

A Calculus for Modular Loop Acceleration

paper written by Florian Frohn

Vincent Mihalkovic 456247@mail.muni.cz

Faculty of Informatics, Masaryk University

December 1, 2021

Intruduction

Acceleration techniques

Where? static analyses for programs operating on integers.

- How? extract a quantifier-free first-order formula ψ from a single-path loop \mathcal{T} .
- Why? proving safety, reachability, deducing bounds, proving (non-)termination.

This paper:

- existing acceleration techniques only apply if certain prerequisites are in place.
- introduce a calculus which allows for combining several acceleration techniques modularly.
- two novel acceleration techniques .

Preliminaries

- *x*, *y*, *z*, . . . for vectors

exponentiation.

• We identify \mathcal{T}_{loop} (the set of all such loops) and the pair $\langle \varphi, \boldsymbol{a} \rangle$.

- while φ do $x \leftarrow a$
 - $\varphi \in \operatorname{Prop}(\mathscr{C}(\mathbf{x}))$ is a finite propositional formula over the atoms $\{p > 0 \mid p \in \mathscr{C}(\mathbf{x})\}$. We identify the formula $\varphi(\mathbf{x})$ and the predicate $\mathbf{x} \mapsto \varphi$
 - **a** $\in \mathscr{C}(\mathbf{x})^d$
 - function $x \mapsto a$ maps integers to integers. We write a(x) to make the variables x explicit.

e.g.: while
$$\underbrace{x_1 > 0}_{\varphi}$$
 do $\underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{\mathbf{x}} \leftarrow \underbrace{\begin{pmatrix} x_1 - 1 \\ 2 \cdot x_2 \end{pmatrix}}_{\mathbf{a}}$ (\mathcal{T}_{loop})

Preliminaries

Throughout this presentation, let *n* be a designated variable and let:

$$\boldsymbol{a} := \begin{pmatrix} a_1 \\ \cdots \\ a_d \end{pmatrix} \quad \boldsymbol{x} := \begin{pmatrix} x_1 \\ \cdots \\ x_d \end{pmatrix} \quad \boldsymbol{x}' := \begin{pmatrix} x'_1 \\ \cdots \\ \vec{x'_d} \end{pmatrix} \quad \boldsymbol{y} := \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{n} \\ \boldsymbol{x'} \end{pmatrix}$$

Intuitively, the variable n represents the number of loop iterations and x' corresponds to the values of the program variables x after n iterations.

• \mathcal{T}_{loop} induces a relation $\longrightarrow_{\mathcal{T}_{loop}}$ on \mathbb{Z}^d :

$$\varphi(\mathbf{x}) \land \mathbf{x}' = \mathbf{a}(\mathbf{x}) \Longleftrightarrow \mathbf{x} \longrightarrow_{\mathcal{T}_{\mathsf{loop}}} \mathbf{x}$$

• Our goal is to find a formula $\psi \in \operatorname{Prop}(\mathscr{C}(\mathbf{y}))$ such that

$$\psi \Longleftrightarrow x \longrightarrow_{\mathcal{T}_{\text{loop}}}^{n} x' \quad \text{for all } n > 0$$

■ Some acceleration techniques cannot guarantee (equiv), but the resulting formula is an under-approximation of *T*_{loop} i.e., we have

$$\psi \Longrightarrow x \longrightarrow_{\mathcal{T}_{\text{loop}}}^{n} \mathbf{x}' \quad \text{for all } n > 0$$

If (equiv) resp. (approx) holds, then ψ is equivalent to resp. approximates $\mathcal{T}_{\text{LOOP}}$, V. Mihakovic • 14072 • December 1, 2021

Acceleration techniques

An acceleration technique is a partial function

```
accel : Loop \rightarrow Prop(\mathscr{C}(\mathbf{y})).
```

- **sound** if accel (\mathcal{T}) approximates \mathcal{T} for all $\mathcal{T} \in \mathsf{dom}(\mathsf{accel})$.
- **exact** if accel (\mathcal{T}) is equivalent to \mathcal{T} for all $\mathcal{T} \in \text{dom}(\text{ accel })$.
 - All these techniques first compute a *closed form* $c \in \mathscr{C}(\mathbf{x}, n)^d$ for the values of the program variables after n iterations.
 - We call $c \in \mathscr{C}(\mathbf{x}, n)^d$ a closed form of \mathcal{T}_{loop} if

$$\forall x \in \mathbb{Z}^d, n \in \mathbb{N}.c = a^n(x)$$

Here, a^n is the *n*-fold application of *a*, i.e., $a^0(x) = x$ and $a^{n+1}(x) = a(a^n(x))$.

Acceleration via Monotonic Decrease

If $\varphi(\boldsymbol{a}(\boldsymbol{x}))$ implies $\varphi(\boldsymbol{x})$ and $\varphi(\boldsymbol{a}^{n-1}(\boldsymbol{x}))$ holds, then \mathcal{T}_{loop} is applicable at least n times. So in other words: $I_{\varphi} : \mathbb{Z}^d \to \{0,1\}$ of φ with $I_{\varphi}(\boldsymbol{x}) = 1 \iff \varphi(\boldsymbol{x})$ is monotonically decreasing w.r.t. \boldsymbol{a} , i.e., $I_{\varphi}(\boldsymbol{x}) \ge I_{\varphi}(\boldsymbol{a}(\boldsymbol{x}))$. **Theorem 1**: If

$$\varphi(\mathbf{a}(\mathbf{x})) \Longrightarrow \varphi(\mathbf{x})$$

then the following acceleration technique is exact:

$$\mathcal{T}_{\mathsf{loop}} \mapsto \mathbf{x}' = \mathbf{a}^n(\mathbf{x}) \land \varphi\left(\mathbf{a}^{n-1}(\mathbf{x})\right)$$

Limitations:

while
$$x_1 > 0 \land x_2 > 0$$
 do $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leftarrow \begin{pmatrix} x_1 - 1 \\ x_2 + 1 \end{pmatrix}$ ($\mathcal{T}_{\text{non-dec}}$)

It cannot be accelerated with Thm. 1 as

$$x_1-1>0 \land x_2+1>0 \Rightarrow x_1>0 \land x_2>0$$

Example recalled

So for example, Thm. 1 accelerates $\mathcal{T}_{\mathsf{exp}}$ to ψ_{exp} .

while
$$x_1 > 0$$
 do $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leftarrow \begin{pmatrix} x_1 - 1 \\ 2 \cdot x_2 \end{pmatrix}$ (\mathcal{T}_{exp})

Since

$$\underbrace{x_1 - 1 > 0}_{\varphi(\boldsymbol{a}(\boldsymbol{x}))} \Rightarrow \underbrace{x_1 > 0}_{\varphi(\boldsymbol{x})}$$

an acceleration technique synthesizes, e.g., the formula

$$\underbrace{\begin{pmatrix} x_1' \\ x_2' \end{pmatrix}}_{\mathbf{x}'} = \underbrace{\begin{pmatrix} x_1 - n \\ 2^n \cdot x_2 \end{pmatrix}}_{\mathbf{a}^n(\mathbf{x})} \land \underbrace{x_1 - n + 1 > 0 \quad (\psi_{\exp})}_{\varphi(\mathbf{a}^{n-1}(\mathbf{x}))}$$

Acceleration via Monotonic Increase

Theorem 2: If

$$\varphi(\mathbf{x}) \Longrightarrow \varphi(\mathbf{a}(\mathbf{x}))$$

then the following acceleration technique is exact:

$$\mathcal{T}_{\mathsf{loop}} \mapsto \mathbf{x}' = \mathbf{a}^n(\mathbf{x}) \land \varphi(\mathbf{x})$$

As a minimal example, Thm. 2 accelerates

while
$$x > 0$$
 do $x \leftarrow x + 1$

to

$$x'=x+n\wedge x>0$$

Acceleration via Decrease and Increase

Theorem 3: If

$$\begin{split} \varphi(\mathbf{x}) &\iff \varphi_1(\mathbf{x}) \land \varphi_2(\mathbf{x}) \land \varphi_3(\mathbf{x}) \\ \varphi_1(\mathbf{x}) &\Longrightarrow \varphi_1(\mathbf{a}(\mathbf{x})) \\ \varphi_1(\mathbf{x}) \land \varphi_2(\mathbf{a}(\mathbf{x})) &\Longrightarrow \varphi_2(\mathbf{x}) \\ \varphi_1(\mathbf{x}) \land \varphi_2(\mathbf{x}) \land \varphi_3(\mathbf{x}) &\Longrightarrow \varphi_3(\mathbf{a}(\mathbf{x})) \end{split}$$

then the following acceleration technique is exact:

$$\mathcal{T}_{\mathsf{loop}} \mapsto \mathbf{x}' = \mathbf{a}^n(\mathbf{x}) \land \varphi_1(\mathbf{x}) \land \varphi_2\left(\mathbf{a}^{n-1}(\mathbf{x})\right) \land \varphi_3(\mathbf{x})$$

Here, φ_1 and φ_3 are again invariants of the loop. Thus, as in Thm. 2 it suffices to require that they hold before entering the loop. On the other hand, φ_2 needs to satisfy a similar condition as in Thm. 1 and thus it suffices to require that φ_2 holds before the last iteration. We also say that φ_2 is a converse invariant (w.r.t. φ_1). It is easy to see that Thm. 3 is equivalent to Thm. 1 if $\varphi_1 \equiv \varphi_3 \equiv \top$ (where T denotes logical truth) and it is equivalent to Thm. 2 if $\varphi_2 \equiv \varphi_3 \equiv \top$.

Calculus for Modular Loop Acceleration

- All acceleration techniques presented so far are monolithic:
 Either they accelerate a loop successfully or they fail completely.
- In other words, we cannot combine several techniques to accelerate a single loop.
- Calculus that repeatedly applies acceleration techniques to simplify an *acceleration problem* resulting from a loop \mathcal{T}_{loop} until it is *solved* and hence gives rise to a suitable $\psi \in Prop(\mathscr{C}(\mathbf{y}))$ which approximates resp. is equivalent to \mathcal{T}_{loop} .

Acceleration Problem

Definition 3 A tuple

 $[\![\psi\mid \check{\varphi}\mid \hat{\varphi}\mid \pmb{a}]\!]$

where

- $\psi \in \mathsf{Prop}(\mathscr{C}(\mathbf{y}))$, the partial result that has been computed so far
- $\hat{\varphi} \in \operatorname{Prop}(\mathscr{C}(\mathbf{x}))$, the part of the loop condition that remains to be processed (ψ always approximates $\langle \check{\varphi}, \mathbf{a} \rangle$)
- *ϕ* ∈ Prop(𝔅(𝑥)),the part of the loop condition that has already been processed successfully (loop ⟨*ϕ*, 𝑥⟩ still needs to be accelerated)
 a : ℤ^d → ℤ^d
 d .

The canonical acceleration problem of a loop $\mathcal{T}_{\text{loop}}\,$ is

 $\llbracket \mathbf{x}' = \mathbf{a}^n(\mathbf{x}) | \top | \varphi(\mathbf{x}) | \mathbf{a}(\mathbf{x}) \rrbracket$

Possible states:

- consistent if ψ approximates $\langle \check{\varphi}, a \rangle$,
- exact if ψ is equivalent to $\langle \breve{\varphi}, \boldsymbol{a} \rangle$,
- solved if it is consistent and $\hat{\varphi} \equiv \top$.

The goal of our calculus is to transform a canonical into a solved acceleration problem.

Acceleration problem

When we have simplified a canonical acceleration problem

from
$$\llbracket \mathbf{x}' = \mathbf{a}^n(\mathbf{x}) \mid \top \mid \varphi(\mathbf{x}) \mid \mathbf{a}(\mathbf{x}) \rrbracket$$

to $\llbracket \psi_1(\mathbf{y}) \mid \check{\varphi}(\mathbf{x}) \mid \widehat{\varphi}(\mathbf{x}) \mid \mathbf{a}(\mathbf{x}) \rrbracket$

then

$$\varphi \equiv \check{\varphi} \land \hat{\varphi} \text{ and } \psi_1 \Longrightarrow x \longrightarrow_{\langle \check{\varphi}, a \rangle}^n x'$$

Thus, it then suffices to find some $\psi_2 \in \mathsf{Prop}(\mathscr{C}(\mathbf{y}))$ such that

$$\mathbf{x} \longrightarrow_{\langle \tilde{\varphi}, a \rangle}^{n} \mathbf{x}' \wedge \psi_2 \Longrightarrow \mathbf{x} \longrightarrow_{\langle \hat{\varphi}, a \rangle}^{n} \mathbf{x}'$$

The reason is that we have

$$\longrightarrow \langle \check{\varphi}, a \rangle \cap \longrightarrow \langle \hat{\varphi}, a \rangle = \longrightarrow \langle \check{\varphi} \land \hat{\varphi}, a \rangle = \longrightarrow \langle \varphi, a \rangle$$

and thus

$$\psi_1 \wedge \psi_2 \Longrightarrow \mathbf{X} \longrightarrow_{\langle \varphi, a \rangle}^n \mathbf{X}'$$

i.e., $\psi_1 \wedge \psi_2$ approximates $\mathcal{T}_{\mathsf{loop}}$.

Conditional acceleration

Definition 4 We call a partial function

accel : Loop
$$\times \operatorname{Prop}(\mathscr{C}(\boldsymbol{x})) \rightarrow \operatorname{Prop}(\mathscr{C}(\boldsymbol{y}))$$

a conditional acceleration technique.

sound if

$$\boldsymbol{x} \longrightarrow {}^n_{\langle \breve{\varphi}, \boldsymbol{a} \rangle} \boldsymbol{x}' \wedge \operatorname{accel}(\langle \chi, \boldsymbol{a} \rangle, \breve{\varphi}) \quad \text{ implies } \quad \boldsymbol{x} \longrightarrow {}^n_{\langle \chi, \boldsymbol{a} \rangle} \boldsymbol{x}'$$

for all $(\langle \chi, \boldsymbol{a} \rangle, \check{\varphi}) \in \text{dom}(\text{ accel }), \boldsymbol{x}, \boldsymbol{x}' \in \mathbb{Z}^d$, and n > 0.

exact if additionally

 $\boldsymbol{x} \longrightarrow {}^{n}_{\langle \chi \land \check{\varphi}, a \rangle} \boldsymbol{x}'$ implies $\operatorname{accel}(\langle \chi, \boldsymbol{a} \rangle, \check{\varphi})$

for all $(\langle \chi, \boldsymbol{a} \rangle, \check{\varphi}) \in \text{dom}(\text{ accel }), \boldsymbol{x}, \boldsymbol{x}' \in \mathbb{Z}^d$, and n > 0

We are now ready to present our acceleration calculus, which combines loop acceleration techniques in a modular way.

Acceleration Calculus

Definition 5 The relation \rightsquigarrow on acceleration problems is defined by the following rule:

$$\underbrace{ \begin{array}{c} \overbrace{ \left[\psi_1 \mid \check{\varphi} \mid \hat{\varphi} \mid \boldsymbol{a} \right] }^{\text{sound CondAccelTechn}} = \psi_2 \\ \hline \left[\psi_1 \mid \check{\varphi} \mid \hat{\varphi} \mid \boldsymbol{a} \right] \underbrace{ \left[\psi_1 \cup \psi_2 \mid \check{\varphi} \cup \chi \mid \hat{\varphi} \setminus \chi \mid \boldsymbol{a} \right] \\ \hline \left[\psi_1 \cup \psi_2 \mid \check{\varphi} \cup \chi \mid \hat{\varphi} \setminus \chi \mid \boldsymbol{a} \right] \end{array} }_{ \end{array} }$$

- \dashrightarrow step is exact (written \dashrightarrow_e) if accel is exact.
- our calculus allows us to pick a subset χ (of clauses) from the yet unprocessed condition $\hat{\varphi}$ and
- **•** "move" it to $\check{\varphi}$, which has already been processed successfully.
- To this end, $\langle \chi, \boldsymbol{a} \rangle$ needs to be accelerated by a conditional acceleration technique, i.e., when accelerating $\langle \chi, \boldsymbol{a} \rangle$ we may assume $\boldsymbol{x} \longrightarrow {n \atop \langle \check{\alpha}, \boldsymbol{a} \rangle} \boldsymbol{x}'$.

Note that every acceleration technique trivially gives rise to a conditional acceleration technique (by disregarding the second argument $\tilde{\varphi}$ of accel in Def. 4). Thus, our calculus allows for combining arbitrary existing acceleration techniques without adapting them.

Example

while
$$x_1 > 0 \land x_2 > 0$$
 do $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leftarrow \begin{pmatrix} x_1 - 1 \\ x_2 + 1 \end{pmatrix}$ ($\mathcal{T}_{\text{non-dec}}$)
$$\left[\left[\begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix} = \begin{pmatrix} x_1 - n \\ x_2 + n \end{pmatrix} | \top | x_1 > 0 \land x_2 > 0 | \begin{pmatrix} x_1 - 1 \\ x_2 + 1 \end{pmatrix} \right] \right]$$

Acceleration calculus, properties

Lemma 1. \rightsquigarrow preserves consistency and \rightsquigarrow_e preserves exactness. Then the correctness of our calculus follows immediately. The reason is that

$$\llbracket \mathbf{x}' = \mathbf{a}^n(\mathbf{x}) |\top| \varphi(\mathbf{x}) \left| \mathbf{a}(\mathbf{x}) \rrbracket \leadsto_{(e)}^* \llbracket \psi(\mathbf{y}) \right| \check{\varphi}(\mathbf{x}) |\top| \mathbf{a}(\mathbf{x}) \rrbracket \text{ implies } \varphi \equiv \check{\varphi}$$

Theorem 5 (Correctness of \rightsquigarrow). If

$$\llbracket \mathbf{x}' = \mathbf{a}^n(\mathbf{x}) |\top| \varphi(\mathbf{x}) | \mathbf{a}(\mathbf{x}) \rrbracket \leadsto^* \llbracket \psi(\mathbf{y}) | \check{\varphi}(\mathbf{x}) |\top| \mathbf{a}(\mathbf{x}) \rrbracket$$

then ψ approximates $\mathcal{T}_{\mathsf{loop}}$.

If

$$\llbracket \mathbf{x}' = \mathbf{a}^n(\mathbf{x}) |\top| \varphi(\mathbf{x}) |\mathbf{a}(\mathbf{x}) \rrbracket \leadsto_e^* \llbracket \psi(\mathbf{y}) | \check{\varphi}(\mathbf{x}) |\top| \mathbf{a}(\mathbf{x}) \rrbracket$$

then ψ is equivalent to $\mathcal{T}_{\mathsf{loop}}$.

Termination of our calculus is trivial, as the size of the third component $\hat{\varphi}$ of the acceleration problem is decreasing. **Theorem 6** (Termination of \rightsquigarrow). \rightsquigarrow terminates.

Conditional Acceleration via Monotonic Decrease

Theorem 7 If

$$\check{\varphi}(\mathbf{x}) \land \chi(\mathbf{a}(\mathbf{x})) \Longrightarrow \chi(\mathbf{x})$$

then the following conditional acceleration technique is exact:

$$(\langle \chi, \boldsymbol{a} \rangle, \check{\varphi}) \mapsto \boldsymbol{x}' = \boldsymbol{a}^n(\boldsymbol{x}) \wedge \chi\left(\boldsymbol{a}^{n-1}(\boldsymbol{x})\right)$$

So we just add $\check{\varphi}$ to the premise of the implication that needs to be checked to apply acceleration via monotonic decrease. Thm. 2 can be adapted analogously.

Acceleration via Eventual Monotonicity

The combination of the calculus and the conditional acceleration techniques still fails to handle certain interesting classes of loops ... **Acceleration via Eventual Decrease** All (combinations of) techniques presented so far fail for the following example.

while
$$x_1 > 0$$
 do $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leftarrow \begin{pmatrix} x_1 + x_2 \\ x_2 - 1 \end{pmatrix}$ (\mathcal{T}_{ev-dec})

The reason is that x_1 does not behave monotonically ... **Theorem 10** (Acceleration via Eventual Decrease). If $\varphi(x) \equiv \bigwedge_{i=1}^{k} C_i$ where each C_i contains an inequation expr $_i(\mathbf{x}) > 0$ such that

$$\exp r_i(\boldsymbol{x}) \ge \exp r_i(\boldsymbol{a}(\boldsymbol{x})) \Longrightarrow \exp r_i(\boldsymbol{a}(\boldsymbol{x})) \ge \exp r_i(\boldsymbol{a}^2(\boldsymbol{x}))$$

then the following acceleration technique is sound:

$$\mathcal{T}_{loop} \mapsto \boldsymbol{x}' = \boldsymbol{a}^n(\boldsymbol{x}) \land \bigwedge_{i=1}^k \left(expr_i(\boldsymbol{x}) > 0 \land expr_i\left(\boldsymbol{a}^{n-1}(\boldsymbol{x})\right) > 0 \right)$$

If $C_i \equiv \exp r_i > 0$ for all $i \in [1, k]$, then it is exact.

Experiments

Loop Acceleration Tool - LoAT

- LoAT uses Z3 to check implications and PURRS to compute closed forms.
- To evaluate our approach, they extracted 1511 loops with conjunctive guards from the category *Termination of Integer Transition Systems of the Termination Problems Database* which is used at the annual *Termination and Complexity Competition*
- Flata, which implements the techniques to accelerate FMATs and octagonal relations

Experiment tables

	LoAT	Monot.	Meter	Flata
exact	1444	845	0 ³	1231
approx	38	0	733	0
fail	29	666	778	280
avg rt	0.16 s	0.11 s	0.09 s	0.47 s

	Ev-Inc	Ev-Dec	Ev-Mon
exact	1444	845	845
approx	0	493	0
fail	67	173	666
avg rt	0.15 s	0.14 s	0.09 s

MUNI FACULTY OF INFORMATICS