
IA010: Principles of Programming Languages

State and Side-Effects

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz


Assignments
Side-Effect:

•mutating memory and IO
• Even purely functional programsmust support side-effects.

⟨expr⟩ ∶∶= . . . ∣ skip ∣ print ⟨msg⟩ ⟨expr⟩ ∣ ⟨expr⟩ ; ⟨expr⟩
∣ ⟨id⟩ := ⟨expr⟩

let x = 1;

print "x has value: " x;

x := 2;

print "now x has value: " x;



Ramifications
(a) evaluation turns

from env → val
to env × state → val × state

(b) identifiers turn
from constants with a value (r-values)
to variables with a memory location (l-values)

⇒ changes the notion of an environment

(c) evaluation order matters
let x = 0;

let y = (x := 1; 3) + (x := 2; 4);

x + y

⇒makes lazy evaluation impractical



Ramifications
(d) allows uninitialised data structures
• needed for mutually recursive structures
• source of hard to find bugs

(e) aliasing
• we need to distinguish between

“have the same value” and “have the same memory address”
•might require frequent copying of data structures

(f) clean up code
• in conjunction with error checking and/or exceptions :

lot of work and error prone
• finally and defer statements



Discussion
Advantages
• drastically increases expressive power
• solutions without side-effects can be substantially more
complicated or inefficient (RNG, debug output,…)

Disadvantages
• error prone
• adds implicit interactions between program parts (encapsulation)

⇒ separation between pure and impure parts desirable



Parameter passing
let f(x) { x := 1; };

let y = 0;

f(y);

y

Parameter modes: in, out, in/out

Calling conventions

• call-by-value
• call-by-result
• call-by-value/result, call-by-copy, call-by-copy-result
• call-by-reference
• call-by-name
• call-by-need
• call-by-macro-expansion



Call-By-Value
Call-By-Result

f(in x, out y, out z) {

x := x + 1;

y := x + 1;

z := x + 2;

};

let u = 0;

f(u,u,u);



Call-By-Copy
incr(inout x) {

x := x + 1;

};

let u = 0;

incr(u);



Call-By-Reference
let u = 1;

let v = 0;

f(x, y) {

x := x + u - v;

y := y + u - v;

};

f(u, v)



Call-By-Name
let sum(k, l, u, expr) {

let s = 0;

for k = l .. u {

s := s + expr;

};

s;

};

sum(i, 1, 100, i*i)



Discussion
Standard

• call-by-value for languages with side-effect
• call-by-need for those without
• call-by-reference for declarative languages

Notes

• call-by-value reduces aliasing (plus copying of data structures)
• call-by-reference can be simulated with reference or pointer types



Memorymanagement
Kinds

•manual
• automatic
• type based

Problems

• dangling pointers
• unreachable objects



Manual memorymanagement

• gives programmer full control
• tedious, error prone, hard to debug
• (de-)allocation of memory not cheap

Automatic memorymanagement

• reference counting
• easy to implement
• very slow
• does not support cyclic data structures

• garbage collection
• hard to implement
•much faster
• hard to control runtime impact

Type basedmemorymanagement

•minimal runtime overhead
• typing is very restrictive and requires more work
• not all cases can be handled: requires a secondary mechanism
(like reference counting)



Manual memorymanagement

• gives programmer full control
• tedious, error prone, hard to debug
• (de-)allocation of memory not cheap

Automatic memorymanagement

• reference counting
• easy to implement
• very slow
• does not support cyclic data structures

• garbage collection
• hard to implement
•much faster
• hard to control runtime impact

Type basedmemorymanagement

•minimal runtime overhead
• typing is very restrictive and requires more work
• not all cases can be handled: requires a secondary mechanism
(like reference counting)



Manual memorymanagement

• gives programmer full control
• tedious, error prone, hard to debug
• (de-)allocation of memory not cheap

Automatic memorymanagement

• reference counting
• easy to implement
• very slow
• does not support cyclic data structures

• garbage collection
• hard to implement
•much faster
• hard to control runtime impact

Type basedmemorymanagement

•minimal runtime overhead
• typing is very restrictive and requires more work
• not all cases can be handled: requires a secondary mechanism
(like reference counting)



Garbage collection
Reference counting

• Each object maintains a count of all pointers to it.
• If the count reaches 0, we can deallocate the object.
• Problem: with cyclic references the count never reaches 0.

Mark-and-Sweep

• Start with all global variables and pointers on the stack.
• Follow all pointers and mark visited objects as reachable.
•Deallocate all unreachable objects.

Copying

•Uses two memory regions.
• Go through the current region.
•Mark all reachable objects.
• Copy them to the other region.
• Swap regions.



Garbage collection
Reference counting

• Each object maintains a count of all pointers to it.
• If the count reaches 0, we can deallocate the object.
• Problem: with cyclic references the count never reaches 0.

Mark-and-Sweep

• Start with all global variables and pointers on the stack.
• Follow all pointers and mark visited objects as reachable.
•Deallocate all unreachable objects.

Copying

•Uses two memory regions.
• Go through the current region.
•Mark all reachable objects.
• Copy them to the other region.
• Swap regions.



Garbage collection
Reference counting

• Each object maintains a count of all pointers to it.
• If the count reaches 0, we can deallocate the object.
• Problem: with cyclic references the count never reaches 0.

Mark-and-Sweep

• Start with all global variables and pointers on the stack.
• Follow all pointers and mark visited objects as reachable.
•Deallocate all unreachable objects.

Copying

•Uses two memory regions.
• Go through the current region.
•Mark all reachable objects.
• Copy them to the other region.
• Swap regions.



Garbage collection
Discussion

• trade-off: throughput – latency
• advantages: prevents memory errors (use-after-free), convenience
• disadvantages: overhead, unpredictable timing

Some performance numbers

• typical pause times between 100ms and 0.5ms
• overall performance penalty: several percent



Loops

⟨expr⟩ ∶∶= . . . ∣ while ⟨expr⟩ { ⟨expr⟩ }
∣ for ⟨id⟩ = ⟨expr⟩ .. ⟨expr⟩ { ⟨expr⟩ }

Goto

⟨expr⟩ ∶∶= . . . ∣ label ⟨id⟩ ∣ goto ⟨id⟩

•more expressive
• can be misused
• can improve code

Special cases

⟨expr⟩ ∶∶= . . . ∣ break ∣ continue ∣ return ⟨expr⟩



Loops

⟨expr⟩ ∶∶= . . . ∣ while ⟨expr⟩ { ⟨expr⟩ }
∣ for ⟨id⟩ = ⟨expr⟩ .. ⟨expr⟩ { ⟨expr⟩ }

Goto

⟨expr⟩ ∶∶= . . . ∣ label ⟨id⟩ ∣ goto ⟨id⟩

•more expressive
• can be misused
• can improve code

Special cases

⟨expr⟩ ∶∶= . . . ∣ break ∣ continue ∣ return ⟨expr⟩



Loops

⟨expr⟩ ∶∶= . . . ∣ while ⟨expr⟩ { ⟨expr⟩ }
∣ for ⟨id⟩ = ⟨expr⟩ .. ⟨expr⟩ { ⟨expr⟩ }

Goto

⟨expr⟩ ∶∶= . . . ∣ label ⟨id⟩ ∣ goto ⟨id⟩

•more expressive
• can be misused
• can improve code

Special cases

⟨expr⟩ ∶∶= . . . ∣ break ∣ continue ∣ return ⟨expr⟩



Usages of side-effects
• recursive data structures

• efficiency: reusing space, avoiding copies
• passing values via global variables (RNG, logging,…)



Usages of side-effects
• recursive data structures
• efficiency: reusing space, avoiding copies

• passing values via global variables (RNG, logging,…)



Usages of side-effects
• recursive data structures
• efficiency: reusing space, avoiding copies
• passing values via global variables (RNG, logging,…)



Digression: Scripting Languages

Characteristic use-cases

• small programs (at most 500 lines of code)
• frequently for throwaway code
• ease of writing more important than readability
• performance less important

Trade-offs

• often interpreted
• dynamically typed (or static with type inference)
• garbage collection



Digression: Scripting Languages

Characteristic use-cases

• small programs (at most 500 lines of code)
• frequently for throwaway code
• ease of writing more important than readability
• performance less important

Trade-offs

• often interpreted
• dynamically typed (or static with type inference)
• garbage collection


