
PV248 Python 1/9 October 22, 2020

PV248 Python
Petr Ročkai and Zuzana Baranová

Part A: Introduction
This document is a collection of exercises and commented examples
of source code (in Python). All of the source code included here is also
available as source files which you can edit and directly execute.
Each chapter corresponds to a single week of the semester. The corre-
spondence between exercises and the content of the lectures is some-
what loose, especially at the start of the semester. The course as-
sumes that you are intuitively familiar with common programming
concepts like classes, objects, higher-order functions and function clo-
sures (which can be stored in variables). However, you do not need a
detailed theoretical understanding of the concepts.
NB. The exercise part of this document may be incomplete. Please
always refer to the source files that you obtained via pv248 update on
aisa as the authoritative version. We are working on also improving
this document, please be patient.

Part A.1: Course Overview

Welcome to PV248 Programming in Python. In a normal semester,
the course consists of lectures, seminars and assignments. This is
not a normal semester: the course will be entirely online, and your
primary source of information will be this collection of code examples
and exercises. There are a few lecture recordings from previous years,
but only one or so is in English.
Since this is a programming subject, most of the coursework – and grad-
ing – will center around actual programming. There will be 2 types of
programs that youwill write in this seminar: tiny programs for weekly
exercises (15-20 minutes each) and small programs for homework (a
few hundred lines).
Writing programs is hard and this course won’t be entirely easy either.
You will need to put in effort to pass the subject. Hopefully, you will
have learned something by the end of it.
Further details on the organisation of this course are in this directory:

• grading.txt – what is graded and how; what you need to pass,
• homework.txt – general guidelines that govern assignments,
• reviews.txt – writing and receiving peer reviews,
• advisors.txt – whom to talk to and how when you need help.

Studymaterials for eachweek are in directories 01 through 13. Start by
reading intro.txt. Assignments are in directories hw1 through hw6 and
will be made available according to the schedule shown in grading.txt.

Part A.2: Grading

To pass the subject, you need to collect a total of 18 points (by any
means). The points can be obtained as follows (these are upper limits):

• 12 points for homework (6 assignments, 2 points each)
• 9 points for weekly exercises,
• 6 points for finishing your homework early,
• 3 points for peer review.

You need to pass the 18 point mark by 17th of February, one week after
the last deadline of the last homework (this gives you some space to
collect the remaining points via peer review).

A.2.1 Homework There will be 6 assignments, one every two weeks.
There will be 8 deadlines for each of them, one week apart and each
deadline gives you one chance to pass the automated test suite. If
you pass on the first or second deadline, you get 1 extra point for the

assignment. For the third and fourth deadlines, the bonus is reduced
to 0.5 point. Afterwards, you only get the baseline 2 points.
The deadline schedule is as follows:

given try 1 try 2 try 3 try 4
3 points 2.5 points

hw1 7.10. 14.10. 21.10. 28.10. 4.11.
hw2 21.10. 28.10. 4.11. 11.11. 18.11.
hw3 4.11. 11.11. 18.11. 25.11. 2.12.
hw4 18.11. 25.11. 2.12. 9.12. 16.12.
hw5 2.12. 9.12. 16.12. 23.12. 30.12.
hw6 16.12. 23.12. 30.12. 6.1. 13.1.

given try 5 try 6 try 7 try 8
2 points

hw1 7.10. 11.11. 18.11. 25.11. 2.12.
hw2 21.10. 25.11. 2.12. 9.12. 16.12.
hw3 4.11. 9.12. 16.12. 23.12. 30.12.
hw4 18.11. 23.12. 30.12. 6.1. 13.1.
hw5 2.12. 6.1. 13.1. 20.1. 27.1.
hw6 16.12. 20.1. 27.1. 3.2. 10.2.

The test suite is strictly binary: you either pass or you fail. More details
and guidelines are in homework.txt.

A.2.2 Weekly Exercises Besides homework assignments, the main
source of points will be weekly exercises. Like with homework, you
are not required to do any of these (except to get sufficient points to
pass the course). How you split points between homework and the
weekly exercises is up to you.
Each week, you will be able to submit a fixed subset of the exercises
given to you (i.e. wewill select usually 2, sometimes perhaps 3 exercises,
which you can submit and get the point). Each week, you will be able
to get up to one point (so in theory, 12 points are available, but the
maximum you can earn this way is capped at 9). The point will be split
between the exercises, i.e. it will be possible to earn fractional points
in a given week, too.
If bonuses are present in an exercise, those are not required in submis-
sions (nor they are rewarded with points).
The exercises have test cases enclosed: it is sufficient to pass those test
cases to earn the associated points. The deadlines to earn points are as
follows (you will have 2 weeks to solve each set):

chapter given deadline
01 7.10. 21.10.
02 14.10. 28.10.
03 21.10. 4.11.
04 28.10. 11.11.
05 4.11. 18.11.
06 11.11. 25.11.
07 18.11. 2.12.
08 25.11. 9.12.
09 2.12. 16.12.
10 9.12. 23.12.
11 16.12. 30.12.
12 23.12. 6.1.

A.2.3 Peer Review Reading code is an important skill – sometimes

PV248 Python 2/9 October 22, 2020

more so than writing it. While the space to practice reading code in
this subject is limited, you will still be able to earn a few points doing
just that. The rules for peer review are as follows:

• only homework is eligible for reviews (not the weekly exercises),
• you can submit any code (even completely broken) for peer review,
• to write a review for any given submission, you must have already

passed the respective assignment yourself,
• there are no deadlines for requesting or providing peer reviews

(other than the deadline on passing the subject),
• writing a review is worth 0.3 points and you can write at most 10.

It is okay to point out correctness problems during peer reviews, with
the expectation that this might help the recipient pass the assignment.
This is the only allowed form of cooperation (more on that below).

A.2.4 Plagiarism Copying someone else’s work or letting someone
else copy yours will earn you -6 points per instance. You are also
responsible for keeping your solutions private. If you only use the pv248
command on aisa, it will make your ~/pv248 directory inaccessible to
anyone else (this also applies to school-provided UNIX workstations).
Keep it that way. If you work on your solution using other computers,
make sure they are secure. Do not publish your solutions anywhere
(on the internet or otherwise). All parties in a copying incident will be
treated equally.
No cooperation is allowed (not even design-level discussion about how
to solve the exercise) on homework and on weekly exercises which
you submit. If you want to study with your classmates, that is okay –
but only cooperate on exercises which are not going to be submitted
by either party.

Part A.3: Homework

The general principles outlined here apply to all assignments. The first
and most important rule is, use your brain – the specifications are not
exhaustive and sometimes leave room for different interpretations. Do
your best to apply the most sensible one. Do not try to find loopholes
(all you are likely to get is failed tests). Technically correct is not the
best kind of correct.
Think about pre- and postconditions. Aim for weakest preconditions
that still allow you to guarantee the postconditions required by the
assignment. If your preconditions are too strong (i.e. you disallow
inputs that are not ruled out by the spec) you will likely fail the tests.
Do not print anything that you are not specifically directed to. Pro-
grams which print garbage (i.e. anything that wasn’t specified) will fail
tests.
You can use the standard library. Third-party libraries are not allowed,
unless specified as part of the assignment. Make sure that your classes
andmethods use the correct spelling, and that you accept and/or return
the correct types. In most cases, either the ‘syntax’ or the ‘sanity’ test
suite will catch problems of this kind, but we cannot guarantee that it
always will – do not rely on it.
If you don’t get everything right the first time around, do not despair.
The expectation is that most of the time, you will pass in the second
or third week. In the real world, the first delivered version of your
product will rarely be perfect, or even acceptable, despite your best
effort to fulfill every customer requirement. Only very small programs
can be realistically written completely correctly in one go.
If you strongly disagree with a test outcome and you believe you ad-
hered to the specification and resolved any ambiguities in a sensible
fashion, please use the online chat or the discussion forum in the IS to
discuss the issue (see advisors.txt for details).

A.3.1 Submitting Solutions The easiest way to submit a solution is
this:

$ ssh aisa.fi.muni.cz

$ cd ~/pv248/hw1

<edit files until satisfied>

$ pv248 submit

If you prefer to work in some other directory, you may need to specify
which homework you wish to submit, like this: pv248 submit hw1. The
number of times you submit is not limited (but see also below).
NB. Only the files listed in the assignment will be submitted and eval-
uated. Please put your entire solution into existing files.
You can check the status of your submissions by issuing the following
command:

$ pv248 status

In case you already submitted a solution, but later changed it, you can
see the differences between your most recent submitted version and
your current version by issuing:

$ pv248 diff

The lines starting with - have been removed since the submission,
those with + have been added and those with neither are common to
both versions.

A.3.2 Evaluation There are three sets of automated tests which are
executed on the solutions you submit:

• The first set is called syntax and runs immediately after you submit.
Only 2 checks are performed: the code can be loaded (no syntax
errors) and passes mypy.

• The next step is sanity and runs every midnight. Its main role is to
check that your program meets basic semantic requirements, e.g.
that it recognizes correct inputs and produces correctly formatted
outputs. The ‘sanity’ test suite is for your information only and
does not guarantee that your solution will be accepted. The ‘sanity’
test suite is only executed if you passed ‘syntax’.

• Finally the verity test suite covers most of the specified function-
ality and runs once a week – everyWednesday at midnight, right
after the deadline. If you pass the verity suite, the assignment is
considered complete and you are awarded the corresponding num-
ber of points. The verity suite will not run unless the code passes
‘sanity’.

If you pass on the first or the second run of the full test suite (7 or 14
days after the assignment is given), you are entitled to a bonus point.
If you pass at one of the next 2 attempts, you are entitled to half a
bonus point. After that, you have 4 more attempts to get it right. See
grading.txt for more details.
Only the most recent submission is evaluated, and each submission
is evaluated at most once in the ‘sanity’ and once in the ‘verity’ mode.
You will find your latest evaluation results in the IS in notepads (one
per assignment).

Part A.4: Advisors

It is hard to anticipate what problems you will run into while program-
ming, and which concepts you will find hard to understand. Normally,
those issues would be resolved in the seminar, but this semester, we
won’t have that luxury.
Instead, we will do our best to give you extended text materials and
examples, so that you can resolve as many issues as possible on your
own. Of course, that will sometimes fail: for that reason, you will be
able to interactively ask for help online. Unfortunately, as much as
we would like to, we cannot provide help 24/7 – there will instead be
a few slots in which one of the teachers will be specifically available.
You can ask questions at other times, and we will provide a ‘best effort’
service: if someone is available, they may answer the question, but
please do not rely on this. For this, wewill use the online chat available
at https://lounge.fi.muni.cz – use your faculty login and password to get
in, and join the channel (room) ##pv248 (double sharp). The schedule

PV248 Python 3/9 October 22, 2020

is as follows:

day start end person
Tue 18:00 20:00 Petr Ročkai
Thu 16:00 18:00 Vladimír Štill

The other option is of course the discussion forum in IS, where you can

ask questions, though this is not nearly as interactive, and the delay
can be considerable (please be patient).
Please also note that the online chat is meant for programming discus-
sion: if you have questions about organisation or technical issues, use
the discussion forum instead. Since exercises won’t be published until
Wednesday, the first session will be held on Thursday, 8th of October.

Part 1: Python Intro
There are two sets of exercises in the first week (exercises within each
set are related). The first set is an evaluator of simple expressions
in reverse polish notation (files prefixed rpn_) and the other is about
planar analytic geometry (simple geometric objects, their attributes,
transformations on them and interactions between them; these files
are prefixed geom_). Each of the two blocks is split into three exercises.
One thing that you will need but might not be familiar with is variadic
functions: see varargs.py for an introduction.
The order in which the exercises were meant to be solved is this:

1. rpn_un.py

2. rpn_bin.py (can be submitted)
3. rpn_gen.py

4. geom_types.py

5. geom_intersect.py (can be submitted)
6. geom_dist.py

It is okay to flip the two blocks, but the exercises within each block
largely build on each other and cannot be as easily skipped or re-
ordered.

Part 1.1: Exercises

1.1.1 [rpn_un] In the first (short) series of exercises, we will implement
a simple RPN (Reverse Polish Notation) evaluator. The entry point will
be a single function, with the following prototype:

def rpn_eval(rpn):

pass

The rpn argument is a list with two kinds of objects in it: numbers
(of type int, float or similar) and operators (for simplicity, these will
be of type str). To evaluate an RPN expression, we will need a stack
(which can be represented using a list, which has useful append and
popmethods).
Implement the following unary operators: neg (for negation, i.e. unary
minus) and recip (for reciprocal, i.e. the multiplicative inverse).
The result of rpn_eval should be the stack at the end of the computa-
tion. Below are a few test cases to check the implementation works as
expected. You are free to add your own test cases. When you are done,
you can continue with rpn_bin.py.

1.1.2 [rpn_bin] The second exercise is rather simple: take the RPN
evaluator from the previous exercise, and extend it with the following
binary operators: +, -, *, /, **. On top of that, add two ‘greedy’ operators,
sum and prod, which reduce the entire content of the stack to a single
number.
Note that we write the stack with ‘top’ to the right, and operators
take arguments from left to right in this ordering (i.e. the top of the
stack is the right argument of binary operators). This is important for
non-commutative operators.
This exercise is one of the two which you can submit this week, and is
worth 0.5 points.

def rpn_eval(rpn):

pass

Some test cases are included below. Write a few more test cases to
convince yourself that your code works correctly. If you didn’t see
it yet, you should make a short detour to varargs.py before you come
back to the last round of RPNs, in rpn_gen.py.

1.1.3 [rpn_gen] Let’s generalize the code. Until now, we had a fixed set
of operators hard-coded in the evaluator. Let’s instead turn our evalu-
ator into an object which can be extended by the user with additional
operators. The class should have an evaluate method which takes a
list like before.
On top of that, it should also have an add_op(name, arity, f)method,
where name is the string that describes / names the operator, arity is the
number of operands it expects and f is a function which implements
it. The function f should take as many arguments as arity specifies.

class Evaluator:

def __init__(self):

pass

def add_op(self, name, arity, f):

pass

def evaluate(self, rpn):

pass

def example():

e = Evaluator()

e.add_op('*', 2, lambda x, y: x * y)

e.add_op('+', 2, lambda x, y: x + y)

print(e.evaluate([1, 2, '+', 7, '*'])) # expect [21]

Bonus 1: Allow arity = 0 to mean ‘greedy’. The function passed to
add_op in this case must accept any number of arguments.

bonus_1 = True # enable / disable tests for bonus 1

Bonus 2: Can you implement Evaluator in such a way that it does not
require the arity argument in add_op()? Howportable among different
Python implementations do you think this is?
As usual, write a few test cases to convince yourself that your code
works (in addition to the ones already provided). Be sure to check that
operators with arities 1 and 3 work, for instance.
Then, you can continue to geom_types.py.

1.1.4 [geom_types] The second set of exercises will deal with planar
analytic geometry. First define classes Point and Vector (tests expect
the attributes to be named x and y):

class Point:

def __init__(self, x, y):

pass

def __sub__(self, other): # self - other

pass # compute a vector

def translated(self, vec):

pass # compute a new point

class Vector:

def __init__(self, x, y):

pass

def length(self):

pass

def dot(self, other): # dot product

PV248 Python 4/9 October 22, 2020

pass

def angle(self, other): # in radians

pass

Let us define a line next. Whether you use a point and a vector
or two points is up to you (the constructor should take two points).
Whichever you choose, make both representations available using
methods (point_point and point_vector, both returning a 2-tuple). The
points returned should be the same as those passed to the constructor,
and the vector should be the vector from the first point to the second
point.
Apart from the above methods, also implement an equality operator
for two lines (__eq__), which will be called when two lines are com-
pared using ==. In Python 2, you were also expected to implement its
counterpart, __ne__ (which stands for ’not equal’), but Python 3 defines
__ne__ automatically, by negating the result of __eq__.

class Line:

def __eq__(self, other):

if not isinstance(other, Line):

return False

pass # continue the implementation

def translated(self, vec):

pass

def point_point(self):

pass

def point_vector(self):

pass

The Segment class is a finite version of the same.

class Segment:

def length(self):

pass

def translated(self, vec):

pass

def point_point(self):

pass

And finally a circle, using a center (a Point) and a radius (a float).

class Circle:

def __init__(self, c, r):

pass

def center(self):

pass

def radius(self):

pass

def translated(self, vec):

pass

As always, write a few test cases to check that your code works. Please
make sure that your implementation is finished before consulting tests;
specifically, try to avoid reverse-engineering the tests to find out how
to write your program.

1.1.5 [geom_intersect] We first import all the classes from the previous
exercise, since we will want to use them.

from geom_types import *

Wewill want to compute intersection points of a few object type com-
binations. We will start with lines, which are the simplest. You can
find closed-form general solutions for all the problems in this exercise
on the internet. Use them.

This exercise is the second that you can submit. Youwill need to include
geom_types.py as well, but the points are all attached to this exercise
(i.e. submitting geom_types.py alone will not earn you any points).
Line-line intersect either returns a list of points, or a Line, if the two
lines are coincident.

def intersect_line_line(p, q):

pass

A variation. Re-use the line-line case.

def intersect_line_segment(p, s):

pass

Intersecting lineswith circles is a littlemore tricky. Checking e.g. Math-
World sounds like a good idea. It might be helpful to translate both
objects so that the circle is centered at the origin. The function returns
a list of points.

def intersect_line_circle(p, c):

pass

It’s probably quite obvious that users won’t like the above API. Let’s
make a single intersect() that will work on anything (that we know
how to intersect, anyway). You can use type(a) to find the type of
object a. You can compare types for equality, too: type(a) == Circle

will do what you think it should.

def intersect(a, b):

pass

Test cases follow. Note that the tests use line equality which you im-
plemented in geom_types. The last exercise for this week can be found
in geom_dist.py.

1.1.6 [geom_dist] In case there are no intersections, it makes sense to
ask about distances of two objects. In this case, it also makes sense to
include points, and we will start with those:

def distance_point_point(a, b):

pass

def distance_point_line(a, p):

pass

If we already have the point-line distance, it’s easy to also find the
distance of two parallel lines:

def distance_line_line(p, q):

pass

Circles vs points are rather easy, too:

def distance_point_circle(a, c):

pass

A similar idea works for circles and lines. Note that if they intersect,
we set the distance to 0.

def distance_line_circle(p, c):

pass

And finally, let’s do the friendly dispatch function:

def distance(a, b):

pass

Part 2: Data Structures
In the second week, there is one set of 3 related and another set of
3 standalone exercises. The first set is a mock ‘reimplement a legacy

system’ story. If something appears to be stupid, blame the original
authors. They were overworked programmers too, probably fresh out

PV248 Python 5/9 October 22, 2020

of school.
The first set contains:

1. ts3_escape.py

2. ts3_normalize.py (this one can be submitted)
3. ts3_render.py [tbd]

The second set contains exercises which make use of the basic built-in
classes, like dict, set, list, str and so on:

• merge.py (this one can be submitted)
• rewrite.py – fun with rewrite systems
• magic.py – identifying file types

Part 2.1: Exercises

2.1.1 [ts3_escape] Big Corp has an in-house knowledge base / informa-
tion filing system. It does many things, as legacy systems are prone
to, and many of them are somewhat idiosyncratic. Either because
the relevant standards did not exist at the time, or the responsible
programmer didn’t like the standard, so they rolled their own.
The system has become impossible to maintain, but the databases con-
tain a vast amount of information and are in active use. The system
will be rewritten from scratch, but will stay backward-compatible with
all the existing formats. You are on the team doing the rewrite (we are
really sorry to hear this, honest).
The system stores structured documents, and one of its features is that
it can format those documents using templates. However, the template
system got a little out of hand (they always do, don’t they) and among
other things, it is recursive. Each piece of information inserted into
the template is itself treated as a template and can have other pieces
of the document substituted.
A template looks like this:

template_1 = '''The product ‘${product}’ is made by ${manufacturer}

in ${country}. The production uses these rare-earth metals:

#{ingredients.rare_earth_metals} and these toxic substances:

#{ingredients.toxic}.''';

The system does not treat $ and # specially, unless they are followed by
a left brace. This is a rare combination, but it turns out it sometimes
appears in documents. To mitigate this, the sequences $${ and ##{

are interpreted as literal ${ and #{. At some point, the authors of the
system realized that they need to write literal $${ into a document. So
they came up with the scheme that when a string of 2 or more $ is
followed by a left brace, one of the $ is removed and the rest is passed
through. Same with #.
Your first task is to write functions which escape and un-escape strings
using the scheme explained above. The template component of the
system is known simply as ‘template system 3’, so the functions will
be called ts3_escape and ts3_unescape. Return the altered string. If the
string passed to ts3_unescape contains the sequence #{ or ${, throw
RuntimeError, since such string could not have been returned from
ts3_escape. Once you are done, continue to ts3_normalize.py.

def ts3_escape(string):

pass

def ts3_unescape(string):

pass

def test_main():

pairs = [

("", ""),

("aa", "aa"),

("$", "$"),

("{", "{"),

("${", "$${"),

("$${", "$$${"),

("$$ {", "$$ {"),

("${$", "$${$"),

("$$${", "$$$${"),

("ab${ nabc$$${{tsk$$$${asd${${}}}aa$a{",

"ab$${ nabc$$$${{tsk$$$$${asd$${$${}}}aa$a{"),

("#", "#"),

("#{", "##{"),

("#{{", "##{{"),

("####{", "#####{"),

("#}{", "#}{"),

("$#{", "$##{"),

("#${", "#$${"),

("$#{}${##}##{$}%${##${$$${{${",

"$##{}$${##}###{$}%$${##$${$$$${{$${")

]

for unescaped, escaped in pairs:

err = "ts3_escape('{}') did not match '{}'".format(

unescaped, escaped)

assert ts3_escape(unescaped) == escaped, err

err = "ts3_unescape('{}') did not match '{}'".format(

escaped, unescaped)

assert ts3_unescape(escaped) == unescaped, err

2.1.2 [ts3_normalize] Eventually, we will want to replicate the actual
substitution into the templates. This will be done by the ts3_render

function. However, somewhat surprisingly, that function will only
take one argument, which is the structured document to be converted
into a string. Recall that the template system is recursive: before
ts3_render, another function, ts3_combine combines the document and
the templates into a single tree-like structure. One of your less fortu-
nate colleagues is doing that one.
This structure has 5 types of nodes: lists, maps, templates (strings),
documents (also strings) and integers. In the original system there
are more types (like decimal numbers, booleans and so on) but it has
been decided to add those later. Many documents only make use of
the above 5.
A somewhat unfortunate quirk of the system is that there are multiple
types of nodes represented using strings. The way the original system
dealt with this is by prefixing each string by its type: $document$ (with
a trailing space!) and $template$. Those prefixes are stored in the
database. To make matters worse, there are strings with no prefix:
earlier versions looked for ${ and #{ sequences in the string, and if
it found some, treated the string as a template, and as a document
otherwise.
The team has rightly decided that this is stupid. You drew the short
straw and now you are responsible for function ts3_normalize, which
takes the above slightly baroque structure and sorts the strings into
two distinct types, which are represented using Python classes. Some-
one else will deal with converting the database ‘later’.

class Document:

pass

class Template:

pass

Each of the above classes should have an attribute called text, which is
a string and contains only the actual text, without the funny prefixes.
The lists, maps and integers fortunately arrive as Python list, dict and
int into this function. Return the altered tree: the strings substituted
for their respective types.

def ts3_normalize(tree):

pass

PV248 Python 6/9 October 22, 2020

2.1.3 [ts3_render] At this point, we have a structuremade of dict, list,
Template, Document and int instances. The lists and maps can be arbi-
trarily nested. Within templates, the substitutions give dot-separated
paths into this tree-like structure. If the top-level object is a map, the
first component of a path is a string which matches a key of that map.
The first component is then chopped off, the value corresponding to
the matched key is picked as a new root and the process is repeated
recursively. If the current root is a list and the path component is a
number, the number is used as an index into the list.
If a dict meets a number in the path (we will only deal with string
keys), or a list meets a string, raise a RuntimeError and let someone
else deal with the problem later.
The ${path} substitution performs scalar rendering, while #{path} sub-
stitution performs composite rendering. Scalar rendering resolves the
path to an object, and depending on its type, performs the following:

• if it is a Document, replace the ${...} with the text of the document;
the pasted text is excluded from further processing,

• if it is a Template, the ${...} is replaced with the text of the template;
occurrences of ${...} and #{...} within the pasted text are further
processed,

• if it is an int, it is formatted and the resulting string replaces the
${...},

• if it is a list, the length of the list is formatted as if it was an int, and
finally,

• if it is a dict, .default is appended to the path and the substitution
is retried.

Composite rendering using #{...} is similar, but:

• a dict is rendered as a comma-separated (with a space) list of its
values, after the keys are sorted alphabetically, where each value is
rendered as a scalar,

• a list is likewise rendered as a comma-separated list of its values
as scalars,

• everything else is an error: raise a RuntimeError for now, someone
else will fix that later.

The top-level entity passed to ts3_render must always be a dict. The
starting template is expected to be in the key ’$template’ of that dict.
Remember that ##{...} and $${...} must remain untouched. If you en-
counter nested templates while parsing the path, e.g. ${abc${d}}, throw
an error (but see also bonus 2 below).

def ts3_render(tree):

pass

Bonus 1: It turns out that the original system had a bug, where a tem-
plate could look like this: ${foo.bar}.baz} – if ${foo.bar} referenced
a template and that template ended with ${quux (notice all the oddly
unbalanced brackets!), the system would then paste the strings to get
${quux.baz} and proceed to perform that substitution.
The real clincher is that template authors started to use this as a feature,
and now we are stuck with it. Replicate this functionality. However,
make sure that this does not happen when the first part of the pasted
substitution comes from a document!
PS: The original bug would still do the substitution if the second part
was a document and not a template. Feel free to replicate that part
of the bug too. As far as anyone knows, the variant with template +
document is not abused in the wild, so it is also okay to fix it.
Bonus 2: If you encounter nested templates while parsing the path,
first process the innermost substitutions, resolve the inside path and
append the path to the outer one, then continue resolving the outer
path.
Example: ${path${inner.tpl}}, first resolve inner.tpl, append the result
after `path`, then continue parsing. If the inner.tpl path leads to a
document with text ".outside.2", the outer path is "path.outside.2".

from ts3_normalize import ts3_normalize

2.1.4 [merge] Write a function merge_dict which takes these 3 argu-
ments:

• a dict instance, inwhich some keys are deemed equivalent: the goal
of merge_dict is to create a newdictionary, where all equivalent keys
have been merged; keys which are not equivalent to anything else
are left alone

• a list of set instances, where each set describes one set of equiva-
lent keys (the sets are pairwise disjoint), and finally,

• a function combinewhich takes a list of values (not a set, because
we may care about duplicates): merge_dict will pass, for each set
of equivalent keys, all the values corresponding to those keys into
combine.

In the output dictionary, create a single key for each equivalent set:

• the key is the smallest of the keys from the set which were actually
present in the input dict,

• the value is the result of calling combine on the list of values associ-
ated with all the equivalent keys in the input dict.

Do not modify the input dictionary.

def merge_dict(dict_in, equiv, combine):

pass

2.1.5 [rewrite] Write a function is_generatedwhich checks whether
word final can be generated by a rewrite system described by rules

starting from word initial.
The rewrite system is given as a dict, where keys are str and values
are each a list of str. The key is the left-hand side of a rule (see below)
while the list gives all possible right-hand sides to go with it. The initial
string and the string to be generated (final) are given as str instances.

def is_generated(rules, initial, final):

pass

A rewrite system is like a grammar, but does not distinguish between
terminals and non-terminals. There are only letters, and the rules say
that a given substring can be rewritten to some other substring. For
instance, consider the rules:

1. x→ xx (any x in the string can be doubled)
2. xx→ xyz

3. xx→ xyx

Starting from xy, a possible derivation would be:

1. use rule 1 to obtain xxy

2. use rule 2 to obtain xyzxy

3. use rule 1 again to obtain xyzxxy

All of the words which appear above are said to be generated by the
rewrite system. More formally, a word is generated by the system if
it can be obtained by applying a finite sequence of rules. Each rule
can be applied in an arbitrary position (i.e. wherever you like). In this
exercise, the right side of a rule is always strictly longer than the left
side (this reduces the power of the system considerably and makes the
exercise much easier to solve).

2.1.6 [magic] Write function identifywhich takes rules, a list of rules,
and data, a bytes object to be identified. It then tries to apply each rule
and return the identifier associated with the first matching rule, or
None if no rules match. Each rule is a tuple with 2 components:

• name, a string to be returned if the rule matches,
• a list of patterns, where each pattern is a tuple with:

0. offset, an integer,
a. bits, a bytes object,
b. mask, another bytes object,
c. positivity, a bool.

PV248 Python 7/9 October 22, 2020

The mask and the pattern must have the same length. A rule matches
the data if all of its patterns match.
A pattern match is decided by comparing the slice of data at the given
offset to the ‘bits’ field of the pattern, after both the slice and the bits
have been bitwise-anded with the mask. The pattern matches iff:

• the bits and slice compare equal and positivity is True, or
• they compare inequal and positivity is False.

def identify(rules, data):

pass

Part 3: Text, JSON
The first set of exercises is general text processing, while the second
deals with more structured data (JSON and a bit of CSV).

1. grep.py

2. rfc822.py

3. multi822.py – submit for 0.5 points

4. report.py (needs report.json)
5. elements.py (needs elements.csv)
6. json_flatten.py

Part 3.1: Exercises

3.1.1 [grep] The goal of this exercise is to write a simple program that
works like UNIX grep. We will start by writing a procedure which
takes 2 arguments, a string representation of a regex and a filename.
It will print the lines of the file that match the regular expression (in
the same order as they appear in the file). Prefix the line with its line
number like so:

43: This line matched a regex,

Hint: check out the enumerate built-in.

def grep(regex, filename):

pass

3.1.2 [rfc822] In this exercise, we will parse a format that is based
on rfc 822 headers, though our implementation will only handle the
simplest cases. The format looks like this:
From: Petr Ročkai <xrockai@fi.muni.cz> To: Random X. Student <xstu-
dent@fi.muni.cz> Subject: PV248
and so on and so forth (for your convenience, the above example can
be also found in the file `rfc822.txt`). In real e-mail (and in HTTP), each
header entry may span multiple lines, but we will not deal with that.
Our goal is to create a dictwhere the keys are the individual header
fields and the corresponding values are the strings coming after the
colon. In this iteration, assume that each header is unique.

def parse_rfc822(filename):

pass

When done, go on to multi822.py.

3.1.3 [multi822] Building on the previous exercise, extend the parser
in the following way: if the given field is unique, keep its associated
value as a string. However, if a certain field appears multiple times,
turn the value into a list. The right-hand-side strings should be listed
in the order of appearance.

def parse_multirfc822(filename):

pass

3.1.4 [report] The goal here is to load the file `report.json` which con-

tains a report about a bug in a C program, and print out a simple stack
trace. You will be interested in the key `active stack` (near the end of
the file) and its format. The output will be plain text: for each stack
frame, print a single line in this format:

function_name at source.c:32

In the next exercise, we will try to write some JSON instead: `ele-
ments.py`.

import json # go for `load` (via io) or `loads` (via strings)

3.1.5 [elements] In this exercise, we will read in a CSV (comma-
separated values) file and produce a JSON file. The input is in `ele-
ments.csv` and each row describes a single chemical element. The
columns are, in order, the atomic number, the symbol (shorthand) and
the full name of the element. Generate a JSONfilewhichwill consist of
a list of objects, where each object will have attributes ’atomic number’,
’symbol’ and ’name’. The first of these will be a number and the latter
two will be strings. Name the output file identically to the input file,
except for the extension (`.json`).
Note that the first line of the CSV file is a header.

import csv # we want csv.reader

import json # and json.dumps

def csv_to_json(filename):

pass

3.1.6 [flatten] In this exercise, your task is to write a function that
flattens json data. Flattening works as follows:
The result is a single-level (flat) json with key-value pairs, the keys
representing the former structure of data. We could use any (unique)
separator to indicate the nested structure, which would allow unflat-
tening without loss of information. We will use the dollar sign ’$’. If
you do encounter ’$’ in the original data, replace it with two dollars ’$$’.
Assume that there are no keys composed entirely of numbers.
Example:

{ 'student': { 'Joe': { 'full name': 'Joe Peppy',

'address': 'Clinical Street 7',

'aliases': ['Joey', 'MataMata'] } } }

Flattened:

{ 'studentJoefull name': 'Joe Peppy',

'studentJoeaddress': 'Clinical Street 7',

'studentJoealiases$0': 'Joey',

'studentJoealiases$1': 'MataMata' }

The simplest way to go about it is to use recursion.

def flatten(data):

pass

Part 4: SQL
This week, we will look at some basic SQL. First, we will import and ex- port JSON data to/from an SQL database and perform simple searches.

PV248 Python 8/9 October 22, 2020

The schema for all three exercises is in books.sql.

1. book_import.py – import data into a database
2. book_export.py – the converse
3. book_query.py – use SQL to search for things

The second part will build up a very simple CRUD-type application

(CRUD = Create Read Update Delete). The interface will be through
Python objects. The subject will be shopping lists.

4. list_make.py – creating shopping lists
5. list_search.py – searching and reading
6. list_update.py – update and delete

Part 5: Operators, Iterators, Decorators and Exceptions
This week, we will look at some of the more advanced language fea-
tures of Python.
The first couple of exercises will be about iterators and generators:

1. iter.py – simple iterators
2. flat.py – a simple generator

We will then move on to operator overloading:

3. poly.py – polynomials
4. mod.py – finite rings of integers mod N (/n)

Finally, the last will cover exceptions and decorators:

5. with.py – context managers vs exceptions
6. trace.py – decorators part 1
7. noexcept.py – decorators and exceptions

Part 6: Closures and Coroutines
There will be two sets of exercises, one for closures and another for
coroutines. The former is rather general, since closures work more or
less the same in all languages. The latter, however,, will mainly look at
low-level aspects of how coroutines are implemented in Python.

1. tbd

2. tbd

3. tbd

4. gen.py

5. interleave.py

6. tbd

Part 7: asyncio Basics
This week, we will get acquainted with asyncio, the framework for
writing asynchronous programs in Python, based on native coroutines

and non-blocking IO.

Part 8: More asyncio

While the lecture this weeks goes into low-level details of asyncio, we
will stick with the high-level interface. We will write some simple

servers and clients using sockets.

Part 9: Programming Exercises
This week will consist of a few generic exercises, since the lecture does not cover a specific topic.

Part 10: Testing
This week will cover hypothesis, a rather useful tool for testing Python
code. Hypothesis is a property-based testing system: unlike traditional
unit testing, we do not specify exact inputs. Instead, we provide a
description of an entire class of inputs; hypothesis then randomly sam-
ples the space of all inputs in that class, invoking our test cases for each
such sample.
We will look at two types of programs to use hypothesis with, first
some floating-point linear math:

1. inner.py – properties of the inner vector product
2. cross.py – same but cross product
3. tbd

And some classic computer science problems:

4. sort.py – sorting algorithms
5. bsearch.py – binary search
6. heap.py – binary heaps

Part 11: Numeric Math
Since Python is often used as a driver for numeric algorithms, with
numpy as the backend, we will try to explore some of its basic functions.
The first part will focus on linear algebra.

1. linear.py – warm up
2. volume.py – volume of n-dimensional polyhedra
3. tbd

While in the second we will look at signal processing.

4. histogram.py – drawing histograms
5. sig.py – generating signals
6. dft.py – analysing signals

PV248 Python 9/9 October 22, 2020

Part 12: Statistics
TBD.

