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Intruduction
Acceleration techniques

Where? static analyses for programs operating on integers.
How? extract a quantifier-free first-order formula ψ from a single-path

loop T .
Why? proving safety, reachability, deducing bounds, proving

(non-)termination.
This paper:

existing acceleration techniques only apply if certain
prerequisites are in place.
introduce a calculus which allows for combining several
acceleration techniques modularly.
two novel acceleration techniques .
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Preliminaries
x, y, z, . . . for vectors

a :“

¨

˝

a1
. . .
ad

˛

‚

Let C pzq be the set of closed-form expressions ofver the variables
z containing, e.g., all arithemtic expressions built from z, integer
constants, addition, subtraction, multipication, division and
exponentiation.
We identify Tloop (the set of all such loops) and the pair xϕ, ay.

while ϕ do x Ð a
ϕ P ProppC pxqq is a finite propositional formula over the
atoms tp ą 0 | p P C pxqu. We identify the formula ϕpxq and
the predicate x ÞÑ ϕ
a P C pxqd

function x ÞÑ a maps integers to integers. We write apxq to
make the variables x explicit.

e.g.: while x1 ą 0
loomoon

ϕ

do
ˆ

x1
x2

˙

looomooon

x

Ð

ˆ

x1 ´ 1
2 ¨ x2

˙

loooooomoooooon

a

pTloopq
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Preliminaries
Throughout this presentation, let n be a designated variable and let:

a :“

¨

˝

a1
¨ ¨ ¨

ad

˛

‚ x :“

¨

˝

x1
¨ ¨ ¨

xd

˛

‚ x1 :“

¨

˝

x11
¨ ¨ ¨

:x1d

˛

‚ y :“

¨

˝

x
n
x1

˛

‚

Intuitively, the variable n represents the number of loop iterations and x1
corresponds to the values of the program variables x after n iterations.

Tloop induces a relation ÝÑTloop on Zd :

ϕpxq ^ x1 “ apxq ðñ x ÝÑTloop x
1

Our goal is to find a formula ψ P ProppC pyqq such that

ψðñx ÝÑn
Tloop x

1 for all n ą 0

Some acceleration techniques cannot guarantee (equiv), but the
resulting formula is an under-approximation of Tloop i.e., we have

ψùñx ÝÑn
Tloop x

1 for all n ą 0

If (equiv) resp. ( approx) holds, then ψ is equivalent to resp.
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Acceleration techniques

An acceleration technique is a partial function

accel : Loop á ProppC pyqq.

sound if accel pT q approximates T for all T P domp accel q.
exact if accel pT q is equivalent to T for all T P domp accel q.

All these techniques first compute a closed form c P C px, nqd for
the values of the program variables after n iterations.

We call c P C px, nqd a closed form of Tloop if

@x P Zd, n P N.c “ anpxq

Here, an is the n-fold application of a, i.e., a0pxq “ x and
an`1pxq “ a panpxqq.
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Acceleration via Monotonic Decrease
If ϕpapxqq implies ϕpxq and ϕ

`

an´1pxq
˘

holds, then Tloop is applicable at
least n times.
So in other words: Iϕ : Zd Ñ t0, 1u of ϕ with Iϕpxq “ 1ðñ ϕpxq is
monotonically decreasing w.r.t. a, i.e., Iϕpxq ě Iϕpapxqq.
Theorem 1: If

ϕpapxqq ùñ ϕpxq

then the following acceleration technique is exact:

Tloop ÞÑ x1 “ anpxq ^ ϕ
`

an´1pxq
˘

Limitations:

while x1 ą 0^ x2 ą 0 do
ˆ

x1
x2

˙

Ð

ˆ

x1 ´ 1
x2 ` 1

˙

pTnon-dec q

It cannot be accelerated with Thm. 1 as

x1 ´ 1 ą 0^ x2 ` 1 ą 0œ x1 ą 0^ x2 ą 0
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Example recalled

So for example, Thm. 1 accelerates Texp to ψexp .

while x1 ą 0 do
ˆ

x1
x2

˙

Ð

ˆ

x1 ´ 1
2 ¨ x2

˙

pTexp q

Since
x1 ´ 1 ą 0
looooomooooon

ϕpapxqq

ñ x1 ą 0
loomoon

ϕpxq

an acceleration technique synthesizes, e.g., the formula
ˆ

x11
x12

˙

looomooon

x1

“

ˆ

x1 ´ n
2n ¨ x2

˙

looooomooooon

anpxq

^ x1 ´ n` 1 ą 0 pψexpq
loooooooooooooomoooooooooooooon

ϕpan´1pxqq
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Acceleration via Monotonic Increase

Theorem 2: If
ϕpxq ùñ ϕpapxqq

then the following acceleration technique is exact:

Tloop ÞÑ x1 “ anpxq ^ ϕpxq

As a minimal example, Thm. 2 accelerates

while x ą 0 do x Ð x ` 1

to

x1 “ x ` n^ x ą 0
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Acceleration via Decrease and Increase
Theorem 3: If

ϕpxq ðñ ϕ1pxq ^ ϕ2pxq ^ ϕ3pxq
ϕ1pxq ùñ ϕ1papxqq

ϕ1pxq ^ ϕ2papxqq ùñ ϕ2pxq
ϕ1pxq ^ ϕ2pxq ^ ϕ3pxq ùñ ϕ3papxqq

then the following acceleration technique is exact:

Tloop ÞÑ x1 “ anpxq ^ ϕ1pxq ^ ϕ2
´

an´1pxq
¯

^ ϕ3pxq

Here, ϕ1 and ϕ3 are again invariants of the loop. Thus, as in Thm. 2 it
suffices to require that they hold before entering the loop. On the other
hand, ϕ2 needs to satisfy a similar condition as in Thm. 1 and thus it suffices
to require that ϕ2 holds before the last iteration. We also say that ϕ2 is a
converse invariant (w.r.t. ϕ1 ). It is easy to see that Thm. 3 is equivalent to
Thm. 1 if ϕ1 ” ϕ3 ” J (where T denotes logical truth) and it is equivalent
to Thm. 2 if ϕ2 ” ϕ3 ” J.
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Calculus for Modular Loop Acceleration

All acceleration techniques presented so far are monolithic:
Either they accelerate a loop successfully or they fail completely.
In other words, we cannot combine several techniques to
accelerate a single loop.
Calculus that repeatedly applies acceleration techniques to
simplify an acceleration problem resulting from a loop Tloop until
it is solved and hence gives rise to a suitable ψ P ProppC pyqq
which approximates resp. is equivalent to Tloop .
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Acceleration Problem
Definition 3 A tuple

Jψ | qϕ | pϕ | aK
where

ψ P ProppC pyqq,the partial result that has been computed so far
pϕ P ProppC pxqq,the part of the loop condition that remains to be
processed (ψ always approximates xqϕ, ay)
qϕ P ProppC pxqq,the part of the loop condition that has already been
processed successfully (loop xpϕ, ay still needs to be accelerated)
a : Zd Ñ Zd

The canonical acceleration problem of a loop Tloop is
Jx1 “ anpxq|J|ϕpxq | apxqK

Possible states:
consistent if ψ approximates xqϕ, ay,
exact if ψ is equivalent to xqϕ, ay,
solved if it is consistent and pϕ ” J.

The goal of our calculus is to transform a canonical into a solved
acceleration problem.
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Acceleration problem
When we have simplified a canonical acceleration problem

from Jx1 “ anpxq | J | ϕpxq | apxqK

to Jψ1pyq | qϕpxq | pϕpxq | apxqK

then
ϕ ” qϕ^ pϕ and ψ1 ùñ x ÝÑn

x qϕ,ay x
1

Thus, it then suffices to find some ψ2 P ProppC pyqq such that

x ÝÑn
x qϕ,ay x

1 ^ ψ2 ùñ x ÝÑn
x pϕ,ay x

1

The reason is that we have

ÝÑx qϕ,ay X ÝÑx pϕ,ay“ÝÑx qϕ^ pϕ,ay“ÝÑxϕ,ay

and thus
ψ1 ^ ψ2 ùñ x ÝÑn

xϕ,ay x
1

i.e., ψ1 ^ ψ2 approximates Tloop .
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Conditional acceleration
Definition 4 We call a partial function

accel : Loop ˆ ProppC pxqq á ProppC pyqq

a conditional acceleration technique.

sound if
x ÝÑ n

x qϕ,ayx
1 ^ accelpxχ, ay, qϕq implies x ÝÑ n

xχ,ayx
1

for all pxχ, ay, qϕq P domp accel q, x, x1 P Zd, and n ą 0.

exact if additionally

x ÝÑ n
xχ^ qϕ,ayx

1 implies accelpxχ, ay, qϕq

for all pxχ, ay, qϕq P domp accel q, x, x1 P Zd, and n ą 0

We are now ready to present our acceleration calculus, which combines
loop acceleration techniques in a modular way.
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Acceleration Calculus
Definition 5 The relation on acceleration problems is defined by the
following rule:

H ‰ χ Ď pϕ

sound CondAccelTechn
hkkkkkkkkikkkkkkkkj

accelpxχ, ay, qϕq “ ψ2
Jψ1 | qϕ | pϕ | aK ùpeqJψ1 Y ψ2 | qϕY χ | pϕzχ | aK

ù step is exact (written ùe ) if accel is exact.

our calculus allows us to pick a subset χ (of clauses) from the yet
unprocessed condition pϕ and

"move" it to qϕ, which has already been processed successfully.

To this end, xχ, ay needs to be accelerated by a conditional acceleration
technique, i.e., when accelerating xχ, ay we may assume x ÝÑ n

x qϕ,ayx
1.

Note that every acceleration technique trivially gives rise to a
conditional acceleration technique (by disregarding the second
argument qϕ of accel in Def. 4). Thus, our calculus allows for combining
arbitrary existing acceleration techniques without adapting them.
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Example

while x1 ą 0^ x2 ą 0 do
ˆ

x1
x2

˙

Ð

ˆ

x1 ´ 1
x2 ` 1

˙

pTnon-dec q

sˆ
x11
x12

˙

“

ˆ

x1 ´ n
x2 ` n

˙

|J|x1 ą 0^ x2 ą 0 |
ˆ

x1 ´ 1
x2 ` 1

˙{
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Acceleration calculus, properties
Lemma 1. ù preserves consistency and ùe preserves exactness.
Then the correctness of our calculus follows immediately. The reason is
that

Jx1 “ anpxq|J|ϕpxq
ˇ

ˇapxqK ù
˚
peq Jψpyq

ˇ

ˇ

qϕpxq|J|apxqK implies ϕ ” ϕ̌

Theorem 5 (Correctness of ).
If

Jx1 “ anpxq|J|ϕpxq
ˇ

ˇapxqK ù
˚ Jψpyq

ˇ

ˇ ϕ̌pxq|J|apxqK

then ψ approximates Tloop .

If
Jx1 “ anpxq|J|ϕpxq

ˇ

ˇapxqK ù
˚
e Jψpyq

ˇ

ˇ ϕ̌pxq|J|apxqK

then ψ is equivalent to Tloop .

Termination of our calculus is trivial, as the size of the third component
pϕ of the acceleration problem is decreasing.
Theorem 6 (Termination of ù ). ù terminates.
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Conditional Acceleration via Monotonic Decrease

Theorem 7 If
qϕpxq ^ χpapxqq ùñ χpxq

then the following conditional acceleration technique is exact:

pxχ, ay, ϕ̌q ÞÑ x1 “ anpxq ^ χ
´

an´1pxq
¯

So we just add qϕ to the premise of the implication that needs to be
checked to apply acceleration via monotonic decrease. Thm. 2 can be
adapted analogously.
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Acceleration via Eventual Monotonicity
The combination of the calculus and the conditional acceleration
techniques still fails to handle certain interesting classes of loops ...
Acceleration via Eventual Decrease All (combinations of) techniques
presented so far fail for the following example.

while x1 ą 0 do
ˆ

x1
x2

˙

Ð

ˆ

x1 ` x2
x2 ´ 1

˙

pTev´decq

The reason is that x1 does not behave monotonically ...
Theorem 10 (Acceleration via Eventual Decrease). If ϕpxq ”

Źk
i“1 Ci where

each Ci contains an inequation expr ipxq ą 0 such that

expripxq ě expripapxqq ùñ expripapxqq ě expri

´

a2pxq
¯

then the following acceleration technique is sound:

Tloop ÞÑ x1 “ anpxq ^
k
ľ

i“1

´

expripxq ą 0^ expri

´

an´1pxq
¯

ą 0
¯

If Ci ” expri ą 0 for all i P r1, ks, then it is exact.
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Experiments

Loop Acceleration Tool - LoAT

LoAT uses Z3 to check implications and PURRS to compute closed
forms.

To evaluate our approach, they extracted 1511 loops with
conjunctive guards from the category Termination of Integer
Transition Systems of the Termination Problems Database which is
used at the annual Termination and Complexity Competition

Flata, which implements the techniques to accelerate FMATs and
octagonal relations
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Experiment tables

LoAT Monot. Meter Flata
exact 1444 845 03 1231
approx 38 0 733 0
fail 29 666 778 280
avg rt 0.16 s 0.11 s 0.09 s 0.47 s

Ev-Inc Ev-Dec Ev-Mon
exact 1444 845 845
approx 0 493 0
fail 67 173 666
avg rt 0.15 s 0.14 s 0.09 s
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