
October 22, 2020

PV248 Python
Petr Ročkai

PV248 Python 2/301 October 22, 2020

Part 1: Object Model

PV248 Python 3/301 October 22, 2020

Objects
• the basic ‘unit’ of OOP
• also known as ‘instances’
• they bundle data and behaviour
• provide encapsulation
• local (object) invariants
• make code re-use easier

PV248 Python 4/301 October 22, 2020

Classes
• each (Python) object belongs to a class
• templates for objects
• calling a class creates an instance

∘ my_foo = Foo()

• classes themselves are also objects

PV248 Python 5/301 October 22, 2020

Types vs Objects
• class system is a type system
• since Python 3, types are classes
• everything is dynamic in Python

∘ variables are not type-constrained

PV248 Python 6/301 October 22, 2020

Poking at Classes
• you can pass classes as function parameters
• you can create classes at runtime
• and interact with existing classes:

∘ {}.__class__, (0).__class__
∘ {}.__class__.__class__

∘ compare type(0), etc.
∘ n = numbers.Number(); n.__class__

PV248 Python 7/301 October 22, 2020

Encapsulation
• objects hide implementation details
• classic types structure data

∘ objects also structure behaviour
• facilitates loose coupling

PV248 Python 8/301 October 22, 2020

Loose Coupling
• coupling is a degree of interdependence
• more coupling makes things harder to change

∘ it also makes reasoning harder
• good programs are loosely coupled
• cf. modularity, composability

PV248 Python 9/301 October 22, 2020

Polymorphism
• objects are (at least in Python) polymorphic
• different implementation, same interface

∘ only the interface matters for composition
• facilitates genericity and code re-use
• cf. ‘duck typing’

PV248 Python 10/301 October 22, 2020

Generic Programming
• code re-use often saves time

∘ not just coding but also debugging
∘ re-usable code often couples loosely

• but not everything that can be re-used should be
∘ code can be too generic
∘ and too hard to read

PV248 Python 11/301 October 22, 2020

Attributes
• data members of objects
• each instance gets its own copy

∘ like variables scoped to object lifetime
• they get names and values

PV248 Python 12/301 October 22, 2020

Methods
• functions (procedures) tied to objects
• implement the behaviour of the object
• they can access the object (self)
• their signatures (usually) provide the interface
• methods are also objects

PV248 Python 13/301 October 22, 2020

Class and Instance Methods
• methods are usually tied to instances
• recall that classes are also objects
• class methods work on the class (cls)
• static methods are just namespaced functions

• decorators @classmethod, @staticmethod

PV248 Python 14/301 October 22, 2020

Inheritance

shape

ellipse rectangle

circle square

• class Ellipse(Shape): ...

• usually encodes an is-a relationship

PV248 Python 15/301 October 22, 2020

Multiple Inheritance
• more than one base class is possible
• many languages restrict this
• Python allows general M-I

∘ class Bat(Mammal, Winged): pass

• ‘true’ M-I is somewhat rare
∘ typical use cases: mixins and interfaces

PV248 Python 16/301 October 22, 2020

Mixins
• used to pull in implementation

∘ not part of the is-a relationship
∘ by convention, not enforced by the language

• common bits of functionality
∘ e.g. implement __gt__, __eq__ &c. using __lt__

∘ you only need to implement __lt__ in your class

PV248 Python 17/301 October 22, 2020

Interfaces
• realized as ‘abstract’ classes in Python

∘ just throw a NotImplemented exception
∘ document the intent in a docstring

• participates in is-a relationships
• partially displaced by duck typing

∘ more important in other languages (think Java)

PV248 Python 18/301 October 22, 2020

Composition
• attributes of objects can be other objects

∘ (also, everything is an object in Python)
• encodes a has-a relationship

∘ a circle has a center and a radius
∘ a circle is a shape

PV248 Python 19/301 October 22, 2020

Constructors
• this is the __init__method
• initializes the attributes of the instance
• can call superclass constructors explicitly

∘ not called automatically (unlike C++, Java)
∘ MySuperClass.__init__(self)

∘ super().__init__ (if unambiguous)

PV248 Python 20/301 October 22, 2020

Class and Object Dictionaries
• most objects are basically dictionaries
• try e.g. foo.__dict__ (for a suitable foo)
• saying foo.xmeans foo.__dict__["x"]

∘ if that fails, type(foo).__dict__["x"] follows
∘ then superclasses of type(foo), according to MRO

• this is what makes monkey patching possible

PV248 Python 21/301 October 22, 2020

Writing Classes

class Person:

def __init__(self, name):

self.name = name

def greet(self):

print("hello " + self.name)

p = Person("you")

p.greet()

PV248 Python 22/301 October 22, 2020

Functions
• top-level functions/procedures are possible
• they are usually ‘scoped’ via the module system
• functions are also objects

∘ try print.__class__ (or type(print))
• some functions are built in (print, len, ...)

PV248 Python 23/301 October 22, 2020

Modules in Python
• modules are just normal .py files
• import executes a file by name

∘ it will look into system-defined locations
∘ the search path includes the current directory
∘ they typically only define classes & functions

• import sys→ lets you use sys.argv

• from sys import argv→ you can write just argv

PV248 Python 24/301 October 22, 2020

Part 2: Memory Management & Builtin
Types

PV248 Python 25/301 October 22, 2020

Memory
• most program data is stored in ‘memory’

∘ an array of byte-addressable data storage
∘ address space managed by the OS
∘ 32 or 64 bit numbers as addresses

• typically backed by RAM

PV248 Python 26/301 October 22, 2020

Language vs Computer
• programs use high-level concepts

∘ objects, procedures, closures
∘ values can be passed around

• the computer has a single array of bytes
∘ and a bunch of registers

PV248 Python 27/301 October 22, 2020

Memory Management
• deciding where to store data
• high-level objects are stored in flat memory

∘ they have a given (usually fixed) size
∘ have limited lifetime

PV248 Python 28/301 October 22, 2020

Memory Management Terminology
• object: an entity with an address and size

∘ can contain references to other objects
∘ not the same as language-level object

• lifetime: when is the object valid
∘ live: references exist to the object
∘ dead: the object is unreachable – garbage

PV248 Python 29/301 October 22, 2020

Memory Management by Type
• manual: malloc and free in C
• static automatic

∘ e.g. stack variables in C and C++
• dynamic automatic

∘ pioneered by LISP, widely used

PV248 Python 30/301 October 22, 2020

Automatic Memory Management
• static vs dynamic

∘ when do we make decisions about lifetime
∘ compile time vs run time

• safe vs unsafe
∘ can the program read unused memory?

PV248 Python 31/301 October 22, 2020

Object Lifetime
• the time between malloc and free

• another view: when is the object needed
∘ often impossible to tell
∘ can be safely over-approximated
∘ at the expense of memory leaks

PV248 Python 32/301 October 22, 2020

Static Automatic
• usually binds lifetime to lexical scope
• no passing references up the call stack

∘ may or may not be enforced
• no lexical closures
• examples: C, C++

PV248 Python 33/301 October 22, 2020

Dynamic Automatic
• over-approximate lifetime dynamically
• usually easiest for the programmer

∘ until you need to debug a space leak
• reference counting, mark & sweep collectors
• examples: Java, almost every dynamic language

PV248 Python 34/301 October 22, 2020

Reference Counting
• attach a counter to each object
• whenever a reference is made, increase
• whenever a reference is lost, decrease
• the object is dead when the counter hits 0
• fails to reclaim reference cycles

PV248 Python 35/301 October 22, 2020

Mark and Sweep
• start from a root set (in-scope variables)
• follow references, mark every object encountered
• sweep: throw away all unmarked memory
• usually stops the program while running
• garbage is retained until the GC runs

PV248 Python 36/301 October 22, 2020

Memory Management in CPython
• primarily based on reference counting
• optional mark & sweep collector

∘ enabled by default
∘ configure via import gc

∘ reclaims cycles

PV248 Python 37/301 October 22, 2020

Refcounting Advantages
• simple to implement in a ‘managed’ language
• reclaims objects quickly
• no need to pause the program
• easily made concurrent

PV248 Python 38/301 October 22, 2020

Refcounting Problems
• significant memory overhead
• problems with cache locality
• bad performance for data shared between threads
• fails to reclaim cyclic structures

PV248 Python 39/301 October 22, 2020

Data Structures
• an abstract description of data
• leaves out low-level details
• makes writing programs easier
• makes reading programs easier, too

PV248 Python 40/301 October 22, 2020

Building Data Structures
• there are two kinds of types in python

∘ built-in, implemented in C
∘ user-defined (includes libraries)

• both kinds are based on objects
∘ but built-ins only look that way

PV248 Python 41/301 October 22, 2020

Mutability
• some objects can be modified

∘ we say they are mutable
∘ otherwise, they are immutable

• immutability is an abstraction
∘ physical memory is always mutable

• in python, immutability is not ‘recursive’

PV248 Python 42/301 October 22, 2020

Built-in: int
• arbitrary precision integer

∘ no overflows and other nasty behaviour
• it is an object, i.e. held by reference

∘ uniform with any other kind of object
∘ immutable

• both of the above make it slow
∘ machine integers only in C-based modules

PV248 Python 43/301 October 22, 2020

Additional Numeric Objects
• bool: True or False

∘ how much is True + True?
∘ is 0 true? is empty string?

• numbers.Real: floating point numbers
• numbers.Complex: a pair of above

PV248 Python 44/301 October 22, 2020

Built-in: bytes
• a sequence of bytes (raw data)
• exists for efficiency reasons

∘ in the abstract is just a tuple
• models data as stored in files

∘ or incoming through a socket
∘ or as stored in raw memory

PV248 Python 45/301 October 22, 2020

Properties of bytes
• can be indexed and iterated

∘ both create objects of type int

∘ try this sequence: id(x[1]), id(x[2])
• mutable version: bytearray

∘ the equivalent of C char arrays

PV248 Python 46/301 October 22, 2020

Built-in: str
• immutable unicode strings

∘ not the same as bytes
∘ bytes must be decoded to obtain str

∘ (and str encoded to obtain bytes)
• represented as utf-8 sequences in CPython

∘ implemented in PyCompactUnicodeObject

PV248 Python 47/301 October 22, 2020

Built-in: tuple
• an immutable sequence type

∘ the number of elements is fixed
∘ so is the type of each element

• but elements themselves may be mutable
∘ x = [] then y = (x, 0)

∘ x.append(1)→ y == ([1], 0)

• implemented as a C array of object references

PV248 Python 48/301 October 22, 2020

Built-in: list
• a mutable version of tuple

∘ items can be assigned x[3] = 5

∘ items can be append-ed
• implemented as a dynamic array

∘ many operations are amortised O(1)
∘ insert is O(n)

PV248 Python 49/301 October 22, 2020

Built-in: dict
• implemented as a hash table
• some of the most performance-critical code

∘ dictionaries appear everywhere in python
∘ heavily hand-tuned C code

• both keys and values are objects

PV248 Python 50/301 October 22, 2020

Hashes and Mutability
• dictionary keys must be hashable

∘ this implies recursive immutability
• what would happen if a key is mutated?

∘ most likely, the hash would change
∘ all hash tables with the key become invalid
∘ this would be very expensive to fix

PV248 Python 51/301 October 22, 2020

Built-in: set
• implements the math concept of a set
• also a hash table, but with keys only

∘ a separate C implementation
• mutable – items can be added

∘ but they must be hashable
∘ hence cannot be changed

PV248 Python 52/301 October 22, 2020

Built-in: frozenset
• an immutable version of set
• always hashable (since all items must be)

∘ can appear in set or another frozenset
∘ can be used as a key in dict

• the C implementation is shared with set

PV248 Python 53/301 October 22, 2020

Efficient Objects: __slots__
• fixes the attribute names allowed in an object
• saves memory: consider 1-attribute object

∘ with __dict__: 56 + 112 bytes
∘ with __slots__: 48 bytes

• makes code faster: no need to hash anything
∘ more compact in memory→ better cache efficiency

PV248 Python 54/301 October 22, 2020

Part 3: Text, JSON and XML

PV248 Python 55/301 October 22, 2020

Transient Data
• lives in program memory
• data structures, objects
• interpreter state
• often implicit manipulation
• more on this next week

PV248 Python 56/301 October 22, 2020

Persistent Data
• (structured) text or binary files
• relational (SQL) databases
• object and ‘flat’ databases (NoSQL)
• manipulated explicitly

PV248 Python 57/301 October 22, 2020

Persistent Storage
• ‘local’ file system

∘ stored on HDD, SSD, ...
∘ stored somwhere in a local network

• ‘remote’, using an application-level protocol
∘ local or remote databases
∘ cloud storage &c.

PV248 Python 58/301 October 22, 2020

Reading Files
• opening files: open('file.txt', 'r')

• files can be iterated

f = open('file.txt', 'r')

for line in f:

print(line)

PV248 Python 59/301 October 22, 2020

Resource Acquisition
• plain open is prone to resource leaks

∘ what happens during an exception?
∘ holding a file open is not free

• pythonic solution: with blocks
∘ defined in PEP 343
∘ binds resources to scopes

PV248 Python 60/301 October 22, 2020

Detour: PEP
• PEP stands for Python Enhancement Proposal
• akin to RFC documents managed by IETF
• initially formalise future changes to Python

∘ later serve as documentation for the same
• <https://www.python.org/dev/peps/>

PV248 Python 61/301 October 22, 2020

Using with

with open('/etc/passwd', 'r') as f:

for line in f:

do_stuff(line)

• still safe if do_stuff raises an exception

PV248 Python 62/301 October 22, 2020

Finalizers
• there is a __del__method
• but it is not guaranteed to run

∘ it may run arbitrarily late
∘ or never

• not very good for resource management

PV248 Python 63/301 October 22, 2020

Context Managers
• with has an associated protocol
• you can use with on any context manager
• which is an object with __enter__ and __exit__

• you can create your own

PV248 Python 64/301 October 22, 2020

Part 3.1: Text and Unicode

PV248 Python 65/301 October 22, 2020

Representing Text
• ASCII: one byte = one character

∘ total of 127 different characters
∘ not very universal

• 8-bit encodings: 255 characters
• multi-byte encodings for non-Latin scripts

PV248 Python 66/301 October 22, 2020

Unicode
• one character encoding to rule them all
• supports all extant scripts and writing systems

∘ and a whole bunch of dead scripts, too
• approx. 143000 code points
• collation, segmentation, comparison, ...

PV248 Python 67/301 October 22, 2020

Code Point
• basic unit of encoding characters
• letters, punctuation, symbols
• combining diacritical marks
• not the same thing as a character
• code points range from 1 to 10FFFF

PV248 Python 68/301 October 22, 2020

Unicode Encodings
• deals with representing code points
• UCS = Universal Coded Character Set

∘ fixed-length encoding
∘ two variants: UCS-2 (16 bit) and UCS-4 (32 bit)

• UTF = Unicode Transformation Format
∘ variable-length encoding
∘ variants: UTF-8, UTF-16 and UTF-32

PV248 Python 69/301 October 22, 2020

Grapheme
• technically ‘extended grapheme cluster’
• a logical character, as expected by users

∘ encoded using 1 or more code points
• multiple encodings of the same grapheme

∘ e.g. composed vs decomposed
∘ U+0041 U+0300 vs U+0C00: À vs À

PV248 Python 70/301 October 22, 2020

Segmentation
• breaking text into smaller units

∘ graphemes, words and sentences
• algorithms defined by the unicode spec

∘ Unicode Standard Annex #29
∘ graphemes and words are quite reliable
∘ sentences not so much (too much ambiguity)

PV248 Python 71/301 October 22, 2020

Normal Form
• Unicode defines 4 canonical (normal) forms

∘ NFC, NFD, NFKC, NFKD
∘ NFC = Normal Form Composed
∘ NFD = Normal Form Decomposed

• K variants = looser, lossy conversion
• all normalization is idempotent
• NFC does not give you 1 code point per grapheme

PV248 Python 72/301 October 22, 2020

str vs bytes
• iterating bytes gives individual bytes

∘ indexing is fast – fixed-size elements
• iterating str gives code points

∘ slightly slower, because it uses UTF-8
∘ does not iterate over graphemes

• going back and forth: str.encode, bytes.decode

PV248 Python 73/301 October 22, 2020

Python vs Unicode
• no native support for unicode segmentation

∘ hence no grapheme iteration or word splitting
• convert everything into NFC and hope for the best

∘ unicodedata.normalize()

∘ will sometimes break (we’ll discuss regexes in a bit)
∘ most people don’t bother
∘ correctness is overrated→worse is better

PV248 Python 74/301 October 22, 2020

Regular Expressions
• compiling: r = re.compile(r"key: (.*)")

• matching: m = r.match("key: some value")

• extracting captures: print(m.group(1))

∘ prints some value

• substitutions: s2 = re.sub(r"\s*$", '', s1)

∘ strips all trailing whitespace in s1

PV248 Python 75/301 October 22, 2020

Detour: Raw String Literals
• the r in r"..." stands for raw (not regex)
• normally, \ is magical in strings

∘ but \ is also magical in regexes
∘ nobody wants to write \\s &c.
∘ not to mention \\\\ to match a literal \

• not super useful outside of regexes

PV248 Python 76/301 October 22, 2020

Detour: Other Literal Types
• byte strings: b"abc"→ bytes

• formatted string literals: f"x {y}"

x = 12

print(f"x = {x}")

• triple-quote literals: """xy"""

PV248 Python 77/301 October 22, 2020

Regular Expressions vs Unicode

import re

s = "\u0041\u0300" # À

t = "\u00c0" # À

print(s, t)

print(re.match("..", s), re.match("..", t))

print(re.match("\w+$", s), re.match("\w+$", t))

print(re.match("À", s), re.match("À", t))

PV248 Python 78/301 October 22, 2020

Regexes and Normal Forms
• some of the problems can be fixed by NFC

∘ some go away completely (literal unicode matching)
∘ some become rarer (the ".." and "\w" problems)

• most text in the wild is already in NFC
∘ but not all of it
∘ case in point: filenames on macOS (NFD)

PV248 Python 79/301 October 22, 2020

Decomposing Strings
• recall that str is immutable
• splitting: str.split(':')

∘ None = split on any whitespace
• split on first delimiter: partition
• better whitespace stripping: s2 = s1.strip()

∘ also lstrip() and rstrip()

PV248 Python 80/301 October 22, 2020

Searching and Matching
• startswith and endswith

∘ often convenient shortcuts
• find = index

∘ generic substring search

PV248 Python 81/301 October 22, 2020

Building Strings
• format literals and str.format

• str.replace – substring search and replace
• str.join – turn lists of strings into a string

PV248 Python 82/301 October 22, 2020

Part 3.2: Structured Text

PV248 Python 83/301 October 22, 2020

JSON
• structured, text-based data format
• atoms: integers, strings, booleans
• objects (dictionaries), arrays (lists)
• widely used around the web &c.
• simple (compared to XML or YAML)

PV248 Python 84/301 October 22, 2020

JSON: Example

{

"composer": ["Bach, Johann Sebastian"],

"key": "g",

"voices": {

"1": "oboe",

"2": "bassoon"

}

}

PV248 Python 85/301 October 22, 2020

JSON: Writing
• printing JSON seems straightforward enough
• but: double quotes in strings
• strings must be properly \-escaped during output
• also pesky commas
• keeping track of indentation for human readability
• better use an existing library: `import json`

PV248 Python 86/301 October 22, 2020

JSON in Python
• json.dumps = short for dump to string
• python dict/list/str/... data comes in
• a string with valid JSON comes out

Workflow
• just convert everything to dict and list

• run json.dumps or json.dump(data, file)

PV248 Python 87/301 October 22, 2020

Python Example

d = {}

d["composer"] = ["Bach, Johann Sebastian"]

d["key"] = "g"

d["voices"] = { 1: "oboe", 2: "bassoon" }

json.dump(d, sys.stdout, indent=4)

Beware: keys are always strings in JSON

PV248 Python 88/301 October 22, 2020

Parsing JSON
• import json

• json.load is the counterpart to json.dump from above
∘ de-serialise data from an open file
∘ builds lists, dictionaries, etc.

• json.loads corresponds to json.dumps

PV248 Python 89/301 October 22, 2020

XML
• meant as a lightweight and consistent redesign of SGML

∘ turned into a very complex format
• heaps of invalid XML floating around

∘ parsing real-world XML is a nightmare
∘ even valid XML is pretty challenging

PV248 Python 90/301 October 22, 2020

XML: Example

<Order OrderDate="1999-10-20">

<Address Type="Shipping">

<Name>Ellen Adams</Name>

<Street>123 Maple Street</Street>

</Address>

<Item PartNumber="872-AA">

<ProductName>Lawnmower</ProductName>

<Quantity>1</Quantity>

</Item>

</Order>

PV248 Python 91/301 October 22, 2020

XML: Another Example

<BLOKY_OBSAH>

<STUDENT>

<OBSAH>25 bodů</OBSAH>

<UCO>72873</UCO>

<ZMENENO>20160111104208</ZMENENO>

<ZMENIL>395879</ZMENIL>

</STUDENT>

</BLOKY_OBSAH>

PV248 Python 92/301 October 22, 2020

XML Features
• offers extensible, rich structure

∘ tags, attributes, entities
∘ suited for structured hierarchical data

• schemas: use XML to describe XML
∘ allows general-purpose validators
∘ self-documenting to a degree

PV248 Python 93/301 October 22, 2020

XML vs JSON
• both work best with trees
• JSON has basically no features

∘ basic data structures and that’s it
• JSON data is ad-hoc and usually undocumented

∘ but: this often happens with XML anyway

PV248 Python 94/301 October 22, 2020

XML Parsers
• DOM = Document Object Model
• SAX = Simple API for XML
• expat = fast SAX-like parser (but not SAX)
• ElementTree = DOM-like but more pythonic

PV248 Python 95/301 October 22, 2020

XML: DOM
• read the entire XML document into memory
• exposes the AST (Abstract Syntax Tree)
• allows things like XPath and CSS selectors
• the API is somewhat clumsy in Python

PV248 Python 96/301 October 22, 2020

XML: SAX
• event-driven XML parsing
• much more efficient than DOM

∘ but often harder to use
• only useful in Python for huge XML files

∘ otherwise just use ElementTree

PV248 Python 97/301 October 22, 2020

XML: ElementTree

for child in root:

print child.tag, child.attrib

Order { OrderDate: "1999-10-20" }

• supports tree walking, XPath
• supports serialization too

PV248 Python 98/301 October 22, 2020

Part 4: Databases, SQL

PV248 Python 99/301 October 22, 2020

NoSQL / Non-relational Databases
• umbrella term for a number of approaches

∘ flat key/value and column stores
∘ document and graph stores

• no or minimal schemas
• non-standard query languages

PV248 Python 100/301 October 22, 2020

Key-Value Stores
• usually very fast and very simple
• completely unstructured values
• keys are often database-global

∘ workaround: prefixes for namespacing
∘ or: multiple databases

PV248 Python 101/301 October 22, 2020

NoSQL & Python
• redis (redis-py) module (Redis is Key-Value)
• memcached (another Key-Value store)
• PyMongo for talking to MongoDB (document-oriented)
• CouchDB (another document-oriented store)
• neo4j or cayley (module pyley) for graph structures

PV248 Python 102/301 October 22, 2020

SQL and RDBMS
• SQL = Structured Query Language
• RDBMS = Relational DataBase Management System
• SQL is to NoSQL what XML is to JSON
• heavily used and extremely reliable

PV248 Python 103/301 October 22, 2020

SQL: Example

select name, grade from student;

select name from student where grade < 'C';

insert into student (name, grade) values

('Random X. Student', 'C');

select * from student

join enrollment on student.id = enrollment.student

join group on group.id = enrollment.group;

PV248 Python 104/301 October 22, 2020

SQL: Relational Data
• JSON and XML are hierarchical

∘ or built from functions if you like
• SQL is relational

∘ relations = generalized functions
∘ can capture more structure
∘ much harder to efficiently process

PV248 Python 105/301 October 22, 2020

SQL: Data Definition
• mandatory, unlike XML or JSON
• gives the data a rather rigid structure
• tables (relations) and columns (attributes)
• static data types for columns
• additional consistency constraints

PV248 Python 106/301 October 22, 2020

SQL: Constraints
• help ensure consistency of the data
• foreign keys: referential integrity

∘ ensures there are no dangling references
∘ but: does not prevent accidental misuse

• unique constraints
• check constraints: arbitrary consistency checks

PV248 Python 107/301 October 22, 2020

SQL: Query Planning
• an RDBMS makes heavy use of indexing

∘ using B trees, hashes and similar techniques
∘ indices are used automatically

• all the heavy lifting is done by the backend
∘ highly-optimized, low-level code
∘ efficient handling of large data

PV248 Python 108/301 October 22, 2020

SQL: Reliability and Flexibility
• most RDBMS give ACID guarantees

∘ transparently solves a lot of problems
∘ basically impossible with normal files

• support for schema alterations
∘ alter table and similar
∘ nearly impossible in ad-hoc systems

PV248 Python 109/301 October 22, 2020

SQLite
• lightweight in-process SQL engine
• the entire database is in a single file
• convenient python module, sqlite3
• stepping stone for a “real” database

PV248 Python 110/301 October 22, 2020

Other Databases
• you can talk to most SQL DBs using python
• postgresql (psycopg2, ...)
• mysql / mariadb (mysql-python, mysql-connector, ...)
• big & expensive: Oracle (cx_oracle), DB2 (pyDB2)
• most of those are much more reliable than SQLite

PV248 Python 111/301 October 22, 2020

SQL Injection

sql = "SELECT * FROM t WHERE name = '" + n + '"'

• the above code is bad, never do it
• consider the following

n = "x'; drop table students --"

n = "x'; insert into passwd (user, pass) ..."

PV248 Python 112/301 October 22, 2020

Avoiding SQL Injection
• use proper SQL-building APIs

∘ this takes care of escaping internally
• templates like insert ... values (?, ?)

∘ the ? get safely substituted by the module
∘ e.g. the executemethod of a cursor

PV248 Python 113/301 October 22, 2020

PEP 249
• informational PEP, for library writers
• describes how database modules should behave

∘ ideally, all SQL modules have the same interface
∘ makes it easy to swap a database backend

• but: SQL itself is not 100% portable

PV248 Python 114/301 October 22, 2020

SQL Pitfalls
• sqlite does not enforce all constraints

∘ you need to pragma foreign_keys = on

• no portable syntax for autoincrement keys
• not all (column) types are supported everywhere
• no portable way to get the key of last insert

PV248 Python 115/301 October 22, 2020

More Resources & Stuff to Look Up
• SQL: https://www.w3schools.com/sql/
• https://docs.python.org/3/library/sqlite3.html

• Object-Relational Mapping
• SQLAlchemy: constructing portable SQL

PV248 Python 116/301 October 22, 2020

Part 5: Operators, Iterators and Exceptions

PV248 Python 117/301 October 22, 2020

Callable Objects
• user-defined functions (module-level def)
• user-defined methods (instance and class)
• built-in functions and methods
• class objects
• objects with a __call__method

PV248 Python 118/301 October 22, 2020

User-defined Functions
• come about from a module-level def
• metadata: __doc__, __name__, __module__
• scope: __globals__, __closure__
• arguments: __defaults__, __kwdefaults__
• type annotations: __annotations__
• the code itself: __code__

PV248 Python 119/301 October 22, 2020

Positional and Keyword Arguments
• user-defined functions have positional arguments
• and keyword arguments

∘ print("hello", file=sys.stderr)

∘ arguments are passed by name
∘ which style is used is up to the caller

• variadic functions: def foo(*args, **kwargs)

∘ args is a tuple of unmatched positional args
∘ kwargs is a dict of unmatched keyword args

PV248 Python 120/301 October 22, 2020

Lambdas
• def functions must have a name
• lambdas provide anonymous functions
• the body must be an expression
• syntax: lambda x: print("hello", x)

• standard user-defined functions otherwise

PV248 Python 121/301 October 22, 2020

Instance Methods
• comes about as object.method

∘ print(x.foo)→ <bound method Foo.foo of ...>

• combines the class, instance and function itself
• __func__ is a user-defined function object
• let bar = x.foo, then

∘ x.foo()→ bar.__func__(bar.__self__)

PV248 Python 122/301 October 22, 2020

Iterators
• objects with __next__ (since 3.x)

∘ iteration ends on raise StopIteration

• iterable objects provide __iter__

∘ sometimes, this is just return self

∘ any iterable can appear in for x in iterable

PV248 Python 123/301 October 22, 2020

class FooIter:

def __init__(self):

self.x = 10

def __iter__(self): return self

def __next__(self):

if self.x:

self.x -= 1

else:

raise StopIteration

return self.x

PV248 Python 124/301 October 22, 2020

Generators (PEP 255)
• written as a normal function or method
• they use yield to generate a sequence
• represented as special callable objects

∘ exist at the C level in CPython

def foo(*lst):

for i in lst: yield i + 1

list(foo(1, 2)) # prints [2, 3]

PV248 Python 125/301 October 22, 2020

yield from

• calling a generator produces a generator object
• how do we call one generator from another?
• same as for x in foo(): yield x

def bar(*lst):

yield from foo(*lst)

yield from foo(*lst)

list(bar(1, 2)) # prints [2, 3, 2, 3]

PV248 Python 126/301 October 22, 2020

Decorators
• written as @decor before a function definition
• decor is a regular function (def decor(f))

∘ f is bound to the decorated function
∘ the decorated function becomes the result of decor

• classes can be decorated too
• you can ‘create’ decorators at runtime

∘ @mkdecor("moo") (mkdecor returns the decorator)
∘ you can stack decorators

PV248 Python 127/301 October 22, 2020

def decor(f):

return lambda: print("bar")

def mkdecor(s):

return lambda g: lambda: print(s)

@decor

def foo(f): print("foo")

@mkdecor("moo")

def moo(f): print("foo")

foo() prints "bar", moo() prints "moo"

PV248 Python 128/301 October 22, 2020

List Comprehension
• a concise way to build lists
• combines a filter and a map

[2 * x for x in range(10)]

[x for x in range(10) if x % 2 == 1]

[2 * x for x in range(10) if x % 2 == 1]

[(x, y) for x in range(3) for y in range(2)]

PV248 Python 129/301 October 22, 2020

Operators
• operators are (mostly) syntactic sugar
• x < y rewrites to x.__lt__(y)

• is and is not are special
∘ are the operands the same object?
∘ also the ternary (conditional) operator

PV248 Python 130/301 October 22, 2020

Non-Operator Builtins
• len(x)→ x.__len__() (length)
• abs(x)→ x.__abs__() (magnitude)
• str(x)→ x.__str__() (printing)
• repr(x)→ x.__repr__() (printing for eval)
• bool(x) and if x: x.__bool__()

PV248 Python 131/301 October 22, 2020

Arithmetic
• a standard selection of operators
• / is floating point, // is integral
• += and similar are somewhat magical

∘ x += y→ x = x.__iadd__(y) if defined
∘ otherwise x = x.__add__(y)

PV248 Python 132/301 October 22, 2020

x = 7 # an int is immutable

x += 3 # works, x = 10, id(x) changes

lst = [7, 3]

lst[0] += 3 # works too, id(lst) stays same

tup = (7, 3) # a tuple is immutable

tup += (1, 1) # still works (id changes)

tup[0] += 3 # fails

PV248 Python 133/301 October 22, 2020

Relational Operators
• operands can be of different types
• equality: !=, ==

∘ by default uses object identity
• ordering: <, <=, >, >= (TypeError by default)
• consistency is not enforced

PV248 Python 134/301 October 22, 2020

Relational Consistency
• __eq__must be an equivalence relation
• x.__ne__(y)must be the same as not x.__eq__(y)

• __lt__must be an ordering relation
∘ compatible with __eq__

∘ consistent with each other
• each operator is separate (mixins can help)

∘ or perhaps a class decorator

PV248 Python 135/301 October 22, 2020

Collection Operators
• in is also a membership operator (outside for)

∘ implemented as __contains__
• indexing and slicing operators

∘ del x[y]→ x.__delitem__(y)

∘ x[y]→ x.__getitem__(y)

∘ x[y] = z→ x.__setitem__(y, z)

PV248 Python 136/301 October 22, 2020

Conditional Operator
• also known as a ternary operator
• written x if cond else y

∘ in C: cond ? x : y

• forms an expression, unlike if

∘ can e.g. appear in a lambda
∘ or in function arguments, &c.

PV248 Python 137/301 October 22, 2020

Exceptions
• an exception interrupts normal control flow
• it’s called an exception because it is exceptional

∘ never mind StopIteration

• causes methods to be interrupted
∘ until a matching except block is found
∘ also known as stack unwinding

PV248 Python 138/301 October 22, 2020

Life Without Exceptions

int fd = socket(...);

if (fd < 0)

... /* handle errors */

if (bind(fd, ...) < 0)

... /* handle errors */

if (listen(fd, 5) < 0)

... /* handle errors */

PV248 Python 139/301 October 22, 2020

With Exceptions

try:

sock = socket.socket(...)

sock.bind(...)

sock.listen(...)

except ...:

handle errors

PV248 Python 140/301 October 22, 2020

Exceptions vs Resources

x = open("file.txt")

stuff

raise SomeError

• who calls x.close()
• this would be a resource leak

PV248 Python 141/301 October 22, 2020

Using finally

try:

x = open("file.txt")

stuff

finally:

x.close()

• works, but tedious and error-prone

PV248 Python 142/301 October 22, 2020

Using with

with open("file.txt") as f:

stuff

• with takes care of the finally and close

• with x as y sets y = x.__enter__()

∘ and calls x.__exit__(...) when leaving the block

PV248 Python 143/301 October 22, 2020

The @property decorator
• attribute syntax is the preferred one in Python
• writing useless setters and getters is boring

class Foo:

@property

def x(self): return 2 * self.a

@x.setter

def x(self, v): self.a = v // 2

PV248 Python 144/301 October 22, 2020

Part 6: Closures, Coroutines, Concurrency

PV248 Python 145/301 October 22, 2020

Concurrency & Parallelism
• threading – thread-based parallelism
• multiprocessing

• concurrent – future-based programming
• subprocess

• sched, a general-purpose event scheduler
• queue, for sending objects between threads

PV248 Python 146/301 October 22, 2020

Threading
• low-level thread support, module threading

• Thread objects represent actual threads
∘ threads provide start() and join()

∘ the run()method executes in a new thread
• mutexes, semaphores &c.

PV248 Python 147/301 October 22, 2020

The Global Interpreter Lock
• memory management in CPython is not thread-safe

∘ Python code runs under a global lock
∘ pure Python code cannot use multiple cores

• C code usually runs without the lock
∘ this includes numpy crunching

PV248 Python 148/301 October 22, 2020

Multiprocessing
• like threading but uses processes
• works around the GIL

∘ each worker process has its own interpreter
• queued/sent objects must be pickled

∘ see also: the picklemodule
∘ this causes substantial overhead
∘ functions, classes &c. are pickled by name

PV248 Python 149/301 October 22, 2020

Futures
• like coroutine await but for subroutines
• a Future can be waited for using f.result()

• scheduled via concurrent.futures.Executor

∘ Executor.map is like asyncio.gather

∘ Executor.submit is like asyncio.create_task

• implemented using process or thread pools

PV248 Python 150/301 October 22, 2020

Native Coroutines (PEP 492)
• created using async def (since Python 3.5)
• generalisation of generators

∘ yield from is replaced with await

∘ an __await__magic method is required
• a coroutine can be suspended and resumed

PV248 Python 151/301 October 22, 2020

Coroutine Scheduling
• coroutines need a scheduler
• one is available from asyncio.get_event_loop()

• along with many coroutine building blocks
• coroutines can actually run in parallel

∘ via asyncio.create_task (since 3.7)
∘ via asyncio.gather

PV248 Python 152/301 October 22, 2020

Async Generators (PEP 525)
• async def + yield

• semantics like simple generators
• but also allows await
• iterated with async for

∘ async for runs sequentially

PV248 Python 153/301 October 22, 2020

Execution Stack
• made up of activation frames
• holds local variables
• and return addresses
• in dynamic languages, often lives in the heap

PV248 Python 154/301 October 22, 2020

Variable Capture
• variables are captured lexically
• definitions are a dynamic / run-time construct

∘ a nested definition is executed
∘ creates a closure object

• always by reference in Python
∘ but can be by-value in other languages

PV248 Python 155/301 October 22, 2020

Using Closures
• closures can be returned, stored and called

∘ they can be called multiple times, too
∘ they can capture arbitrary variables

• closures naturally retain state
• this is what makes them powerful

PV248 Python 156/301 October 22, 2020

Objects from Closures
• so closures are essentially code + state
• wait, isn’t that what an object is?
• indeed, you can implement objects using closures

PV248 Python 157/301 October 22, 2020

The Role of GC
• memory management becomes a lot more complicated
• forget C-style ‘automatic’ stack variables
• this is why the stack is actually in the heap
• this can go as far as form reference cycles

PV248 Python 158/301 October 22, 2020

Coroutines
• coroutines are a generalisation of subroutines
• they can be suspended and re-entered
• coroutines can be closures at the same time
• the code of a coroutine is like a function
• a suspended coroutine is like an activation frame

PV248 Python 159/301 October 22, 2020

Yield
• suspends execution and ‘returns’ a value
• may also obtain a new value (cf. send)
• when re-entered, continue where we left off

for i in range(5): yield i

PV248 Python 160/301 October 22, 2020

Send
• with yield, we have one-way communication
• but in many cases, we would like two-way
• a suspended coroutine is an object in Python

∘ with a sendmethod which takes a value
∘ send re-enters the coroutine

PV248 Python 161/301 October 22, 2020

Yield From and Await
• yield from is mostly a generator concept
• await basically does the same thing

∘ call out to another coroutine
∘ when it suspends, so does the entire stack

PV248 Python 162/301 October 22, 2020

Suspending Native Coroutines
• this is not actually possible

∘ not with async-native syntax anyway
• you need a yield

∘ for that, you need a generator
∘ use the types.coroutine decorator

PV248 Python 163/301 October 22, 2020

Event Loop
• not required in theory
• useful also without coroutines
• there is a synergistic effect

∘ event loops make coroutines easier
∘ coroutines make event loops easier

PV248 Python 164/301 October 22, 2020

Part 7: Communication & HTTP with
asyncio

PV248 Python 165/301 October 22, 2020

Running Programs (the old way)
• os.system is about the simplest

∘ also somewhat dangerous – shell injection
∘ you only get the exit code

• os.popen allows you to read output of a program
∘ alternatively, you can send input to the program
∘ you can’t do both (would likely deadlock anyway)
∘ runs the command through a shell, same as os.system

PV248 Python 166/301 October 22, 2020

Low-level Process API
• POSIX-inherited interfaces (on POSIX systems)
• os.exec: replace the current process
• os.fork: split the current process in two
• os.forkpty: same but with a PTY

PV248 Python 167/301 October 22, 2020

Detour: bytes vs str
• strings (class str) represent text

∘ that is, a sequence of unicode points
• files and network connections handle data

∘ represented in Python as bytes
• the bytes constructor can convert from str

∘ e.g. b = bytes("hello", "utf8")

PV248 Python 168/301 October 22, 2020

Running Programs (the new way)
• you can use the subprocessmodule
• subprocess can handle bidirectional IO

∘ it also takes care of avoiding IO deadlocks
∘ set input to feed data to the subprocess

• internally, run uses a Popen object
∘ if run can’t do it, Popen probably can

PV248 Python 169/301 October 22, 2020

Getting subprocess Output
• available via run since Python 3.7
• the run function returns a CompletedProcess

• it has attributes stdout and stderr

• both are bytes (byte sequences) by default
• or str if text or encodingwere set
• available if you enabled capture_output

PV248 Python 170/301 October 22, 2020

Running Filters with Popen

• if you are stuck with 3.6, use Popen directly
• set stdin in the constructor to PIPE

• use the communicatemethod to send the input
• this gives you the outputs (as bytes)

PV248 Python 171/301 October 22, 2020

import subprocess

from subprocess import PIPE

input = bytes("x\na\nb\ny", "utf8")

p = subprocess.Popen(["sort"], stdin=PIPE,

stdout=PIPE)

out = p.communicate(input=input)

out[0] is the stdout, out[1] is None

PV248 Python 172/301 October 22, 2020

Subprocesses with asyncio

• import asyncio.subprocess

• create_subprocess_exec, like subprocess.run

∘ but it returns a Process instance
∘ Process has a communicate async method

• can run things in background (via tasks)
∘ also multiple processes at once

PV248 Python 173/301 October 22, 2020

Protocol-based asyncio subprocesses
• let loop be an implementation of the asyncio event loop
• there’s subprocess_exec and subprocess_shell

∘ sets up pipes by default
• integrates into the asyncio transport layer (see later)
• allows you to obtain the data piece-wise
• https://docs.python.org/3/library/asyncio-protocol.html

PV248 Python 174/301 October 22, 2020

Sockets
• the socket API comes from early BSD Unix
• socket represents a (possible) network connection
• sockets are more complicated than normal files

∘ establishing connections is hard
∘ messages get lost much more often than file data

PV248 Python 175/301 October 22, 2020

Socket Types
• sockets can be internet or unix domain

∘ internet sockets connect to other computers
∘ Unix sockets live in the filesystem

• sockets can be stream or datagram
∘ stream sockets are like files (TCP)
∘ you can write a continuous stream of data
∘ datagram sockets can send individual messages (UDP)

PV248 Python 176/301 October 22, 2020

Sockets in Python
• the socketmodule is available on all major OSes
• it has a nice object-oriented API

∘ failures are propagated as exceptions
∘ buffer management is automatic

• useful if you need to do low-level networking
∘ hard to use in non-blocking mode

PV248 Python 177/301 October 22, 2020

Sockets and asyncio

• asyncio provides sock_* to work with socket objects
• this makes work with non-blocking sockets a lot easier
• but your program needs to be written in async style
• only use sockets when there is no other choice

∘ asyncio protocols are both faster and easier to use

PV248 Python 178/301 October 22, 2020

Hyper-Text Transfer Protocol
• originally a simple text-based, stateless protocol
• however

∘ SSL/TLS, cryptography (https)
∘ pipelining (somewhat stateful)
∘ cookies (somewhat stateful in a different way)

• typically between client and a front-end server
• but also as a back-end protocol (web server to app server)

PV248 Python 179/301 October 22, 2020

Request Anatomy
• request type (see below)
• header (text-based, like e-mail)
• content

Request Types
• GET – asks the server to send a resource
• HEAD – like GET but only send back headers
• POST – send data to the server

PV248 Python 180/301 October 22, 2020

Python and HTTP
• both client and server functionality

∘ import http.client

∘ import http.server

• TLS/SSL wrappers are also available
∘ import ssl

• synchronous by default

PV248 Python 181/301 October 22, 2020

Serving Requests
• derive from BaseHTTPRequestHandler

• implement a do_GETmethod
• this gets called whenever the client does a GET

• also available: do_HEAD, do_POST, etc.
• pass the class (not an instance) to HTTPServer

PV248 Python 182/301 October 22, 2020

Serving Requests (cont’d)
• HTTPServer creates a new instance of your Handler
• the BaseHTTPRequestHandlermachinery runs
• it calls your do_GET etc. method
• request data is available in instance variables

∘ self.path, self.headers

PV248 Python 183/301 October 22, 2020

Talking to the Client
• HTTP responses start with a response code

∘ self.send_response(200, 'OK')

• the headers follow (set at least Content-Type)
∘ self.send_header('Connection', 'close')

• headers and the content need to be separated
∘ self.end_headers()

• finally, send the content by writing to self.wfile

PV248 Python 184/301 October 22, 2020

Sending Content
• self.wfile is an open file
• it has a write()method which you can use
• sockets only accept byte sequences, not str
• use the bytes(string, encoding) constructor

∘ match the encoding to your Content-Type

PV248 Python 185/301 October 22, 2020

HTTP and asyncio

• the base asyncio currently doesn’t directly support HTTP
• but: you can get aiohttp from PyPI
• contains a very nice web server

∘ from aiohttp import web

∘ minimum boilerplate, fully asyncio-ready

PV248 Python 186/301 October 22, 2020

Aside: The Python Package Index
• colloquially known as PyPI (or cheese shop)

∘ do not confuse with PyPy (Python in almost-Python)
• both source packages and binaries

∘ the latter known as wheels (PEP 427, 491)
∘ previously python eggs

• <https://pypi.python.org>

PV248 Python 187/301 October 22, 2020

SSL and TLS
• you want to use the sslmodule for handling HTTPS

∘ this is especially true server-side
∘ aiohttp and http.server are compatible

• you need to deal with certificates (loading, checking)
• this is a rather important but complex topic

PV248 Python 188/301 October 22, 2020

Certificate Basics
• certificate is a cryptographically signed statement

∘ it ties a server to a certain public key
∘ the client ensures the server knows the private key

• the server loads the certificate and its private key
• the client must validate the certificate

∘ this is typically a lot harder to get right

PV248 Python 189/301 October 22, 2020

SSL in Python
• start with import ssl

• almost everything happens in the SSLContext class
• get an instance from ssl.create_default_context()

∘ you can use wrap_socket to run an SSL handshake
∘ you can pass the context to aiohttp

• if httpd is a http.server.HTTPServer:

httpd.socket = ssl.wrap_socket(httpd.socket, ...)

PV248 Python 190/301 October 22, 2020

HTTP Clients
• there’s a very basic http.client
• for a more complete library, use urllib.request

• aiohttp has client functionality
• all of the above can be used with ssl

• another 3rd party module: Python Requests

PV248 Python 191/301 October 22, 2020

Part 8: Low-level asyncio

PV248 Python 192/301 October 22, 2020

IO at the OS Level
• often defaults to blocking

∘ read returns when data is available
∘ this is usually OK for files

• but what about network code?
∘ could work for a client

PV248 Python 193/301 October 22, 2020

Threads and IO
• there may be work to do while waiting

∘ waiting for IO can be wasteful
• only the calling (OS) thread is blocked

∘ another thread may do the work
∘ but multiple green threads may be blocked

PV248 Python 194/301 October 22, 2020

Non-Blocking IO
• the program calls read

∘ read returns immediately
∘ even if there was no data

• but how do we know when to read?
∘ we could poll
∘ for example call read every 30ms

PV248 Python 195/301 October 22, 2020

Polling
• trade-off between latency and throughput

∘ sometimes, polling is okay
∘ but is often too inefficient

• alternative: IO dispatch
∘ useful when multiple IOs are pending
∘ wait only if all are blocked

PV248 Python 196/301 October 22, 2020

select

• takes a list of file descriptors
• block until one of them is ready

∘ next readwill return data immediately
• can optionally specify a timeout
• only useful for OS-level resources

PV248 Python 197/301 October 22, 2020

Alternatives to select

• select is a rather old interface
• there is a number of more modern variants
• poll and epoll system calls

∘ despite the name, they do not poll
∘ epoll is more scalable

• kqueue and kevent on BSD systems

PV248 Python 198/301 October 22, 2020

Synchronous vs Asynchronous
• the select family is synchronous

∘ you call the function
∘ it may wait some time
∘ you proceed when it returns

• OS threads are fully asynchronous

PV248 Python 199/301 October 22, 2020

The Thorny Issue of Disks
• a file is always ‘ready’ for reading
• this may still take time to complete
• there is no good solution on UNIX
• POSIX AIO exists but is sparsely supported
• OS threads are an option

PV248 Python 200/301 October 22, 2020

IO onWindows
• select is possible (but slow)
• Windows provides real asynchronous IO

∘ quite different from UNIX
∘ the IO operation is directly issued
∘ but the function returns immediately

• comes with a notification queue

PV248 Python 201/301 October 22, 2020

The asyncio Event Loop
• uses the select family of syscalls
• why is it called async IO?

∘ select is synchronous in principle
∘ this is an implementation detail
∘ the IOs are asynchronous to each other

PV248 Python 202/301 October 22, 2020

How Does It Work
• you must use asyncio functions for IO
• an async read does not issue an OS read

• it yields back into the event loop
• the fd is put on the select list
• the coroutine is resumed when the fd is ready

PV248 Python 203/301 October 22, 2020

Timers
• asyncio allows you to set timers
• the event loop keeps a list of those
• and uses that to set the select timeout

∘ just uses the nearest timer expiry
• when a timer expires, its owner is resumed

PV248 Python 204/301 October 22, 2020

Blocking IO vs asyncio
• all user code runs on the main thread
• you must not call any blocking IO functions
• doing so will stall the entire application

∘ in a server, clients will time out
∘ even if not, latency will suffer

PV248 Python 205/301 October 22, 2020

DNS
• POSIX: getaddrinfo and getnameinfo

∘ also the older API gethostbyname
• those are all blocking functions

∘ and they can take a while
∘ but name resolution is essential

• asyncio internally uses OS threads for DNS

PV248 Python 206/301 October 22, 2020

Signals
• signals on UNIX are very asynchronous
• interact with OS threads in a messy way
• asyncio hides all this using C code

PV248 Python 207/301 October 22, 2020

Native Coroutines (Reminder)
• delared using async def

async def foo():

await asyncio.sleep(1)

• calling foo() returns a suspended coroutine
• which you can await

∘ or turn it into an asyncio.Task

PV248 Python 208/301 October 22, 2020

Tasks
• asyncio.Task is a nice wrapper around coroutines

∘ create with asyncio.create_task()

• can be stopped prematurely using cancel()

• has an API for asking things:
∘ done() tells you if the coroutine has finished
∘ result() gives you the result

PV248 Python 209/301 October 22, 2020

Tasks and Exceptions
• what if a coroutine raises an exception?
• calling resultwill re-raise it

∘ i.e. it continues propagating from result()

• you can also ask directly using exception()

∘ returns None if the coroutine ended normally

PV248 Python 210/301 October 22, 2020

Asynchronous Context Managers
• normally, we use with for resource acquisition

∘ this internally uses the context manager protocol
• but sometimes you need to wait for a resource

∘ __enter__() is a subroutine and would block
∘ this won’t work in async-enabled code

• we need __enter__() to be itself a coroutine

PV248 Python 211/301 October 22, 2020

async with

• just like wait but uses __aenter__(), __aexit__()
∘ those are async def

• the async with behaves like an await

∘ it will suspend if the context manager does
∘ the coroutine which owns the resource can continue

• mainly used for locks and semaphores

PV248 Python 212/301 October 22, 2020

Part 9: Python Pitfalls

PV248 Python 213/301 October 22, 2020

Mixing Languages
• for many people, Python is not a first language
• some things look similar in Python and Java (C++, ...)

∘ sometimes they do the same thing
∘ sometimes they do something very different
∘ sometimes the difference is subtle

PV248 Python 214/301 October 22, 2020

Python vs Java: Decorators
• Java has a thing called annotations
• looks very much like a Python decorator
• in Python, decorators can drastically change meaning
• in Java, they are just passive metadata

∘ other code can use them for meta-programming though

PV248 Python 215/301 October 22, 2020

Class Body Variables

class Foo:

some_attr = 42

• in Java/C++, this is how you create instance variables
• in Python, this creates class attributes

∘ i.e. what C++/Java would call static attributes

PV248 Python 216/301 October 22, 2020

Very Late Errors

if a == 2:

priiiint("a is not 2")

• no error when loading this into python
• it even works as long as a != 2

• most languages would tell you much earlier

PV248 Python 217/301 October 22, 2020

Very Late Errors (cont’d)

try:

foo()

except TyyyypeError:

print("my mistake")

• does not even complain when running the code
• you only notice when foo() raises an exception

PV248 Python 218/301 October 22, 2020

Late Imports

if a == 2:

import foo

foo.say_hello()

• unless a == 2, mymod is not loaded
• any syntax errors don’t show up until a == 2

∘ it may even fail to exist

PV248 Python 219/301 October 22, 2020

Block Scope

for i in range(10): pass

print(i) # not a NameError

• in Python, local variables are function-scoped
• in other languages, i is confined to the loop

PV248 Python 220/301 October 22, 2020

Assignment Pitfalls

x = [1, 2]

y = x

x.append(3)

print(y) # prints [1, 2, 3]

• in Python, everything is a reference
• assignment does not make copies

PV248 Python 221/301 October 22, 2020

Equality of Iterables
• [0, 1] == [0, 1]→ True (obviously)
• range(2) == range(2) → True

• list(range(2)) == [0, 1] → True

• [0, 1] == range(2)→ False

PV248 Python 222/301 October 22, 2020

Equality of bool
• if 0: print("yes")→ nothing
• if 1: print("yes")→ yes
• False == 0→ True

• True == 1→ True

• 0 is False→ False

• 1 is True→ False

PV248 Python 223/301 October 22, 2020

Equality of bool (cont’d)
• if 2: print("yes")→ yes
• True == 2→ False

• False == 2→ False

• if '': print("yes")→ nothing
• if 'x': print("yes") → yes
• '' == False→ False

• 'x' == True→ False

PV248 Python 224/301 October 22, 2020

Mutable Default Arguments

def foo(x = []):

x.append(7)

return x

foo() # [7]

foo() # [7, 7]... wait, what?

PV248 Python 225/301 October 22, 2020

Late Lexical Capture

f = [lambda x : i * x for i in range(5)]

f[4](3) # 12

f[0](3) # 12 ... ?!

g = [lambda x, i = i: i * x for i in range(5)]

g[4](3) # 12

g[0](3) # 0 ... fml

h = [(lambda x : i * x)(3) for i in range(5)]

h # [0, 3, 6, 12] ... i kid you not

PV248 Python 226/301 October 22, 2020

Dictionary Iteration Order
• in python <= 3.6

∘ small dictionaries iterate in insertion order
∘ big dictionaries iterate in ‘random’ order

• in python 3.7
∘ all in insertion order, but not documented

• in python >= 3.8
∘ guaranteed to iterate in insertion order

PV248 Python 227/301 October 22, 2020

List Multiplication

x = [[1] * 2] * 3

print(x) # [[1, 1], [1, 1], [1, 1]]

x[0][0] = 2

print(x) # [[2, 1], [2, 1], [2, 1]]

PV248 Python 228/301 October 22, 2020

Forgotten Await

import asyncio

async def foo():

print("hello")

async def main():

foo()

asyncio.run(main())

• gives warning coroutine 'foo' was never awaited

PV248 Python 229/301 October 22, 2020

Python vs Java: Closures
• captured variables are final in Java
• but they are mutable in Python

∘ and of course captured by reference
• they are whatever you tell them to be in C++

PV248 Python 230/301 October 22, 2020

Explicit super()
• Java and C++ automatically call parent constructors
• Python does not
• you have to call them yourself

PV248 Python 231/301 October 22, 2020

Setters and Getters

obj.attr

obj.attr = 4

• in C++ or Java, this is an assignment
• in Python, it can run arbitrary code

∘ this often makes getters/setters redundant

PV248 Python 232/301 October 22, 2020

Part 10: Testing, Profiling

PV248 Python 233/301 October 22, 2020

Why Testing
• reading programs is hard
• reasoning about programs is even harder
• testing is comparatively easy

• difference between an example and a proof

PV248 Python 234/301 October 22, 2020

What is Testing
• based on trial runs
• the program is executed with some inputs
• the outputs or outcomes are checked
• almost always incomplete

PV248 Python 235/301 October 22, 2020

Testing Levels
• unit testing

∘ individual classes
∘ individual functions

• functional
∘ system
∘ integration

PV248 Python 236/301 October 22, 2020

Testing Automation
• manual testing

∘ still widely used
∘ requires human

• semi-automated
∘ requires human assistance

• fully automated
∘ can run unattended

PV248 Python 237/301 October 22, 2020

Testing Insight
• what does the test or tester know?
• black box: nothing known about internals
• gray box: limited knowledge
• white box: ‘complete’ knowledge

PV248 Python 238/301 October 22, 2020

Why Unit Testing?
• allows testing small pieces of code
• the unit is likely to be used in other code

∘ make sure your code works before you use it
∘ the less code, the easier it is to debug

• especially easier to hit all the corner cases

PV248 Python 239/301 October 22, 2020

Unit Tests with unittest

• from unittest import TestCase

• derive your test class from TestCase

• put test code into methods named test_*

• run with python -m unittest program.py

∘ add -v for more verbose output

PV248 Python 240/301 October 22, 2020

from unittest import TestCase

class TestArith(TestCase):

def test_add(self):

self.assertEqual(1, 4 - 3)

def test_leq(self):

self.assertTrue(3 <= 2 * 3)

PV248 Python 241/301 October 22, 2020

Unit Tests with pytest

• a more pythonic alternative to unittest

∘ unittest is derived from JUnit
• easier to use and less boilerplate
• you can use native python assert

• easier to run, too
∘ just run pytest in your source repository

PV248 Python 242/301 October 22, 2020

Test Auto-Discovery in pytest

• pytest finds your testcases for you
∘ no need to register anything

• put your tests in test_.py or _test.py

• name your testcases (functions) test_*

PV248 Python 243/301 October 22, 2020

Fixtures in pytest

• sometimes you need the same thing in many testcases
• in unittest, you have the test class
• pytest passes fixtures as parameters

∘ fixtures are created by a decorator
∘ they are matched based on their names

PV248 Python 244/301 October 22, 2020

import pytest

import smtplib

@pytest.fixture

def smtp_connection():

return smtplib.SMTP("smtp.gmail.com", 587)

def test_ehlo(smtp_connection):

response, msg = smtp_connection.ehlo()

assert response == 250

PV248 Python 245/301 October 22, 2020

Property Testing
• writing test inputs is tedious
• sometimes, we can generate them instead
• useful for general properties like

∘ idempotency (e.g. serialize + deserialize)
∘ invariants (output is sorted, ...)
∘ code does not cause exceptions

PV248 Python 246/301 October 22, 2020

Using hypothesis

• property-based testing for Python
• has strategies to generate basic data types

∘ int, str, dict, list, set, ...
• compose built-in generators to get custom types
• integrated with pytest

PV248 Python 247/301 October 22, 2020

import hypothesis

import hypothesis.strategies as s

@hypothesis.given(s.lists(s.integers()))

def test_sorted(x):

assert sorted(x) == x # should fail

@hypothesis.given(x=s.integers(), y=s.integers())

def test_cancel(x, y):

assert (x + y) - y == x # looks okay

PV248 Python 248/301 October 22, 2020

Going Quick and Dirty
• goal: minimize time spent on testing
• manual testing usually loses

∘ but it has almost 0 initial investment
• if you can write a test in 5 minutes, do it
• useful for testing small scripts

PV248 Python 249/301 October 22, 2020

Shell 101
• shell scripts are very easy to write
• they are ideal for testing IO behaviour
• easily check for exit status: set -e

• see what is going on: set -x

• use diff -u to check expected vs actual output

PV248 Python 250/301 October 22, 2020

Shell Test Example

set -ex

python script.py < test1.in | tee out

diff -u test1.out out

python script.py < test2.in | tee out

diff -u test2.out out

PV248 Python 251/301 October 22, 2020

Continuous Integration
• automated tests need to be executed
• with many tests, this gets tedious to do by hand
• CI builds and tests your project regularly

∘ every time you push some commits
∘ every night (e.g. more extensive tests)

PV248 Python 252/301 October 22, 2020

CI: Travis
• runs in the cloud (CI as a service)
• trivially integrates with pytest

• virtualenv out of the box for python projects
• integrated with github
• configure in .travis.yml in your repo

PV248 Python 253/301 October 22, 2020

CI: GitLab
• GitLab has its own CI solution (similar to travis)
• also available at FI
• runs tests when you push to your gitlab
• drop a .gitlab-ci.yml in your repository
• automatic deployment into heroku &c.

PV248 Python 254/301 October 22, 2020

CI: Buildbot
• written in python/twisted

∘ basically a framework to build a custom CI tool
• self-hosted and somewhat complicated to set up

∘ more suited for complex projects
∘ much more flexible than most CI tools

• distributed design

PV248 Python 255/301 October 22, 2020

CI: Jenkins
• another self-hosted solution, this time in Java

∘ widely used and well supported
• native support for python projects (including pytest)

∘ provides a dashboard with test result graphs &c.
∘ supports publishing sphinx-generated documentation

PV248 Python 256/301 October 22, 2020

Print-based Debugging
• no need to be ashamed, everybody does it
• less painful in interpreted languages
• you can also use decorators for tracing
• never forget to clean your program up again

PV248 Python 257/301 October 22, 2020

def debug(e):

f = sys._getframe(1)

v = eval(e, f.f_globals, f.f_locals)

l = f.f_code.co_filename + ':'

l += str(f.f_lineno) + ':'

print(l, e, '=', repr(v), file=sys.stderr)

x = 1

debug('x + 1')

PV248 Python 258/301 October 22, 2020

The Python Debugger
• run as python -m pdb program.py

• there’s a built-in help command
• next steps through the program
• break to set a breakpoint
• cont to run until end or a breakpoint

PV248 Python 259/301 October 22, 2020

What is Profiling
• measurement of resource consumption
• essential info for optimising programs
• answers questions about bottlenecks

∘ where is my program spending most time?
∘ less often: how is memory used in the program

PV248 Python 260/301 October 22, 2020

Why Profiling
• ‘blind’ optimisation is often misdirected

∘ it is like fixing bugs without triggering them
∘ program performance is hard to reason about

• tells you exactly which point is too slow
∘ allows for best speedup with least work

PV248 Python 261/301 October 22, 2020

Profiling in Python
• provided as a library, cProfile

∘ alternative: profile is slower, but more flexible
• run as python -m cProfile program.py

• outputs a list of lines/functions and their cost
• use cProfile.run() to profile a single expression

PV248 Python 262/301 October 22, 2020

python -m cProfile -s time fib.py

ncalls tottime percall file:line(function)

13638/2 0.032 0.016 fib.py:1(fib_rec)

2 0.000 0.000 {builtins.print}

2 0.000 0.000 fib.py:5(fib_mem)

PV248 Python 263/301 October 22, 2020

Part 11: Linear Algebra & Symbolic Math

PV248 Python 264/301 October 22, 2020

Numbers in Python
• recall that numbers are objects
• a tuple of real numbers has 300% overhead

∘ compared to a C array of float values
∘ and 350% for integers

• this causes extremely poor cache use
• integers are arbitrary-precision

PV248 Python 265/301 October 22, 2020

Math in Python
• numeric data usually means arrays

∘ this is inefficient in python
• we need a module written in C

∘ but we don’t want to do that ourselves
• enter the SciPy project

∘ pre-made numeric and scientific packages

PV248 Python 266/301 October 22, 2020

The SciPy Family
• numpy: data types, linear algebra
• scipy: more computational machinery
• pandas: data analysis and statistics
• matplotlib: plotting and graphing
• sympy: symbolic mathematics

PV248 Python 267/301 October 22, 2020

Aside: External Libraries
• until now, we only used bundled packages
• for math, we will need external libraries
• you can use pip to install those

∘ use pip install --user <package>

PV248 Python 268/301 October 22, 2020

Aside: Installing numpy

• the easiest way may be with pip

∘ this would be pip3 on aisa

• linux distributions usually also have packages
• another option is getting the Anaconda bundle
• detailed instructions on https://scipy.org

PV248 Python 269/301 October 22, 2020

Arrays in numpy

• compact, C-implemented data types
• flexible multi-dimensional arrays
• easy and efficient re-shaping

∘ typically without copying the data

PV248 Python 270/301 October 22, 2020

Entering Data
• most data is stored in numpy.array

• can be constructed from a list

∘ a list of lists for 2D arrays
• or directly loaded from / stored to a file

∘ binary: numpy.load, numpy.save
∘ text: numpy.loadtxt, numpy.savetxt

PV248 Python 271/301 October 22, 2020

LAPACK and BLAS
• BLAS is a low-level vector/matrix package
• LAPACK is built on top of BLAS

∘ provides higher-level operations
∘ tuned for modern CPUs with multiple caches

• both are written in Fortran
∘ ATLAS and C-LAPACK are C implementations

PV248 Python 272/301 October 22, 2020

Element-wise Functions
• the basic math function arsenal
• powers, roots, exponentials, logarithms
• trigonometric (sin, cos, tan, ...)
• hyperbolic (sinh, cosh, tanh, ...)
• cyclometric (arcsin, arccos, arctan, ...)

PV248 Python 273/301 October 22, 2020

Matrix Operations in numpy

• import numpy.linalg

• multiplication, inversion, rank
• eigenvalues and eigenvectors
• linear equation solver
• pseudo-inverses, linear least squares

PV248 Python 274/301 October 22, 2020

Additional Linear Algebra in scipy

• import scipy.linalg

• LU, QR, polar, etc. decomposition
• matrix exponentials and logarithms
• matrix equation solvers
• special operations for banded matrices

PV248 Python 275/301 October 22, 2020

Where is my Gaussian Elimination?
• used in lots of school linear algebra
• but not the most efficient algorithm
• a few problems with numerical stability
• not directly available in numpy

PV248 Python 276/301 October 22, 2020

Numeric Stability
• floats are imprecise / approximate
• multiplication is not associative
• iteration amplifies the errors

0.1**2 == 0.01 # False

1 / (0.1**2 - 0.01) # 5.8⋅10¹⁷

a = (0.1 * 0.1) * 10

b = 0.1 * (0.1 * 10)

1 / (a - b) # 7.21⋅10¹⁶

PV248 Python 277/301 October 22, 2020

LU Decomposition
• decompose matrix A into simpler factors
• PA = LUwhere

∘ P is a permutation matrix
∘ L is a lower triangular matrix
∘ U is an upper triangular matrix

• fast and numerically stable

PV248 Python 278/301 October 22, 2020

Uses for LU
• equations, determinant, inversion, ...
• e.g. det(A) = det(P−1) ⋅ det(L) ⋅ det(U)

∘ where det(U) = ∏i Uii

∘ and det(L) = ∏i Lii

PV248 Python 279/301 October 22, 2020

Numeric Math
• float arithmetic is messy but incredibly fast
• measured data is approximate anyway
• stable algorithms exist for many things

∘ and are available from libraries
• we often don’t care about exactness

∘ think computer graphics, signal analysis, ...

PV248 Python 280/301 October 22, 2020

Symbolic Math
• numeric math sucks for ‘textbook’ math
• there are problems where exactness matters

∘ pure math and theoretical physics
• incredibly slow computation

∘ but much cleaner interpretation

PV248 Python 281/301 October 22, 2020

Linear Algebra in sympy

• uses exact math
∘ e.g. arbitrary precision rationals
∘ and roots thereof
∘ and many other computable numbers

• wide repertoire of functions
∘ including LU, QR, etc. decompositions

PV248 Python 282/301 October 22, 2020

Exact Rationals in sympy

from sympy import *

a = QQ(1) / 10 # QQ = rationals

Matrix([[sqrt(a**3), 0, 0],

[0, sqrt(a**3), 0],

[0, 0, 1]]).det()

result: 1/1000

PV248 Python 283/301 October 22, 2020

numpy for Comparison

import numpy as np

import numpy.linalg as la

a = 0.1

la.det([[np.sqrt(a**3), 0, 0],

[0, np.sqrt(a**3), 0],

[0, 0, 1]])

result: 0.0010000000000000002

PV248 Python 284/301 October 22, 2020

General Solutions in Symbolic Math

from sympy import *

x = symbols('x')

Matrix([[x, 0, 0],

[0, 1, 0],

[0, 0, x]]).det()

result: x ** 2

PV248 Python 285/301 October 22, 2020

Symbolic Differentation

x = symbols('x')

diff(x**2 + 2*x + log(x/2))

result: 2*x + 2 + 1/x

diff(x**2 * exp(x))

result: x**2 * exp(x) + 2 * x * exp(x)

PV248 Python 286/301 October 22, 2020

Algebraic Equations

solve(x**2 - 7)

result: [-sqrt(7), sqrt(7)]

solve(x**2 - exp(x))

result: [-2 * LambertW(-1/2)]

solve(x**4 - x)

result: [0, 1, -1/2 - sqrt(3) * I/2,

-1/2 + sqrt(3) * I/2] ; I**2 = -1

PV248 Python 287/301 October 22, 2020

Ordinary Differential Equations

f = Function('f')

dsolve(f(x).diff(x)) # f'(x) = 0

result: Eq(f(x), C1)

dsolve(f(x).diff(x) - f(x)) # f'(x) = f(x)

result: Eq(f(x), C1 * exp(x))

dsolve(f(x).diff(x) + f(x)) # f'(x) = -f(x)

result: Eq(f(x), C1 * exp(-x))

PV248 Python 288/301 October 22, 2020

Symbolic Integration

integrate(x**2)

result: x**3 / 3

integrate(log(x))

result: x * log(x) - x

integrate(cos(x) ** 2)

result: x/2 + sin(x) * cos(x) / 2

PV248 Python 289/301 October 22, 2020

Numeric Sparse Matrices
• sparse = most elements are 0
• available in scipy.sparse

• special data types (not numpy arrays)
∘ do not use numpy functions on those

• less general, but more compact and faster

PV248 Python 290/301 October 22, 2020

Fourier Transform
• continuous: f̂ (ξ) = ∫∞−∞ f(x) exp(−2πixξ)dx
• series: f(x) = ∑∞

n=−∞ cn exp(
i2πnx

P)
• real series: f(x) = a0

2 +∑∞
n=1 (an sin(

2πnx
P) + bn cos(

2πnx
P))

∘ (complex) coefficients: cn = 1
2 (an − ibn)

PV248 Python 291/301 October 22, 2020

Discrete Fourier Transform
• available in numpy.fft

• goes between time and frequency domains
• a few different variants are covered

∘ real-valued input (for signals, rfft)
∘ inverse transform (ifft, irfft)
∘ multiple dimensions (fft2, fftn)

PV248 Python 292/301 October 22, 2020

Polynomial Series
• the numpy.polynomial package
• Chebyshev, Hermite, Laguerre and Legendre

∘ arithmetic, calculus and special-purpose operations
∘ numeric integration using Guassian quadrature
∘ fitting (polynomial regression)

PV248 Python 293/301 October 22, 2020

Part 12: Statistics

PV248 Python 294/301 October 22, 2020

Statistics in numpy

• a basic statistical toolkit
∘ averages, medians
∘ variance, standard deviation
∘ histograms

• random sampling and distributions

PV248 Python 295/301 October 22, 2020

Linear Regression
• very fast model-fitting method

∘ both in computational and human terms
∘ quick and dirty first approximation

• widely used in data interpretation
∘ biology and sociology statistics
∘ finance and economics, especially prediction

PV248 Python 296/301 October 22, 2020

Polynomial Regression
• higher-order variant of linear regression
• can capture acceleration or deceleration
• harder to use and interpret

∘ also harder to compute
• usually requires a model of the data

PV248 Python 297/301 October 22, 2020

Interpolation
• find a line or curve that approximates data
• it must pass through the data points

∘ this is a major difference to regression
• more dangerous than regression

∘ runs a serious risk of overfitting

PV248 Python 298/301 October 22, 2020

Linear and Polynomial Regression, Interpolation
• regressions using the least squares method

∘ linear: numpy.linalg.lstsq
∘ polynomial: numpy.polyfit

• interpolation: scipy.interpolate
∘ e.g. piecewise cubic splines
∘ Lagrange interpolating polynomials

PV248 Python 299/301 October 22, 2020

Pandas: Data Analysis
• the Python equivalent of R

∘ works with tabular data (CSV, SQL, Excel)
∘ time series (also variable frequency)
∘ primarily works with floating-point values

• partially implemented in C and Cython

PV248 Python 300/301 October 22, 2020

Pandas Series and DataFrame
• Series is a single sequence of numbers
• DataFrame represents tabular data

∘ powerful indexing operators
∘ index by column→ series
∘ index by condition→ filtering

PV248 Python 301/301 October 22, 2020

Pandas Example

scores = [('Maxine', 12), ('John', 12),

('Sandra', 10)]

cols = ['name', 'score']

df = pd.DataFrame(data=scores, columns=cols)

df['score'].max() # 12

df[df['score'] >= 12] # Maxine and John

