo(*args, **kwargs)

∘ args is a tuple of unmatched positional args
∘ kwargs is a dict of unmatched keyword args

120Lambdas
• def functions must have a name
• lambdas provide anonymous functions
• the body must be an expression
• syntax: lambda x: print("hello", x)

• standard user-defined functions otherwise

121Instance Methods
• comes about as object.method
∘ print(x.foo)→ <bound method Foo.foo of ...>

• combines the class, instance and function itself
• __func__ is a user-defined function object
• let bar = x.foo, then
∘ x.foo()→ bar.__func__(bar.__self__)

122Iterators
• objects with __next__ (since 3.x)
∘ iteration ends on raise StopIteration

• iterable objects provide __iter__

∘ sometimes, this is just return self

∘ any iterable can appear in for x in iterable

123

class FooIter:

def __init__(self):

self.x = 10

def __iter__(self): return self

def __next__(self):

if self.x:

self.x -= 1

else:

raise StopIteration

return self.x

124Generators (PEP 255)
• written as a normal function or method
• they use yield to generate a sequence
• represented as special callable objects
∘ exist at the C level in CPython

def foo(*lst):

for i in lst: yield i + 1

list(foo(1, 2)) # prints [2, 3]

125
yield from

• calling a generator produces a generator object
• how do we call one generator from another?
• same as for x in foo(): yield x

def bar(*lst):

yield from foo(*lst)

yield from foo(*lst)

list(bar(1, 2)) # prints [2, 3, 2, 3]

126Decorators
• written as @decor before a function definition
• decor is a regular function (def decor(f))
∘ f is bound to the decorated function
∘ the decorated function becomes the result of decor

• classes can be decorated too
• you can ‘create’ decorators at runtime
∘ @mkdecor("moo") (mkdecor returns the decorator)
∘ you can stack decorators

PV248 Python 15/29 October 22, 2020

127

def decor(f):

return lambda: print("bar")

def mkdecor(s):

return lambda g: lambda: print(s)

@decor

def foo(f): print("foo")

@mkdecor("moo")

def moo(f): print("foo")

foo() prints "bar", moo() prints "moo"

128List Comprehension
• a concise way to build lists
• combines a filter and a map

[2 * x for x in range(10)]

[x for x in range(10) if x % 2 == 1]

[2 * x for x in range(10) if x % 2 == 1]

[(x, y) for x in range(3) for y in range(2)]

129Operators
• operators are (mostly) syntactic sugar
• x < y rewrites to x.__lt__(y)

• is and is not are special
∘ are the operands the same object?
∘ also the ternary (conditional) operator

130Non-Operator Builtins
• len(x)→ x.__len__() (length)
• abs(x)→ x.__abs__() (magnitude)
• str(x)→ x.__str__() (printing)
• repr(x)→ x.__repr__() (printing for eval)
• bool(x) and if x: x.__bool__()

131Arithmetic
• a standard selection of operators
• / is floating point, // is integral
• += and similar are somewhat magical
∘ x += y→ x = x.__iadd__(y) if defined
∘ otherwise x = x.__add__(y)

132

x = 7 # an int is immutable

x += 3 # works, x = 10, id(x) changes

lst = [7, 3]

lst[0] += 3 # works too, id(lst) stays same

tup = (7, 3) # a tuple is immutable

tup += (1, 1) # still works (id changes)

tup[0] += 3 # fails

133Relational Operators
• operands can be of different types
• equality: !=, ==
∘ by default uses object identity

• ordering: <, <=, >, >= (TypeError by default)
• consistency is not enforced

134Relational Consistency
• __eq__must be an equivalence relation
• x.__ne__(y)must be the same as not x.__eq__(y)

• __lt__must be an ordering relation
∘ compatible with __eq__

∘ consistent with each other
• each operator is separate (mixins can help)
∘ or perhaps a class decorator

135Collection Operators
• in is also a membership operator (outside for)
∘ implemented as __contains__

• indexing and slicing operators
∘ del x[y]→ x.__delitem__(y)

∘ x[y]→ x.__getitem__(y)

∘ x[y] = z→ x.__setitem__(y, z)

136Conditional Operator
• also known as a ternary operator
• written x if cond else y

∘ in C: cond ? x : y

• forms an expression, unlike if

∘ can e.g. appear in a lambda
∘ or in function arguments, &c.

PV248 Python 16/29 October 22, 2020

137Exceptions
• an exception interrupts normal control flow
• it’s called an exception because it is exceptional
∘ never mind StopIteration

• causes methods to be interrupted
∘ until a matching except block is found
∘ also known as stack unwinding

138Life Without Exceptions

int fd = socket(...);

if (fd < 0)

... /* handle errors */

if (bind(fd, ...) < 0)

... /* handle errors */

if (listen(fd, 5) < 0)

... /* handle errors */

139With Exceptions

try:

sock = socket.socket(...)

sock.bind(...)

sock.listen(...)

except ...:

handle errors

140Exceptions vs Resources

x = open("file.txt")

stuff

raise SomeError

• who calls x.close()
• this would be a resource leak

141Using finally

try:

x = open("file.txt")

stuff

finally:

x.close()

• works, but tedious and error-prone

142Using with

with open("file.txt") as f:

stuff

• with takes care of the finally and close

• with x as y sets y = x.__enter__()

∘ and calls x.__exit__(...) when leaving the block

143

The @property decorator
• attribute syntax is the preferred one in Python
• writing useless setters and getters is boring

class Foo:

@property

def x(self): return 2 * self.a

@x.setter

def x(self, v): self.a = v // 2

Part 6: Closures, Coroutines, Concurrency
145Concurrency & Parallelism

• threading – thread-based parallelism
• multiprocessing

• concurrent – future-based programming
• subprocess

• sched, a general-purpose event scheduler
• queue, for sending objects between threads

146Threading
• low-level thread support, module threading

• Thread objects represent actual threads
∘ threads provide start() and join()

∘ the run()method executes in a new thread
• mutexes, semaphores &c.

PV248 Python 17/29 October 22, 2020

147The Global Interpreter Lock
• memory management in CPython is not thread-safe
∘ Python code runs under a global lock
∘ pure Python code cannot use multiple cores

• C code usually runs without the lock
∘ this includes numpy crunching

148Multiprocessing
• like threading but uses processes
• works around the GIL
∘ each worker process has its own interpreter

• queued/sent objects must be pickled
∘ see also: the picklemodule
∘ this causes substantial overhead
∘ functions, classes &c. are pickled by name

149Futures
• like coroutine await but for subroutines
• a Future can be waited for using f.result()

• scheduled via concurrent.futures.Executor

∘ Executor.map is like asyncio.gather

∘ Executor.submit is like asyncio.create_task

• implemented using process or thread pools

150Native Coroutines (PEP 492)
• created using async def (since Python 3.5)
• generalisation of generators
∘ yield from is replaced with await

∘ an __await__magic method is required
• a coroutine can be suspended and resumed

151Coroutine Scheduling
• coroutines need a scheduler
• one is available from asyncio.get_event_loop()

• along with many coroutine building blocks
• coroutines can actually run in parallel
∘ via asyncio.create_task (since 3.7)
∘ via asyncio.gather

152Async Generators (PEP 525)
• async def + yield

• semantics like simple generators
• but also allows await
• iterated with async for

∘ async for runs sequentially

153Execution Stack
• made up of activation frames
• holds local variables
• and return addresses
• in dynamic languages, often lives in the heap

154Variable Capture
• variables are captured lexically
• definitions are a dynamic / run-time construct
∘ a nested definition is executed
∘ creates a closure object

• always by reference in Python
∘ but can be by-value in other languages

155Using Closures
• closures can be returned, stored and called
∘ they can be called multiple times, too
∘ they can capture arbitrary variables

• closures naturally retain state
• this is what makes them powerful

156Objects from Closures
• so closures are essentially code + state
• wait, isn’t that what an object is?
• indeed, you can implement objects using closures

157The Role of GC
• memory management becomes a lot more complicated
• forget C-style ‘automatic’ stack variables
• this is why the stack is actually in the heap
• this can go as far as form reference cycles

158Coroutines
• coroutines are a generalisation of subroutines
• they can be suspended and re-entered
• coroutines can be closures at the same time
• the code of a coroutine is like a function
• a suspended coroutine is like an activation frame

159Yield
• suspends execution and ‘returns’ a value
• may also obtain a new value (cf. send)
• when re-entered, continue where we left off

for i in range(5): yield i

PV248 Python 18/29 October 22, 2020

160Send
• with yield, we have one-way communication
• but in many cases, we would like two-way
• a suspended coroutine is an object in Python
∘ with a sendmethod which takes a value
∘ send re-enters the coroutine

161Yield From and Await
• yield from is mostly a generator concept
• await basically does the same thing
∘ call out to another coroutine
∘ when it suspends, so does the entire stack

162Suspending Native Coroutines
• this is not actually possible
∘ not with async-native syntax anyway

• you need a yield

∘ for that, you need a generator
∘ use the types.coroutine decorator

163Event Loop
• not required in theory
• useful also without coroutines
• there is a synergistic effect
∘ event loops make coroutines easier
∘ coroutines make event loops easier

Part 7: Communication & HTTP with asyncio

165Running Programs (the old way)
• os.system is about the simplest
∘ also somewhat dangerous – shell injection
∘ you only get the exit code

• os.popen allows you to read output of a program
∘ alternatively, you can send input to the program
∘ you can’t do both (would likely deadlock anyway)
∘ runs the command through a shell, same as os.system

166Low-level Process API
• POSIX-inherited interfaces (on POSIX systems)
• os.exec: replace the current process
• os.fork: split the current process in two
• os.forkpty: same but with a PTY

167Detour: bytes vs str
• strings (class str) represent text
∘ that is, a sequence of unicode points

• files and network connections handle data
∘ represented in Python as bytes

• the bytes constructor can convert from str

∘ e.g. b = bytes("hello", "utf8")

168Running Programs (the new way)
• you can use the subprocessmodule
• subprocess can handle bidirectional IO
∘ it also takes care of avoiding IO deadlocks
∘ set input to feed data to the subprocess

• internally, run uses a Popen object
∘ if run can’t do it, Popen probably can

169Getting subprocess Output
• available via run since Python 3.7
• the run function returns a CompletedProcess

• it has attributes stdout and stderr

• both are bytes (byte sequences) by default
• or str if text or encodingwere set
• available if you enabled capture_output

170Running Filters with Popen

• if you are stuck with 3.6, use Popen directly
• set stdin in the constructor to PIPE

• use the communicatemethod to send the input
• this gives you the outputs (as bytes)

171

import subprocess

from subprocess import PIPE

input = bytes("x\na\nb\ny", "utf8")

p = subprocess.Popen(["sort"], stdin=PIPE,

stdout=PIPE)

out = p.communicate(input=input)

out[0] is the stdout, out[1] is None

172Subprocesses with asyncio

• import asyncio.subprocess

• create_subprocess_exec, like subprocess.run

∘ but it returns a Process instance
∘ Process has a communicate async method

• can run things in background (via tasks)
∘ also multiple processes at once

PV248 Python 19/29 October 22, 2020

173Protocol-based asyncio subprocesses
• let loop be an implementation of the asyncio event loop
• there’s subprocess_exec and subprocess_shell

∘ sets up pipes by default
• integrates into the asyncio transport layer (see later)
• allows you to obtain the data piece-wise
• https://docs.python.org/3/library/asyncio-protocol.html

174Sockets
• the socket API comes from early BSD Unix
• socket represents a (possible) network connection
• sockets are more complicated than normal files
∘ establishing connections is hard
∘ messages get lost much more often than file data

175Socket Types
• sockets can be internet or unix domain
∘ internet sockets connect to other computers
∘ Unix sockets live in the filesystem

• sockets can be stream or datagram
∘ stream sockets are like files (TCP)
∘ you can write a continuous stream of data
∘ datagram sockets can send individual messages (UDP)

176Sockets in Python
• the socketmodule is available on all major OSes
• it has a nice object-oriented API
∘ failures are propagated as exceptions
∘ buffer management is automatic

• useful if you need to do low-level networking
∘ hard to use in non-blocking mode

177Sockets and asyncio

• asyncio provides sock_* to work with socket objects
• this makes work with non-blocking sockets a lot easier
• but your program needs to be written in async style
• only use sockets when there is no other choice
∘ asyncio protocols are both faster and easier to use

178Hyper-Text Transfer Protocol
• originally a simple text-based, stateless protocol
• however
∘ SSL/TLS, cryptography (https)
∘ pipelining (somewhat stateful)
∘ cookies (somewhat stateful in a different way)

• typically between client and a front-end server
• but also as a back-end protocol (web server to app server)

179Request Anatomy
• request type (see below)
• header (text-based, like e-mail)
• content

Request Types
• GET – asks the server to send a resource
• HEAD – like GET but only send back headers
• POST – send data to the server

180Python and HTTP
• both client and server functionality
∘ import http.client

∘ import http.server

• TLS/SSL wrappers are also available
∘ import ssl

• synchronous by default

181Serving Requests
• derive from BaseHTTPRequestHandler

• implement a do_GETmethod
• this gets called whenever the client does a GET

• also available: do_HEAD, do_POST, etc.
• pass the class (not an instance) to HTTPServer

182Serving Requests (cont’d)
• HTTPServer creates a new instance of your Handler
• the BaseHTTPRequestHandlermachinery runs
• it calls your do_GET etc. method
• request data is available in instance variables
∘ self.path, self.headers

183Talking to the Client
• HTTP responses start with a response code
∘ self.send_response(200, 'OK')

• the headers follow (set at least Content-Type)
∘ self.send_header('Connection', 'close')

• headers and the content need to be separated
∘ self.end_headers()

• finally, send the content by writing to self.wfile

184Sending Content
• self.wfile is an open file
• it has a write()method which you can use
• sockets only accept byte sequences, not str
• use the bytes(string, encoding) constructor
∘ match the encoding to your Content-Type

PV248 Python 20/29 October 22, 2020

185HTTP and asyncio

• the base asyncio currently doesn’t directly support HTTP
• but: you can get aiohttp from PyPI
• contains a very nice web server
∘ from aiohttp import web

∘ minimum boilerplate, fully asyncio-ready

186Aside: The Python Package Index
• colloquially known as PyPI (or cheese shop)
∘ do not confuse with PyPy (Python in almost-Python)

• both source packages and binaries
∘ the latter known as wheels (PEP 427, 491)
∘ previously python eggs

• <https://pypi.python.org>

187SSL and TLS
• you want to use the sslmodule for handling HTTPS
∘ this is especially true server-side
∘ aiohttp and http.server are compatible

• you need to deal with certificates (loading, checking)
• this is a rather important but complex topic

188Certificate Basics
• certificate is a cryptographically signed statement
∘ it ties a server to a certain public key
∘ the client ensures the server knows the private key

• the server loads the certificate and its private key
• the client must validate the certificate
∘ this is typically a lot harder to get right

189SSL in Python
• start with import ssl

• almost everything happens in the SSLContext class
• get an instance from ssl.create_default_context()

∘ you can use wrap_socket to run an SSL handshake
∘ you can pass the context to aiohttp

• if httpd is a http.server.HTTPServer:

httpd.socket = ssl.wrap_socket(httpd.socket, ...)

190HTTP Clients
• there’s a very basic http.client
• for a more complete library, use urllib.request

• aiohttp has client functionality
• all of the above can be used with ssl

• another 3rd party module: Python Requests

Part 8: Low-level asyncio

192IO at the OS Level
• often defaults to blocking
∘ read returns when data is available
∘ this is usually OK for files

• but what about network code?
∘ could work for a client

193Threads and IO
• there may be work to do while waiting
∘ waiting for IO can be wasteful

• only the calling (OS) thread is blocked
∘ another thread may do the work
∘ but multiple green threads may be blocked

194Non-Blocking IO
• the program calls read
∘ read returns immediately
∘ even if there was no data

• but how do we know when to read?
∘ we could poll
∘ for example call read every 30ms

195Polling
• trade-off between latency and throughput
∘ sometimes, polling is okay
∘ but is often too inefficient

• alternative: IO dispatch
∘ useful when multiple IOs are pending
∘ wait only if all are blocked

PV248 Python 21/29 October 22, 2020

196
select

• takes a list of file descriptors
• block until one of them is ready
∘ next readwill return data immediately

• can optionally specify a timeout
• only useful for OS-level resources

197Alternatives to select

• select is a rather old interface
• there is a number of more modern variants
• poll and epoll system calls
∘ despite the name, they do not poll
∘ epoll is more scalable

• kqueue and kevent on BSD systems

198Synchronous vs Asynchronous
• the select family is synchronous
∘ you call the function
∘ it may wait some time
∘ you proceed when it returns

• OS threads are fully asynchronous

199The Thorny Issue of Disks
• a file is always ‘ready’ for reading
• this may still take time to complete
• there is no good solution on UNIX
• POSIX AIO exists but is sparsely supported
• OS threads are an option

200IO onWindows
• select is possible (but slow)
• Windows provides real asynchronous IO
∘ quite different from UNIX
∘ the IO operation is directly issued
∘ but the function returns immediately

• comes with a notification queue

201The asyncio Event Loop
• uses the select family of syscalls
• why is it called async IO?
∘ select is synchronous in principle
∘ this is an implementation detail
∘ the IOs are asynchronous to each other

202How Does It Work
• you must use asyncio functions for IO
• an async read does not issue an OS read

• it yields back into the event loop
• the fd is put on the select list
• the coroutine is resumed when the fd is ready

203Timers
• asyncio allows you to set timers
• the event loop keeps a list of those
• and uses that to set the select timeout
∘ just uses the nearest timer expiry

• when a timer expires, its owner is resumed

204Blocking IO vs asyncio
• all user code runs on the main thread
• you must not call any blocking IO functions
• doing so will stall the entire application
∘ in a server, clients will time out
∘ even if not, latency will suffer

205DNS
• POSIX: getaddrinfo and getnameinfo

∘ also the older API gethostbyname
• those are all blocking functions
∘ and they can take a while
∘ but name resolution is essential

• asyncio internally uses OS threads for DNS

206Signals
• signals on UNIX are very asynchronous
• interact with OS threads in a messy way
• asyncio hides all this using C code

207Native Coroutines (Reminder)
• delared using async def

async def foo():

await asyncio.sleep(1)

• calling foo() returns a suspended coroutine
• which you can await

∘ or turn it into an asyncio.Task

PV248 Python 22/29 October 22, 2020

208Tasks
• asyncio.Task is a nice wrapper around coroutines
∘ create with asyncio.create_task()

• can be stopped prematurely using cancel()

• has an API for asking things:
∘ done() tells you if the coroutine has finished
∘ result() gives you the result

209

Tasks and Exceptions
• what if a coroutine raises an exception?
• calling resultwill re-raise it
∘ i.e. it continues propagating from result()

• you can also ask directly using exception()

∘ returns None if the coroutine ended normally

210Asynchronous Context Managers
• normally, we use with for resource acquisition
∘ this internally uses the context manager protocol

• but sometimes you need to wait for a resource
∘ __enter__() is a subroutine and would block
∘ this won’t work in async-enabled code

• we need __enter__() to be itself a coroutine

211
async with

• just like wait but uses __aenter__(), __aexit__()
∘ those are async def

• the async with behaves like an await

∘ it will suspend if the context manager does
∘ the coroutine which owns the resource can continue

• mainly used for locks and semaphores

Part 9: Python Pitfalls

213Mixing Languages
• for many people, Python is not a first language
• some things look similar in Python and Java (C++, ...)
∘ sometimes they do the same thing
∘ sometimes they do something very different
∘ sometimes the difference is subtle

214Python vs Java: Decorators
• Java has a thing called annotations
• looks very much like a Python decorator
• in Python, decorators can drastically change meaning
• in Java, they are just passive metadata
∘ other code can use them formeta-programming though

215Class Body Variables

class Foo:

some_attr = 42

• in Java/C++, this is how you create instance variables
• in Python, this creates class attributes
∘ i.e. what C++/Java would call static attributes

216Very Late Errors

if a == 2:

priiiint("a is not 2")

• no error when loading this into python
• it even works as long as a != 2

• most languages would tell you much earlier

217Very Late Errors (cont’d)

try:

foo()

except TyyyypeError:

print("my mistake")

• does not even complain when running the code
• you only notice when foo() raises an exception

218Late Imports

if a == 2:

import foo

foo.say_hello()

• unless a == 2, mymod is not loaded
• any syntax errors don’t show up until a == 2

∘ it may even fail to exist

219Block Scope

for i in range(10): pass

print(i) # not a NameError

• in Python, local variables are function-scoped
• in other languages, i is confined to the loop

PV248 Python 23/29 October 22, 2020

220Assignment Pitfalls

x = [1, 2]

y = x

x.append(3)

print(y) # prints [1, 2, 3]

• in Python, everything is a reference
• assignment does not make copies

221Equality of Iterables
• [0, 1] == [0, 1]→ True (obviously)
• range(2) == range(2) → True

• list(range(2)) == [0, 1] → True

• [0, 1] == range(2)→ False

222Equality of bool
• if 0: print("yes")→ nothing
• if 1: print("yes")→ yes
• False == 0→ True

• True == 1→ True

• 0 is False→ False

• 1 is True→ False

223Equality of bool (cont’d)
• if 2: print("yes")→ yes
• True == 2→ False

• False == 2→ False

• if '': print("yes")→ nothing
• if 'x': print("yes") → yes
• '' == False→ False

• 'x' == True→ False

224Mutable Default Arguments

def foo(x = []):

x.append(7)

return x

foo() # [7]

foo() # [7, 7]... wait, what?

225Late Lexical Capture

f = [lambda x : i * x for i in range(5)]

f[4](3) # 12

f[0](3) # 12 ... ?!

g = [lambda x, i = i: i * x for i in range(5)]

g[4](3) # 12

g[0](3) # 0 ... fml

h = [(lambda x : i * x)(3) for i in range(5)]

h # [0, 3, 6, 12] ... i kid you not

226Dictionary Iteration Order
• in python <= 3.6
∘ small dictionaries iterate in insertion order
∘ big dictionaries iterate in ‘random’ order

• in python 3.7
∘ all in insertion order, but not documented

• in python >= 3.8
∘ guaranteed to iterate in insertion order

227List Multiplication

x = [[1] * 2] * 3

print(x) # [[1, 1], [1, 1], [1, 1]]

x[0][0] = 2

print(x) # [[2, 1], [2, 1], [2, 1]]

228Forgotten Await

import asyncio

async def foo():

print("hello")

async def main():

foo()

asyncio.run(main())

• gives warning coroutine 'foo' was never awaited

229Python vs Java: Closures
• captured variables are final in Java
• but they are mutable in Python
∘ and of course captured by reference

• they are whatever you tell them to be in C++

230

Explicit super()
• Java and C++ automatically call parent constructors
• Python does not
• you have to call them yourself

PV248 Python 24/29 October 22, 2020

231Setters and Getters

obj.attr

obj.attr = 4

• in C++ or Java, this is an assignment
• in Python, it can run arbitrary code
∘ this often makes getters/setters redundantPart 10: Testing, Profiling

233Why Testing
• reading programs is hard
• reasoning about programs is even harder
• testing is comparatively easy

• difference between an example and a proof

234What is Testing
• based on trial runs
• the program is executed with some inputs
• the outputs or outcomes are checked
• almost always incomplete

235Testing Levels
• unit testing
∘ individual classes
∘ individual functions

• functional
∘ system
∘ integration

236Testing Automation
• manual testing
∘ still widely used
∘ requires human

• semi-automated
∘ requires human assistance

• fully automated
∘ can run unattended

237Testing Insight
• what does the test or tester know?
• black box: nothing known about internals
• gray box: limited knowledge
• white box: ‘complete’ knowledge

238Why Unit Testing?
• allows testing small pieces of code
• the unit is likely to be used in other code
∘ make sure your code works before you use it
∘ the less code, the easier it is to debug

• especially easier to hit all the corner cases

239Unit Tests with unittest

• from unittest import TestCase

• derive your test class from TestCase

• put test code into methods named test_*

• run with python -m unittest program.py

∘ add -v for more verbose output

240

from unittest import TestCase

class TestArith(TestCase):

def test_add(self):

self.assertEqual(1, 4 - 3)

def test_leq(self):

self.assertTrue(3 <= 2 * 3)

241Unit Tests with pytest

• a more pythonic alternative to unittest

∘ unittest is derived from JUnit
• easier to use and less boilerplate
• you can use native python assert

• easier to run, too
∘ just run pytest in your source repository

242Test Auto-Discovery in pytest

• pytest finds your testcases for you
∘ no need to register anything

• put your tests in test_.py or _test.py

• name your testcases (functions) test_*

PV248 Python 25/29 October 22, 2020

243Fixtures in pytest

• sometimes you need the same thing in many testcases
• in unittest, you have the test class
• pytest passes fixtures as parameters
∘ fixtures are created by a decorator
∘ they are matched based on their names

244

import pytest

import smtplib

@pytest.fixture

def smtp_connection():

return smtplib.SMTP("smtp.gmail.com", 587)

def test_ehlo(smtp_connection):

response, msg = smtp_connection.ehlo()

assert response == 250

245Property Testing
• writing test inputs is tedious
• sometimes, we can generate them instead
• useful for general properties like
∘ idempotency (e.g. serialize + deserialize)
∘ invariants (output is sorted, ...)
∘ code does not cause exceptions

246Using hypothesis

• property-based testing for Python
• has strategies to generate basic data types
∘ int, str, dict, list, set, ...

• compose built-in generators to get custom types
• integrated with pytest

247

import hypothesis

import hypothesis.strategies as s

@hypothesis.given(s.lists(s.integers()))

def test_sorted(x):

assert sorted(x) == x # should fail

@hypothesis.given(x=s.integers(), y=s.integers())

def test_cancel(x, y):

assert (x + y) - y == x # looks okay

248Going Quick and Dirty
• goal: minimize time spent on testing
• manual testing usually loses
∘ but it has almost 0 initial investment

• if you can write a test in 5 minutes, do it
• useful for testing small scripts

249Shell 101
• shell scripts are very easy to write
• they are ideal for testing IO behaviour
• easily check for exit status: set -e

• see what is going on: set -x

• use diff -u to check expected vs actual output

250Shell Test Example

set -ex

python script.py < test1.in | tee out

diff -u test1.out out

python script.py < test2.in | tee out

diff -u test2.out out

251Continuous Integration
• automated tests need to be executed
• with many tests, this gets tedious to do by hand
• CI builds and tests your project regularly
∘ every time you push some commits
∘ every night (e.g. more extensive tests)

252CI: Travis
• runs in the cloud (CI as a service)
• trivially integrates with pytest

• virtualenv out of the box for python projects
• integrated with github
• configure in .travis.yml in your repo

253CI: GitLab
• GitLab has its own CI solution (similar to travis)
• also available at FI
• runs tests when you push to your gitlab
• drop a .gitlab-ci.yml in your repository
• automatic deployment into heroku &c.

PV248 Python 26/29 October 22, 2020

254CI: Buildbot
• written in python/twisted
∘ basically a framework to build a custom CI tool

• self-hosted and somewhat complicated to set up
∘ more suited for complex projects
∘ much more flexible than most CI tools

• distributed design

255CI: Jenkins
• another self-hosted solution, this time in Java
∘ widely used and well supported

• native support for python projects (including pytest)
∘ provides a dashboard with test result graphs &c.
∘ supports publishing sphinx-generated documentation

256Print-based Debugging
• no need to be ashamed, everybody does it
• less painful in interpreted languages
• you can also use decorators for tracing
• never forget to clean your program up again

257

def debug(e):

f = sys._getframe(1)

v = eval(e, f.f_globals, f.f_locals)

l = f.f_code.co_filename + ':'

l += str(f.f_lineno) + ':'

print(l, e, '=', repr(v), file=sys.stderr)

x = 1

debug('x + 1')

258The Python Debugger
• run as python -m pdb program.py

• there’s a built-in help command
• next steps through the program
• break to set a breakpoint
• cont to run until end or a breakpoint

259What is Profiling
• measurement of resource consumption
• essential info for optimising programs
• answers questions about bottlenecks
∘ where is my program spending most time?
∘ less often: how is memory used in the program

260Why Profiling
• ‘blind’ optimisation is often misdirected
∘ it is like fixing bugs without triggering them
∘ program performance is hard to reason about

• tells you exactly which point is too slow
∘ allows for best speedup with least work

261Profiling in Python
• provided as a library, cProfile
∘ alternative: profile is slower, but more flexible

• run as python -m cProfile program.py

• outputs a list of lines/functions and their cost
• use cProfile.run() to profile a single expression

262

python -m cProfile -s time fib.py

ncalls tottime percall file:line(function)

13638/2 0.032 0.016 fib.py:1(fib_rec)

2 0.000 0.000 {builtins.print}

2 0.000 0.000 fib.py:5(fib_mem)

Part 11: Linear Algebra & Symbolic Math
264Numbers in Python

• recall that numbers are objects
• a tuple of real numbers has 300% overhead
∘ compared to a C array of float values
∘ and 350% for integers

• this causes extremely poor cache use
• integers are arbitrary-precision

265Math in Python
• numeric data usually means arrays
∘ this is inefficient in python

• we need a module written in C
∘ but we don’t want to do that ourselves

• enter the SciPy project
∘ pre-made numeric and scientific packages

PV248 Python 27/29 October 22, 2020

266The SciPy Family
• numpy: data types, linear algebra
• scipy: more computational machinery
• pandas: data analysis and statistics
• matplotlib: plotting and graphing
• sympy: symbolic mathematics

267Aside: External Libraries
• until now, we only used bundled packages
• for math, we will need external libraries
• you can use pip to install those
∘ use pip install --user <package>

268Aside: Installing numpy

• the easiest way may be with pip

∘ this would be pip3 on aisa

• linux distributions usually also have packages
• another option is getting the Anaconda bundle
• detailed instructions on https://scipy.org

269Arrays in numpy

• compact, C-implemented data types
• flexible multi-dimensional arrays
• easy and efficient re-shaping
∘ typically without copying the data

270Entering Data
• most data is stored in numpy.array

• can be constructed from a list

∘ a list of lists for 2D arrays
• or directly loaded from / stored to a file
∘ binary: numpy.load, numpy.save
∘ text: numpy.loadtxt, numpy.savetxt

271LAPACK and BLAS
• BLAS is a low-level vector/matrix package
• LAPACK is built on top of BLAS
∘ provides higher-level operations
∘ tuned for modern CPUs with multiple caches

• both are written in Fortran
∘ ATLAS and C-LAPACK are C implementations

272Element-wise Functions
• the basic math function arsenal
• powers, roots, exponentials, logarithms
• trigonometric (sin, cos, tan, ...)
• hyperbolic (sinh, cosh, tanh, ...)
• cyclometric (arcsin, arccos, arctan, ...)

273Matrix Operations in numpy

• import numpy.linalg

• multiplication, inversion, rank
• eigenvalues and eigenvectors
• linear equation solver
• pseudo-inverses, linear least squares

274Additional Linear Algebra in scipy

• import scipy.linalg

• LU, QR, polar, etc. decomposition
• matrix exponentials and logarithms
• matrix equation solvers
• special operations for banded matrices

275Where is my Gaussian Elimination?
• used in lots of school linear algebra
• but not the most efficient algorithm
• a few problems with numerical stability
• not directly available in numpy

276Numeric Stability
• floats are imprecise / approximate
• multiplication is not associative
• iteration amplifies the errors

0.1**2 == 0.01 # False

1 / (0.1**2 - 0.01) # 5.8⋅10¹⁷

a = (0.1 * 0.1) * 10

b = 0.1 * (0.1 * 10)

1 / (a - b) # 7.21⋅10¹⁶

277LU Decomposition
• decompose matrix A into simpler factors
• PA = LUwhere
∘ P is a permutation matrix
∘ L is a lower triangular matrix
∘ U is an upper triangular matrix

• fast and numerically stable

PV248 Python 28/29 October 22, 2020

278Uses for LU
• equations, determinant, inversion, ...
• e.g. det(A) = det(P−1) ⋅ det(L) ⋅ det(U)
∘ where det(U) = ∏i Uii

∘ and det(L) = ∏i Lii

279Numeric Math
• float arithmetic is messy but incredibly fast
• measured data is approximate anyway
• stable algorithms exist for many things
∘ and are available from libraries

• we often don’t care about exactness
∘ think computer graphics, signal analysis, ...

280Symbolic Math
• numeric math sucks for ‘textbook’ math
• there are problems where exactness matters
∘ pure math and theoretical physics

• incredibly slow computation
∘ but much cleaner interpretation

281Linear Algebra in sympy

• uses exact math
∘ e.g. arbitrary precision rationals
∘ and roots thereof
∘ and many other computable numbers

• wide repertoire of functions
∘ including LU, QR, etc. decompositions

282Exact Rationals in sympy

from sympy import *

a = QQ(1) / 10 # QQ = rationals

Matrix([[sqrt(a**3), 0, 0],

[0, sqrt(a**3), 0],

[0, 0, 1]]).det()

result: 1/1000

283
numpy for Comparison

import numpy as np

import numpy.linalg as la

a = 0.1

la.det([[np.sqrt(a**3), 0, 0],

[0, np.sqrt(a**3), 0],

[0, 0, 1]])

result: 0.0010000000000000002

284General Solutions in Symbolic Math

from sympy import *

x = symbols('x')

Matrix([[x, 0, 0],

[0, 1, 0],

[0, 0, x]]).det()

result: x ** 2

285Symbolic Differentation

x = symbols('x')

diff(x**2 + 2*x + log(x/2))

result: 2*x + 2 + 1/x

diff(x**2 * exp(x))

result: x**2 * exp(x) + 2 * x * exp(x)

286Algebraic Equations

solve(x**2 - 7)

result: [-sqrt(7), sqrt(7)]

solve(x**2 - exp(x))

result: [-2 * LambertW(-1/2)]

solve(x**4 - x)

result: [0, 1, -1/2 - sqrt(3) * I/2,

-1/2 + sqrt(3) * I/2] ; I**2 = -1

287Ordinary Differential Equations

f = Function('f')

dsolve(f(x).diff(x)) # f'(x) = 0

result: Eq(f(x), C1)

dsolve(f(x).diff(x) - f(x)) # f'(x) = f(x)

result: Eq(f(x), C1 * exp(x))

dsolve(f(x).diff(x) + f(x)) # f'(x) = -f(x)

result: Eq(f(x), C1 * exp(-x))

288Symbolic Integration

integrate(x**2)

result: x**3 / 3

integrate(log(x))

result: x * log(x) - x

integrate(cos(x) ** 2)

result: x/2 + sin(x) * cos(x) / 2

PV248 Python 29/29 October 22, 2020

289Numeric Sparse Matrices
• sparse = most elements are 0
• available in scipy.sparse

• special data types (not numpy arrays)
∘ do not use numpy functions on those

• less general, but more compact and faster

290Fourier Transform
• continuous: f̂ (ξ) = ∫∞−∞ f(x) exp(−2πixξ)dx
• series: f(x) = ∑∞

n=−∞ cn exp(
i2πnx

P)
• real series: f(x) = a0

2 +∑∞
n=1 (an sin(

2πnx
P) + bn cos(

2πnx
P))

∘ (complex) coefficients: cn = 1
2 (an − ibn)

291Discrete Fourier Transform
• available in numpy.fft

• goes between time and frequency domains
• a few different variants are covered
∘ real-valued input (for signals, rfft)
∘ inverse transform (ifft, irfft)
∘ multiple dimensions (fft2, fftn)

292Polynomial Series
• the numpy.polynomial package
• Chebyshev, Hermite, Laguerre and Legendre
∘ arithmetic, calculus and special-purpose operations
∘ numeric integration using Guassian quadrature
∘ fitting (polynomial regression)

Part 12: Statistics

294Statistics in numpy

• a basic statistical toolkit
∘ averages, medians
∘ variance, standard deviation
∘ histograms

• random sampling and distributions

295Linear Regression
• very fast model-fitting method
∘ both in computational and human terms
∘ quick and dirty first approximation

• widely used in data interpretation
∘ biology and sociology statistics
∘ finance and economics, especially prediction

296Polynomial Regression
• higher-order variant of linear regression
• can capture acceleration or deceleration
• harder to use and interpret
∘ also harder to compute

• usually requires a model of the data

297Interpolation
• find a line or curve that approximates data
• it must pass through the data points
∘ this is a major difference to regression

• more dangerous than regression
∘ runs a serious risk of overfitting

298Linear and Polynomial Regression, Interpolation
• regressions using the least squares method
∘ linear: numpy.linalg.lstsq
∘ polynomial: numpy.polyfit

• interpolation: scipy.interpolate
∘ e.g. piecewise cubic splines
∘ Lagrange interpolating polynomials

299Pandas: Data Analysis
• the Python equivalent of R
∘ works with tabular data (CSV, SQL, Excel)
∘ time series (also variable frequency)
∘ primarily works with floating-point values

• partially implemented in C and Cython

300Pandas Series and DataFrame
• Series is a single sequence of numbers
• DataFrame represents tabular data
∘ powerful indexing operators
∘ index by column→ series
∘ index by condition→ filtering

301Pandas Example

scores = [('Maxine', 12), ('John', 12),

('Sandra', 10)]

cols = ['name', 'score']

df = pd.DataFrame(data=scores, columns=cols)

df['score'].max() # 12

df[df['score'] >= 12] # Maxine and John

