Question 1.

See tables in IS.

Question 2.

Using Chinese remainder theorem, which says that for our system of congruences:

= a; (mod my) ~ x =8 (mod 17)
T = az (mod ma) ~ z =4 (mod 19)
x = az (mod mg3) ~ x =19 (mod 23)

there is one unique solution:

mimaimsg

T =a1b bfj +azbaby 2 +azbsby T (mod mymams), where by, = A b,;l is modular inverse of by.

mi
We also know that xy = vz (mod n) = y = z (mod n). Thus:

by = 19%23 = 437 ~ 437b; ' =1 (mod 17)  ~ 12 =1 (mod 17) ~b; 1 =10 ()
by = 17%23 =391 ~» 391b, ' =1 (mod 19) ~ 11b;' =1 (mod 19) ~ by ' =7 ()
by = 17%19 = 323 ~ 323b; ' =1 (mod 23) ~» by =1 (mod 23) ~ by ' =1

Then & = 8 %437 * 10+ 4 % 391 % 7 + 19 % 323 (mod 7429) = 52045 (mod 7429) = 42.
(%) - find these as Bézout coefficients using Extended Euclidian algorithm

Or we could just write them out and see:

8+ 1Tky ~ 8,25,42, ... 4+ 10ky ~ 4,23,42, ... 19 + 23k3 ~ 19,42, ...

Question 3.

(a) Kap = ga(ra,sp)

—ag*rg+ba*sp
=((a*ra)+(bxsa))*rp+ ((bxra)+ (cxsa)) *sp
=(axra=rg)+ (bxsa*xrg)+ (bxraxsp)+ (cxs4q*sp)
=((a*xrp)+ (bxsp))*ra+ ((bxrg)+ (c*sp))*s4
= (ap*7ra)+ (bp*s4)

= gB(ra,sa))

= Kpa

(b) In my opinion is this protocol less secure than the original protocol.
ay = (a+ bxry) in the original protocol, we can also see it as ay = (a* 1+ bxry) or
ay = (a* (sy = 1) + bxry) it means that ged(sy,ry) =1
In this version ay = (a * ry + b * sy), so sy and ry are swapped and sy is not only 1, but
some other number < p.
I would say that the threat is when ged(sy,ry) # 1 as ay,by and also the key could be
divided by the ged, which is a security issue.



Question 4.

(a) We know that p=3 mod 4 and ¢ =3 mod 4: therefore, p=3 mod 8 or p =7 mod 8 and
g=3 mod&8org=7 mod8. Since p# +q mod 8, if p =3 mod &, then ¢ =7 mod &,
and vice-versa.

In our case, N = p x ¢, then by definition, N =3 x7 mod 8 =21 mod 8 <+ N =

As given here (https://en.wikipedia.org/wiki/Jacobi symbol) in the statement 8 of the section

nf-1 1 ifn=1,7 d 8),
"properties, we have (2) =(-1)"8 = 1 " il (e )
" 1 ifn=3,5 (mod 8).

Since, in our case, N =5 mod 8, we can deduce that (ﬁ) = —1.

(b) The Jacobi symbols for z, N — z, 2z and N — 2z are respectively (&), ('VT\—TT) (%r) s
(—N]}Z"‘). We can rewrite some of them:

(5)=(557) = (F) = (R smeerv =1 moas
(3)-(F) & -
(Y52 = (F59) = () = (2) () = () sineen =1 moas

Therefore, if (wj%) = 1, then (N_,g*) = 1, and on the contrary (2_,-\?) = —1 and (N;VQI) = -1
(and vice-versa). In such a case, neither 2z nor N — 22 are square modulo N.

Let us suppose that, for a given value of x, (%) = 1 (the demonstration is similar in the

opposite case). This does not guarantee that z is a square modulo N because N is not a
prime. We must decompose our symbols (%,—) and (J\ij)

=)
()= (5) -2 5)-5) )

If ( % =1 AND g) = 1, since p and ¢ are primes, then x is a square modulo p and modulo
¢, which implies that it is a square modulo N. However, if x is a square modulo N, then —z
is not.

As we can see, exactly 2 numbers among z, N — 2, 2z and N — 2z have Jacobi symbols equal to
1: those who have not are not squares. Between the two numbers with a Jacobi number equal
to 1, only one of them is actually a square modulo N. This is the proof that, ¥1 < z < N,
exactly one among x, N — z, 2r and N — 2z is a square modulo V.

Question 5



(6 points, 41+2) Consider a cryptosystem where an intended recipient per-
forms the following:

e Chooses n numbers x; with ged(z;, z;) =1, @ # j.
e Chooses a prime number g such that

e Chooses a primitive root b modulo q.
e Calculates a;, 1 < i < n such that

z; = b (mod gq).

e The values a;, 1 < i < n form the public key; g and b;, 1 <i < n
remain secret.

To send an n-bit message (my,...,my,) where m; € {0,1}, the sender

calculates "
k = Z m;a;
=1

and sends £k to the recipient.

(a) How does the intended recipient recover the message? Explain.
(b) The security of this cryptosystem relies on which assumptions?

Solution This is the Merkle-Hellman multiplicative version of knapsack.
(a) The recipient calculates
m=0b* (mod q).
Since 2 "
o =)™ =[]« (mod g)
i1 i1

and g > [[I_, z: then

7t
m = H i
i=0

and m; = 1 iff z;|m.

(b) Discrete logarithm problem and knapsack problem.



Question 6.

(a) It is always an one-way function. If we add arbitrary padding such as 0. ..0 to the output of a
one-way function it does not affect its one-wayness because the zeros can be removed and the
problem is same as solving the original preimage problem. If we duplicate the same one-way
function we can split the encoded string to two parts and again obtain the same preimage
problem as if we were solving the original.

(b) It is not always a one-way function. Let’s have a one-way function f that maps binary strings
of length n to another binary strings of length n. We can construct a one-way function g
that maps the binary strings of length n to binary strings of length 2n by using the output of
one-way function f and adding padding of n zeros. This is still a one-way function because if
we remove the padding zeros it is the same problem as finding preimage of the f. Now let’s
create another one-way function i that maps binary strings of length 2n to binary strings of
length 2n. It returns 2n zeros if the first half of the string is all zeros and result of g other wise.
We can clearly see that if we call the function A once on a input that has at least one non-zero
digit in the first half it will return the result of the function g that returns the message with
first half zeros and if we use that as an input of h the second application of that function we
will obtain all zero result.

Question 7.

Eve might be capable of decrypting the original message m.

In the RSA, n and e are the public key. We also know that 2°1! < n < 2512 and e = 3.

Bob chunks the message into 64-bit long parts, which means 264° — 2192 yalyes for the cipher
message. This is considerably less than the modulus which is at minimum 2°'' + 1. Therefore the
modulo operation is never used and ¢; = mfig, so Eve could decrypt all chunks sent simply by
computing m; = *=¥¢;. The only thing Eve has to manage is to identify all these chunks, but these
are separated with the unique identifier # and therefore she can spot this recurrence and identify
these chunks. Then she has to try to compute the root as shown above.



