
Part I

Basics of coding theory and linear codes



CODING and CRYPTOGRAPHY

IV054
Modern Coding theory is a very beautiful and often very surprising mathematical theory
that is very much applied and broadly used for transmission of digital information,
without which modern telecommunication would be practically impossible. . Mostly
everyone is daily using outcomes of modern coding and decoding.

Modern Cryptography is rich on clever use of beautiful and often much surprising
concepts and methods that allows to use outcomes of modern classical and also
surprisingly quantum tools, to make transmission of information so safe that even very
powerful eavesdropper has next to zero chance to read transmitted information that not
intended to him.

In spite of the fact that both coding and cryptography areas have already many very
efficient systems using only very small memories, new and new applications require to
develop again and again new, faster, and less memory demanding systems for both
coding and cryptography.
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IV054-CRYPTO team;

Teaching stuff

Prof. Jozef Gruska DrSc - lecturer

RNDr. Matej Pivoluska PhD - tutorials end CRYPTO team member

RNDr Lukáš Boháč - head of CRYPTO-team

Mgr. Libor Cáha PhD, member of CRYPTO-team

Bc. Henrieta Michělová, member of CRYPTO-team

Bc. Roman Oravec, member of CRYPTO-team

Teaching loads: lecture - 2 hours, tutorial 2 hours - non obligatory
Languages: lecture - English, tutorials 1 in English and 1 in Czech-Slovak

Prerequisites: Basics of discrete mathematics and linear algebra See: ”Appendix” in
http://www.fi.muni.cz/usr/gruska/crypto21,
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IV054 - Homeworks and exams

Homeworks 5-6 sets of homeworks of 6-8 exercises designed and evaluated by our
CRYPTO-team created mainly from some of best former IV054-students

Termination of the course - Exams or zapocty
Each student will get 5 questions. Number of questions a student has to respond will
depend on the number of points received for homeworks. Each student will get
automatically A in case (s)he received number of points from exercises >= 85% of MAX
- maximal number of points any student got from exercises.

Automatically a student gets B, with an easy way to get A, in case the number of points
(s)he received is in interval (75,85)% of MAX.......
Teaching materials

Detailed slides of all lectures. ( Each chapter will consists of a (i) short prologue, (ii)
basic materials and an (iii) Appendix -for much demanding students.

Appendix of fundamental discrete math and linear algebra - 45 pages

Two lecture notes of solved examples (at least 100 in each one) and short (2-3)
pages overviews for all chapters.

Posted solutions of homeworks
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IV054 - goals

Goals
1. To learn beautiful and powerful basics of the coding
theory and of the classical as well as quantum modern
cryptography and steganography-watermarking needed for
all informaticians; in almost all areas of informatics and for
transmission and storing information.

2. To verify, for ambitious students, their capability to
work hard to be successful in very competitive
informatics+mathematics environments.
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CONTENS

Beautiful and much applied coding theory - efficiency and miniaturization of modern
information transition systems depends much on the quality and efficiency of the
underlying encoding and decoding systems.

Basic encryption systems and decryption methods of the classical, secret and public
key cryptography. Blocks and streams encryption and decryption systems and methods.

Digital signatures. Authentication protocols, privacy preservation and secret sharing
methods. Basics and applications of such primitives as cryptographical hash
functions, pseudorandomness, and elliptic curves.

Fundamental crypto protocols and zero-knowledge protocols as well as probabilistic
proofs as some highlights of the fundamentals of informatics.

Steganography and watermarkinga as key information hiding and discovery methods -
for a huge variety of applications.

Fundamentals of quantum information transmission and Cryptography. Surprising
and even shocking practical applications of quantum information transmission and
cryptography. Top current cryptosystem for applications.
Comment: Concerning both lectures and homeworks the overall requirement for students
will be significantly smaller than in previous years.
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Codes basics and linear codes

Basics of coding theory
and

an introduction to linear codes
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PROLOGUE - I.

PROLOGUE - I.
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ROSETTA SPACECRAFT

In 1993 in Europe Rosetta spacecraft project started.

In 2004 Rosetta spacecraft was launched.

In August 2015 Rosetta spacecraft got on the orbit of the comet 67P ((4.3× 4.11 of
its size) one of 4000 known comets of the solar systems) and sent to earth a lot of
photos of 67P.

In spite of the fact that the comet 67P is 720 millions of kilometers from the earth
and there is a lot of noise for signals on the way encoding of photos arrived in such a
form that they could be decoded to get excellent photos of the comet.

All that was, to the large extent, due to the enormously high level coding theory
already had in 1993.

Since that time coding theory has made another enormous progress that has
allowed, among other things, almost perfect mobile communication and transmission
of music in time and space.
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and there is a lot of noise for signals on the way encoding of photos arrived in such a
form that they could be decoded to get excellent photos of the comet.

All that was, to the large extent, due to the enormously high level coding theory
already had in 1993.

Since that time coding theory has made another enormous progress that has
allowed, among other things, almost perfect mobile communication and transmission
of music in time and space.
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ROSETTA LANDING - VIEW from 21 km -29.9.2016
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ROSETTA LANDING - VIEW from 51 m -29.9.2016
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CHAPTER 1: BASICS of CODING THEORY

ABSTRACT

Coding theory - theory of error correcting codes - is one of
the most interesting and applied part of informatics.

Goals of coding theory are to develop systems and
methods that allow to detect/correct errors caused when
information is transmitted through noisy channels.

All real communication systems that work with digitally
represented data, as CD players, TV, fax machines,
internet, satellites, mobiles, require to use error correcting
codes because all real channels are, to some extent, noisy
– due to various interference/destruction caused by the
environment

Coding theory problems are therefore among the very basic and most frequent
problems of storage and transmission of information.
Coding theory results allow to create reliable systems out of unreliable systems to
store and/or to transmit information.
Coding theory methods are often elegant applications of very basic concepts and
methods of (abstract) algebra.

This first chapter presents and illustrates the very basic problems, concepts, methods and
results of coding theory.
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INFORMATION

PROLOGUE - II.
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INFORMATION

INFORMATION

is often an important and very valuable commodity.

This lecture is about how to protect or even hide
information

against noise or even unintended user,

using mainly classical, but also quantum tools.
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CODING THEORY - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a nonempty subset of Σ∗(C ⊆ Σ∗).
A q-nary code is a code over an alphabet of q-symbols.
A binary code is a code over the alphabet {0, 1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}
C3 = {00000, 01101, 10111, 11011}

IV054 1. Basics of coding theory and linear codes 18/77



CODING THEORY - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a nonempty subset of Σ∗(C ⊆ Σ∗).
A q-nary code is a code over an alphabet of q-symbols.
A binary code is a code over the alphabet {0, 1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}
C3 = {00000, 01101, 10111, 11011}

IV054 1. Basics of coding theory and linear codes 18/77



CODING THEORY - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a nonempty subset of Σ∗(C ⊆ Σ∗).
A q-nary code is a code over an alphabet of q-symbols.
A binary code is a code over the alphabet {0, 1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}
C3 = {00000, 01101, 10111, 11011}

IV054 1. Basics of coding theory and linear codes 18/77



CODING THEORY - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a nonempty subset of Σ∗(C ⊆ Σ∗).
A q-nary code is a code over an alphabet of q-symbols.
A binary code is a code over the alphabet {0, 1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}
C3 = {00000, 01101, 10111, 11011}

IV054 1. Basics of coding theory and linear codes 18/77



CODING THEORY - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a nonempty subset of Σ∗(C ⊆ Σ∗).

A q-nary code is a code over an alphabet of q-symbols.
A binary code is a code over the alphabet {0, 1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}
C3 = {00000, 01101, 10111, 11011}

IV054 1. Basics of coding theory and linear codes 18/77



CODING THEORY - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a nonempty subset of Σ∗(C ⊆ Σ∗).
A q-nary code is a code over an alphabet of q-symbols.

A binary code is a code over the alphabet {0, 1}.
Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}

C3 = {00000, 01101, 10111, 11011}

IV054 1. Basics of coding theory and linear codes 18/77



CODING THEORY - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a nonempty subset of Σ∗(C ⊆ Σ∗).
A q-nary code is a code over an alphabet of q-symbols.
A binary code is a code over the alphabet {0, 1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}
C3 = {00000, 01101, 10111, 11011}

IV054 1. Basics of coding theory and linear codes 18/77



CODING THEORY - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a nonempty subset of Σ∗(C ⊆ Σ∗).
A q-nary code is a code over an alphabet of q-symbols.
A binary code is a code over the alphabet {0, 1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}

C3 = {00000, 01101, 10111, 11011}

IV054 1. Basics of coding theory and linear codes 18/77



CODING THEORY - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a nonempty subset of Σ∗(C ⊆ Σ∗).
A q-nary code is a code over an alphabet of q-symbols.
A binary code is a code over the alphabet {0, 1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}
C3 = {00000, 01101, 10111, 11011}

IV054 1. Basics of coding theory and linear codes 18/77



CHANNELS

is any physical medium in which information is stored or through which information is
transmitted.
(Telephone lines, optical fibres and also the atmosphere are examples of channels.)

NOISE

may be caused by sunspots, lighting, meteor showers, random radio disturbances, poor
typing, poor hearing, . . . .

TRANSMISSION GOALS

1 Encoding of information should be very fast.

2 Very similar messages should be encoded very differently.

3 Transmission of encoded messages should be very easy.

4 Decoding of received messages should be very easy.

5 Corection of errors introduced in the channel should be reasonably easy.

6 As large as possible amount of information should be transferred reliably per a time
unit.

BASIC METHOD OF FIGHTING ERRORS: REDUNDANCY!!!

Example: 0 is encoded as 00000 and 1 is encoded as 11111.
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CHANNELS - MAIN TYPES

Discrete channels and continuous channels are main
types of channels.

With an example of continuous channels we will
deal in Chapter 2. Main model of the noise in
discrete channels is:

Shannon stochastic (probabilistic) noise model:
Probability Pr(y |x), for any output y and input x)
is given that output is y in case input is x ,, and in
additionthe probability of too many errors is low.
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DISCRETE CHANNELS - MATHEMATICAL VIEWS

Formally, a discrete Shannon stochastic channel is described by a triple C = (Σ,Ω, p),
where

Σ is an input alphabet

Ω is an output alphabet

Pr is a probability distribution on Σ× Ω and for each i ∈ Σ, o ∈ Ω, Pr(i , o) is the
probability that the output of the channel is o if the input is i .

IMPORTANT CHANNELS

Binary symmetric channel maps, with fixed probability p0, each binary input
into the opposite one. Hence, Pr(0, 1) = Pr(1, 0) = p0 and
Pr(0, 0) = Pr(1, 1) = 1− p0.

Binary erasure channel maps, with fixed probability p0, binary inputs into
{0, 1, e}, where e is so called the erasure symbol, and Pr(0, 0) = Pr(1, 1) = p0,
Pr(0, e) = Pr(1, e) = 1− p0.

White noise Gaussian channel that models errors in the deep space.
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BASIC CHANNEL CODING PROBLEMS

Summary: The task of a communication channel coding is
to encode the information to be sent over the channel in
such a way that even in the presence of some channel
noise, several (or a specific number of) errors can be
detected and/or corrected.

There are two basic coding

methods

BEC (Bawkwarda) Err or Cerection Coding
allows the receiver only to detect errors. If an
error is detected, then the sender is requested to
re transmit the message.]
DEC (Forward Error Cerection) Coding] allows
the receiver to correct a certain amount of
errors.
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IMPORTANCE of ERROR-CORRECTING CODES for
CRYPTOGRAPHY

In a good cryptosystem a change of a single bit of the
cryptotext should change so many bits of the plaintext
obtained from the cryptotext that the plaintext gets
incomprehensible.

Methods to detect and correct errors when cryptotexts are
transmitted are therefore much needed.

Also many non-cryptography applications require
error-correcting codes. For example, mobiles,
CD-players,. . .

IV054 1. Basics of coding theory and linear codes 23/77



IMPORTANCE of ERROR-CORRECTING CODES for
CRYPTOGRAPHY

In a good cryptosystem a change of a single bit of the
cryptotext should change so many bits of the plaintext
obtained from the cryptotext that the plaintext gets
incomprehensible.
Methods to detect and correct errors when cryptotexts are
transmitted are therefore much needed.

Also many non-cryptography applications require
error-correcting codes. For example, mobiles,
CD-players,. . .

IV054 1. Basics of coding theory and linear codes 23/77



IMPORTANCE of ERROR-CORRECTING CODES for
CRYPTOGRAPHY

In a good cryptosystem a change of a single bit of the
cryptotext should change so many bits of the plaintext
obtained from the cryptotext that the plaintext gets
incomprehensible.
Methods to detect and correct errors when cryptotexts are
transmitted are therefore much needed.

Also many non-cryptography applications require
error-correcting codes. For example, mobiles,
CD-players,. . .

IV054 1. Basics of coding theory and linear codes 23/77



WHY WE NEED TO KEEP IMPROVING ERROR-CORRECTING
CODES

When error correcting capabilities of some code are improved - that is a better code is
found - this has the following impacts:

For the same quality of the received information, it is possible to achieve that the
transmission system operates in more severe conditions;

For example;
1 It is possible to reduce the size of antennas or solar panels and the weight of batteries;
2 In the space travel systems such savings can be measured in hundred of thousands of

dollars;
3 In mobile telephone systems, improving the code enables the operators to increase the

potential number of users in each cell.

Another field of applications of error-correcting codes is that of mass memories:
computer hard drives, CD-Rooms, DVDs and so on.
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REDUNDANCY - BASIC IDEA of ERROR CORRECTION

Details of the techniques used to protect information against noise in practice are

sometimes rather complicated, but basic principles are mostly easily understood.

The key idea is that in order to protect a message
against a noise, we should encode the message by
adding some redundant informationto the message.

This should be done in such a way that even if the message is corrupted by a noise,
there will be enough redundancy in the encoded message to recover, or to decode
the message completely.
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MAJORITY VOTING DECODING - BASIC IDEA

The basic idea of so called majority voting
decoding/principle or of maximal likelihood
decoding/principle, when a code C is used, is

to decode a received message w ′

by a codeword w that is the closest codeword to w ′

in the whole set of the codewords of the given code
C .
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EXAMPLE

In case: (a) the encoding

0→ 000 1→ 111,

is used,

(b) the probability of the bit error is p < 1
2

and,

(c) the following majority voting decoding

000, 001, 010, 100→ 000 and 111, 110, 101, 011→ 111

is used,

then the probability of an erroneous decoding (for the case of 2 or 3 errors) is

3p2(1− p) + p3 = 3p2 − 2p3 < p
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EXAMPLE: Coding of a path avoiding an enemy territory

Story Alice and Bob share an identical map (Fig. 1) shown in Fig.1. Only Alice knows
the route through which Bob can reach her avoiding the enemy (graded) territory. Alice
wants to send Bob the information about the safe route he should take.

TENNESSEAN

Three ways to encode the safe route (by steps North,
West, South, Eat) from Bob to Alice are:

1 C1 = {N = 00,W = 01, S = 11,E = 10}
In such a case any error in the code word

000001000001011111010100000000010100

would be a disaster.

2 C2 = {000, 011, 101, 110}

x Bob
Fig. 1

Alice
HQ

N

A single error in encoding each of symbols N, W, S, E can be detected.

3 C3 = {00000, 01101, 10110, 11011}
A single error in decoding each of symbols N, W, S, E can be corrected.
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BASIC TERMINOLOGY

Datawords - words of a message
Codewords - words of some code.
Block code - a code with all codewords of the same length.

Basic assumptions about channels

1 Code length preservation. Each output word of a channel it should have the same
length as the corresponding input codeword.

2 Independence of errors. The probability of any one symbol being affected by an
error in transmissions is the same.

Basic strategy for decoding

For decoding we use the so-called maximal likelihood principle, or nearest neighbor
decoding strategy, or majority voting decoding strategy which says that

the receiver should decode a received word w’

as

the codeword w that is the closest one to w’.
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HAMMING DISTANCE

The intuitive concept of “closeness“ of two words is well formalized through Hamming
distance h(x , y) of words x, y .

For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.

Example: h(10101, 01100) = 3, h(fourth, eighth) = 4

Properties of th Hamming distance

1 h(x , y) = 0⇔ x = y
2 h(x , y) = h(y , x)
3 h(x , z) ≤ h(x , y) + h(y , z) triangle inequality

An important parameter of codes C is their minimal distance.

h(C) = min{h(x , y) | x , y ∈ C , x 6= y},
Therefore, h(C) is the smallest number of errors that can change one codeword into
another.

Basic error correcting theorem
1 A code C can detect up to s errors if h(C) ≥ s + 1.
2 A code C can correct up to t errors if h(C) ≥ 2t + 1.

Proof (1) Trivial. (2) Suppose h(C) ≥ 2t + 1. Let a codeword x is transmitted and a
word y is received such that h(x , y) ≤ t. If x ′ 6= x is any codeword, then h(y , x ′) ≥ t + 1
because otherwise h(y , x ′) < t + 1 and therefore h(x , x ′) ≤ h(x , y) + h(y , x ′) < 2t + 1
what contradicts the assumption h(C) ≥ 2t + 1.
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2 h(x , y) = h(y , x)
3 h(x , z) ≤ h(x , y) + h(y , z) triangle inequality

An important parameter of codes C is their minimal distance.

h(C) = min{h(x , y) | x , y ∈ C , x 6= y},
Therefore, h(C) is the smallest number of errors that can change one codeword into
another.

Basic error correcting theorem
1 A code C can detect up to s errors if h(C) ≥ s + 1.
2 A code C can correct up to t errors if h(C) ≥ 2t + 1.

Proof (1) Trivial. (2) Suppose h(C) ≥ 2t + 1. Let a codeword x is transmitted and a
word y is received such that h(x , y) ≤ t.

If x ′ 6= x is any codeword, then h(y , x ′) ≥ t + 1
because otherwise h(y , x ′) < t + 1 and therefore h(x , x ′) ≤ h(x , y) + h(y , x ′) < 2t + 1
what contradicts the assumption h(C) ≥ 2t + 1.
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BINARY SYMMETRIC CHANNEL

Consider a transition of binary symbols such that each symbol has probability of error
p < 1

2
.

p

p

1 - p

1 - p0 0

11

Binary symmetric channel

If n symbols are transmitted, then the probability of t errors is

pt(1− p)n−t
(
n
t

)
In the case of binary symmetric channels, the ”nearest neighbour decoding strategy” is
also ”maximum likelihood decoding strategy”.
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SURPRISING POWER of PARITY BITS

Example Let all 211 of binary words of length 11 be codewords
and let the probability of a bit error be p = 10−8.
Let bits be transmitted at the rate 107 bits per second.
The probability that a word is transmitted incorrectly is approximately

11p(1− p)10 ≈ 11
108

.

Therefore 11
108
· 10

7

11
= 0.1 of words per second are transmitted incorrectly.

Therefore, one wrong word is transmitted every 10 seconds, 360 erroneous words every
hour and 8640 words every day without being detected!
Let now one parity bit be added.
Any single error can be detected!!!
The probability of at least two errors is:

1− (1− p)12 − 12(1− p)11p ≈
(
12
2

)
(1− p)10p2 ≈ 66

1016

Therefore, approximately 66
1016
· 10

7

12
≈ 5.5 · 10−9 words per second are transmitted with an

undetectable error.
Corollary One undetected error occurs only once every 2000 days! (2000 ≈ 109

5.5×86400
).
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NOTATIONS and EXAMPLES

Notation: An (n,M, d)-code C is a code such that

n - is the length of codewords.

M - is the number of codewords.

d - is the minimum distance of two codewords in C .

Example:
C1 = {00, 01, 10, 11} is a (2,4,1)-code.
C2 = {000, 011, 101, 110} is a (3,4,2)-code.
C3 = {00000, 01101, 10110, 11011} is a (5,4,3)-code.

Comment: A good (n,M, d)-code has small n, large M and also large d .
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EXAMPLES from DEEP SPACE TRAVELS

Examples (Transmission of photographs from the deep space)

In 1965-69 Mariner 4-5 probes took the first photographs of another planet - 22
photos. Each photo was divided into 200 × 200 elementary squares - pixels. Each
pixel was assigned 6 bits representing 64 levels of brightness. and so called
Hadamard code was used.

Transmission rate was 8.3 bits per second.

In 1970-72 Mariners 6-8 took such photographs that each picture was broken into
700 × 832 squares. So called Reed-Muller (32,64,16) code was used.

Transmission rate was 16200 bits per second. (Much better quality pictures could be
received)
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HADAMARD CODE

In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard code that could
correct up to 7 errors.

Hadamard code has 64 codewords. 32 of them are represented by the 32 × 32 matrix
H = {hIJ}, where 0 ≤ i , j ≤ 31 and

hij = (−1)a0b0+a1b1+...+a4b4

where i and j have binary representations

i = a4a3a2a1a0, j = b4b3b2b1b0

The remaining 32 codewords are represented by the matrix −H.
Decoding was quite simple.
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CODES RATES

For q-nary (n,M, d)-code C we define the code rate, or information rate, RC , by

RC =
lgQM

n
.

The code rate represents the ratio of the number of needed input data symbols to the
number of transmitted code symbols.

If a q-nary code has code rate R, then we say that it transmits R q-symbols per a channel
use - or R is a number of bits per a channel use (box) - in the case of binary alphabet.

Code rate (6/32 for Hadamard code), is an important parameter for real
implementations, because it shows what fraction of the communication bandwidth is
being used to transmit actual data.
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The ISBN-code I.

Each book till 1.1.2007 had Iinternational Sstandard BOOK Number which was a
10-digit codeword produced by the publisher with the following structure:

l
language

0

p
publisher

07

m
number
709503

w
weighted check sum

0

= x1 . . . x10

such that
∑10

i=1(11− i)xi ≡ 0 (mod11)

The publisher has to put x10 = X if x10 is to be 10.
The ISBN code was designed to detect: (a) any single error (b) any double error created
by a transposition

IV054 1. Basics of coding theory and linear codes 37/77



The ISBN-code I.

Each book till 1.1.2007 had Iinternational Sstandard BOOK Number which was a
10-digit codeword produced by the publisher with the following structure:

l
language

0

p
publisher

07

m
number
709503

w
weighted check sum

0

= x1 . . . x10

such that

∑10
i=1(11− i)xi ≡ 0 (mod11)

The publisher has to put x10 = X if x10 is to be 10.
The ISBN code was designed to detect: (a) any single error (b) any double error created
by a transposition

IV054 1. Basics of coding theory and linear codes 37/77



The ISBN-code I.

Each book till 1.1.2007 had Iinternational Sstandard BOOK Number which was a
10-digit codeword produced by the publisher with the following structure:

l
language

0

p
publisher

07

m
number
709503

w
weighted check sum

0

= x1 . . . x10

such that
∑10

i=1(11− i)xi ≡ 0 (mod11)

The publisher has to put x10 = X if x10 is to be 10.

The ISBN code was designed to detect: (a) any single error (b) any double error created
by a transposition

IV054 1. Basics of coding theory and linear codes 37/77



The ISBN-code I.

Each book till 1.1.2007 had Iinternational Sstandard BOOK Number which was a
10-digit codeword produced by the publisher with the following structure:

l
language

0

p
publisher

07

m
number
709503

w
weighted check sum

0

= x1 . . . x10

such that
∑10

i=1(11− i)xi ≡ 0 (mod11)

The publisher has to put x10 = X if x10 is to be 10.
The ISBN code was designed to detect: (a) any single error (b) any double error created
by a transposition

IV054 1. Basics of coding theory and linear codes 37/77



EQUIVALENCE of CODES

Definition Two q-ary codes are called equivalent if one can be obtained from the other by
a combination of operations of the following type:

(a) a permutation of the positions of the code.

(b) a permutation of symbols appearing in a fixed position.

Question: Let a code be displayed as an M × n matrix. To what correspond operations
(a) and (b)?
Claim: Distances between codewords are unchanged by operations (a), (b).
Consequently, equivalent codes have the same parameters (n,M,d) (and correct the same
number of errors).

Examples of equivalent codes

(1)


0 0 1 0 0
0 0 0 1 1
1 1 1 1 1
1 1 0 0 0




0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1


(2)


0 0 0
1 1 1
2 2 2




0 1 2
1 2 0
2 0 1


Lemma Any q-ary (n,M, d)-code over an alphabet {0, 1, . . . , q − 1} is equivalent to an
(n,M, d)-code which contains the all-zero codeword 00 . . . 0.
Proof Trivial.
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THE MAIN CODING THEORY PROBLEM

A good (n,M, d)-code should have a small n, large M and large d .

The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.

Notation: Aq(n, d) is the largest M such that there is an q-nary (n,M, d)-code.

Theorem
(a) Aq(n, 1) = qn;

(b) Aq(n, n) = q.

Proof

(a) First claim is obvious;

(b) Let C be an q-nary (n,M, n)-code. Any two distinct codewords of C have to differ
in all n positions. Hence symbols in any fixed position of M codewords have to be
different. Therefore ⇒ Aq(n, n) ≤ q. Since the q-nary repetition code is
(n, q, n)-code, we get Aq(n, n) ≥ q.
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A SPHERE and its VOLUME

Notation F n
q - is a set of all words of length n over the alphabet {0, 1, 2, . . . , q − 1}

Definition For any codeword u ∈ F n
q and any integer r ≥ 0 the sphere of radius r and

centre u is denoted by

S(u, r) = {v ∈ F n
q | h(u, v) ≤ r}.

Theorem A sphere of radius r in F n
q , 0 ≤ r ≤ n contains(

n
0

)
+
(
n
1

)
(q − 1) +

(
n
2

)
(q − 1)2 + . . .+

(
n
r

)
(q − 1)r

words.

Proof Let u be a fixed word in F n
q . The number of words that differ from u in m

positions is (
n
m

)
(q − 1)m.
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PICTURES of SATURN TAKEN by VOYAGER

Pictures of Saturn taken by Voyager, in 1980, had
800× 800 pixels with 8 levels of brightness.

Since pictures were in color, each picture was transmitted
three times; each time through different color filter. The
full color picture was represented by

3× 800× 800× 8 = 13360000 bits.

To transmit pictures Voyager used the so called Golay
code G24.
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FRAMEWORK

The goal of coding theory is to develop for a given set of
messages M ,

for example for the set of names of students/participants
of this crypto lecture,

a code - a set of codewords,

for example UČOs

and to send through a noisy Chanel UČO of students
instead of their names,
in such a way that what will be received can be used to
determine name that had to be transmitted
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and to send through a noisy Chanel UČO of students
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AN IDEA - I.

Let us assume that UČO of each student can be seen as its encoding.

Is it possible to give to each student in this class an UČO in such a way that the sum of
UČos of any two student of this class will be again an UČO of some student of this class?

The answer is NO and the proof of that is almost trivial. Is it possible to give to each

student UČO in such a way that bit-wise sums of binary representations of UČos of any
two student of this class will be again binary representations of UČos of some students of
this class?

In general, does it has a sense to look for such codes that some important sum of any
two codewords is again a codeword?
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LINEAR CODES - I.

Linear codes are special sets of words of a fixed length n over an alphabet
Σq = {0, .., q − 1}, where q is a (power of) prime.

In the following two chapters F n
q (or V (n, q)) will be considered as the vector spaces of

all n-tuples over the Galois field GF (q) (with the elements {0, .., q − 1} and with
arithmetical operations modulo q.)
Definition A subset C ⊆ F n

q is a linear code if

1 u + v ∈ C for all u, v ∈ C
(if u = (u1, u2, . . . , un), v = (v1, v2. . . . , vn) then
u + v = (u1 +W V1, u2 +W V2 . . . , un +W Vn))

2 au ∈ C for all u ∈ C , and all a ∈ GF (q)
if u = (u1, u2, . . . , un),, then au = (au1, au2, . . . , aun))

Lemma A subset C ⊆ F n
q is a linear code iff one of the following conditions is satisfied

1 C is a subspace of F n
q .

2 Sum of any two codewords from C is in C (for the case q = 2)

If C is a k-dimensional subspace of F n
q , then C is called [n, k]-code. It has qk codewords.

If the minimal distance of C is d , then it is said to be the [n, k, d ] code.
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LINEAR CODES - II.

If C is a linear [n, k] code, then it has several bases.

A base B of C is such a sets of k codewords of C that
each codeword of C is a linear combination of the
codewords from the base B.

Each base B of C is usually represented by a (k , n) matrix,
GB, so called a generator matrix of C , the i -th row of
which is the i -th codeword of B.
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EXERCISE

Which of the following binary codes are linear?
C1 = {00, 01, 10, 11} – YES
C2 = {000, 011, 101, 110} – YES
C3 = {00000, 01101, 10110, 11011} – YES
C5 = {101, 111, 011} – NO
C6 = {000, 001, 010, 011} – YES
C7 = {0000, 1001, 0110, 1110} – NO

How to create a linear code?

Notation: If S is a set of vectors of a vector space, then let 〈S〉 be the set of all linear
combinations of vectors from S .

Theorem For any subset S of a linear space, 〈S〉 is a linear space that consists of the
following words:

the zero word,

all words in S,

all sums of two or more words in S.

Example S = {0100, 0011, 1100}
〈S〉 = {0000, 0100, 0011, 1100, 0111, 1011, 1000, 1111}.
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BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.

IV054 1. Basics of coding theory and linear codes 47/77



BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.

IV054 1. Basics of coding theory and linear codes 47/77



BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.

IV054 1. Basics of coding theory and linear codes 47/77



BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.

IV054 1. Basics of coding theory and linear codes 47/77



BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.

IV054 1. Basics of coding theory and linear codes 47/77



BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.

IV054 1. Basics of coding theory and linear codes 47/77



BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.

IV054 1. Basics of coding theory and linear codes 47/77



BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.

IV054 1. Basics of coding theory and linear codes 47/77



BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.

IV054 1. Basics of coding theory and linear codes 47/77



BASIC PROPERTIES of LINEAR CODES II

If C is a linear [n, k]-code, then it has many basis Γ consisting of k codewords and such
that each codeword of C is a linear combination of the codewords from any Γ.

Example

Code
C4 = {0000000, 1111111, 1000101, 1100010,

0110001, 1011000, 0101100, 0010110,
0001011, 0111010, 0011101, 1001110,
0100111, 1010011, 1101001, 1110100}

has, as one of its bases, the set
{1111111, 1000101, 1100010, 0110001}.

How many different bases has a linear code?

Theorem A binary linear code of dimension k has

1
k!

∏k−1
i=0 (2k − 2i )

bases.
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EXAMPLE

If a code C has 2200 codewords, then there is no way to
write down and/or to store all its codewords.

WHY

However, In case we have [2200, 200] linear code C , then to
specify/store fully C we need only to store

200
codewords - from one of its basis.
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ADVANTAGES and DISADVANTAGES of LINEAR CODES I.

Advantages - are big.

1 Minimal distance h(C) is easy to compute if C is a linear code.

2 Linear codes have simple specifications.

To specify a non-linear code usually all codewords have to be listed.

To specify a linear [n, k]-code it is enough to list k codewords (of a basis).

Example One of the generator matrices of the binary code

C2 =


0 0 0
0 1 1
1 0 1
1 1 0

 is the matrix

(
0 1 1
1 0 1

)

and one of the generator matrices of the code

C4 is


1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1


3 There are simple encoding/decoding procedures for linear codes.
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ADANTAGES and DISADVANTAGES of LINEAR CODES II.

Disadvantages of linear codes are small:

1 Linear q-codes are not defined unless q is a power of a
prime.

2 The restriction to linear codes might be a restriction to
weaker codes than sometimes desired.
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EQUIVALENCE of LINEAR CODES I

Definition Two linear codes on GF (q) are called equivalent if one can be obtained from
another by the following operations:

(a) permutation of the words or positions of the code;

(b) multiplication of symbols appearing in a fixed position by a non-zero scalar.

Theorem Two k × n matrices generate equivalent linear [n, k]-codes over F n
q if one

matrix can be obtained from the other by a sequence of the following operations:

(a) permutation of the rows

(b) multiplication of a row by a non-zero scalar

(c) addition of one row to another

(d) permutation of columns

(e) multiplication of a column by a non-zero scalar

Proof Operations (a) - (c) just replace one basis by another. Last two operations convert
a generator matrix to one of an equivalent code.
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Proof Operations (a) - (c) just replace one basis by another. Last two operations convert
a generator matrix to one of an equivalent code.
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EQUIVALENCE of LINEAR CODES II

Theorem Let G be a generator matrix of an [n, k]-code. Rows of G are then linearly
independent .By operations (a) - (e) the matrix G can be transformed into the form:
[Ik |A] where Ik is the k × k identity matrix, and A is a k × (n − k) matrix.

Example 
1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
1 1 1 0 0 0 1

→

→


1 0 0 0 1 0 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 0 0 1 1 1 0

→


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 1 1 0 1
0 0 0 1 1 1 0

→
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ENCODING with LINEAR CODES

is a vector × matrix multiplication

Let C be a linear [n, k]-code over F n
q with a generator k × n matrix G .

Theorem C has qk codewords.

Proof Theorem follows from the fact that each codeword of C can be expressed uniquely
as a linear combination of the basis codewords/vectors.

Corollary The code C can be used to encode uniquely qk messages.
(Let us identify messages with elements of F k

q .)

Encoding of a message u = (u1, . . . , uk) using the generator matrix G :

u · G =
∑k

i=1 ui ri where r1, . . . , rk are rows of G .

Example Let C be a [7, 4]-code with the generator matrix

G=


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1


A message (u1, u2, u3, u4) is encoded as:???
For example:
0 0 0 0 is encoded as? ..... 0000000
1 0 0 0 is encoded as? ..... 1000101
1 1 1 0 is encoded as? ..... 1110100
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UNIQUENESS of ENCODING

with linear codes

Theorem If G = {wi}ki=1 is a generator matrix of a binary linear code C of length n and
dimension k, then the set of codewords/vectors

v = ug

ranges over all 2kn words of length k

Therefore
C = {ug | u ∈ {0, 1}k}

Moreover

u1G = u2

if and only if

u1 = u2
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EFFICIENT TRANMIION of INFORMATION

Important problems of information theory are how to define formally such concepts as
information and how to store or transmit information efficiently.

Let X be a random variable (source) which takes any value x with probability p(x). The
entropy of X is defined by

S(X ) = −
∑

x p(x)lg p(x)

and it is considered to be the information content of X. rbinary variable X which takes on
the value 1 with probability p and the value 0 with probability 1− p, then the
information content of X is:

S(X ) = H(p) = −p lg p − (1− p)lg(1− p)1

Problem: What is the minimal number of bits needed to transmit n values of X?
Basic idea: Encode more (less) probable outputs of X by shorter (longer) binary words.
Example (Moorse code - 1838)

a .- b -... c -.-. d -.. e . f ..-. g –.
h .... i .. j .— k -.- l .-.. m – n -.
o — p .–. q –.- r .-. s ... t - u ..-
v ...- w .– x -..- y -.– z –..

1Notation lg (Ln) [log] will be used for binary, natural and decimal logarithms.
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Basic idea: Encode more (less) probable outputs of X by shorter (longer) binary words.
Example (Moorse code - 1838)

a .- b -... c -.-. d -.. e . f ..-. g –.
h .... i .. j .— k -.- l .-.. m – n -.
o — p .–. q –.- r .-. s ... t - u ..-
v ...- w .– x -..- y -.– z –..

1Notation lg (Ln) [log] will be used for binary, natural and decimal logarithms.
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SHANNON’s NOISELESS CODING THEOREM

SHANNON’s noiseless coding theorem says that in order to transmit n values of X, we
need, and it is sufficient, to use nS(X ) bits.

More exactly, we cannot do better than the bound nS(X ) says, and we can reach the
bound nS(X ) as close as desirable.

Example: Let a source X produce the value 1 with probability p = 1
4

and the value 0 with probability 1− p = 3
4

Assume we want to encode blocks of the outputs of X of length 4.

By SHANNON’s theorem we need 4H( 1
4
) = 3.245 bits per blocks (in average)

A simple and practical method known as Huffman code requires in this case 3.273 bits
per a 4-bit message.

mess. code mess. code mess. code mess. code
0000 10 0100 010 1000 011 1100 11101
0001 000 0101 11001 1001 11011 1101 111110
0010 001 0110 11010 1010 11100 1110 111101
0011 11000 0111 1111000 1011 111111 1111 1111001

Observe that this is a prefix code - no codeword is a prefix of another codeword.
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DESIGN of HUFFMAN CODE II

Given a sequence of n objects, x1, . . . , xn with probabilities p1 ≥ . . . ≥ pn.

Stage 1 - shrinking of the sequence.

Replace xn−1, xn with a new object yn−1 with probability pn−1 + pn and rearrange
sequence so one has again non-increasing probabilities.

Keep doing the above step till the sequence shrinks to two objects.

.50 .50 .50 .50 .50 .50 .50
.50.28.22.15.15.15.15

.12

.10

.04

.04

.03

.02

.12 .12 .13 .15 .22

.10 .10 .12 .13

.05 .08 .10

.04 .05

.04

Stage 2 - extending the code - Apply again and again the following method.

If C = {c1, . . . , cr} is a prefix optimal code for a source Sr , then C ′ = {c ′1, . . . , c ′r+1} is
an optimal code for Sr+1, where

c ′i = ci 1 ≤ i ≤ r − 1
c ′r = cr1

c ′r+1 = cr0.
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DESIGN of HUFFMAN CODE II

Stage 2 Apply again and again the following method:

If C = {c1, . . . , cr} is a prefix optimal code for a source Sr , then C ′ = {c ′1, . . . , c ′r+1} is
an optimal code for Sr+1, where

c ′i = ci 1 ≤ i ≤ r − 1
c ′r = cr1

c ′r+1 = cr0.

0.04 - 01010

0.04 - 01011

0.03 - 01001

0.02 - 01000

0.08 - 0101

0.05 - 0100

0.15 - 011

0.13 - 010

0.12 - 001

0.1 - 000

0.28 - 01

0.22 - 00

0.5 - 1

0.5 - 0

.50 .50 .50 .50 .50 .50 .50
.50.28.22.15.15.15.15

.12

.10

.04

.04

.03

.02

.12 .12 .13 .15 .22

.10 .10 .12 .13

.05 .08 .10

.04 .05

.04

1
011
001
000

01011
01010
01001
01000

1
0

1
0

1
0

1
0

1
0

1
0

1
0
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A BIT OF HISTORY I

The subject of error-correcting codes arose originally as a response to practical problems
in the reliable communication of digitally encoded information.

The discipline was initiated in the paper

Claude Shannon: A mathematical theory of communication, Bell SST.Tech. Journal
V27, 1948, 379-423, 623-656

SHANNON’s paper started the scientific discipline information theory and
error-correcting codes are its part.

Originally, information theory was a part of electrical engineering. Nowadays, it is an
important part of mathematics and also of informatics.
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APPENDIX II- ENTROPY - basics - I.

The concept of ENTROPY is one of the most basic and
important in modern science, especially in physics,
mathematics and information theory.

So called physical entropy is a measure of the unavailable
energy in a closed thermodynamics system (that is usually
considered to be a measure of the system’s disorder).

Entropy of an object is a measure of the amount of
energy in the object which is unable to do some work.

Entropy is also a measure of the number of possible
arrangements of the atoms a system can have.
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Information entropy

So called information entropy is a measure of
uncertainty and randomness.

Example If we have a process (a random variable) X
producing values 0 and 1, both with probability 1

2 , then we
are completely uncertain what will be the next value
produced by the process.

On the other side, if we have a process (random variable)
Y producing value 0 with probability 1

4 and value 1 with
probability 3

4 , then we are more certain that the next value
of the process will be 1 than 0.

History Rudolf Clausius coined the term entropy in 1865.
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A BIT OF HISTORY II

SHANNON’s VIEW

In the introduction to his seminal paper “A mathematical
theory of communication” Shannon wrote:

The fundamental problem of communication is that
of reproducing at one point either exactly or
approximately a message selected at another point.
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APPENDIX III. SOFT DECODING

APPENDIX
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HARD VERSUS SOFT DECODING I

At the beginning of this chapter the process encoding-channel transmission-decoding
was illustrated as follows:

W W
channel

code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

In that process a binary message is at first encoded into a binary codeword, then
transmitted through a noisy channel, and, finally, the decoder receives, for decoding, a
potentially erroneous binary message and makes an error correction.

This is a simplified view of the whole process. In practice the whole process looks
quite differently.
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HARD versus SOFT DECODING II

Here is a more realistic view of the whole encoding-transmission-decoding process:

−−

message
w

digital

digital
encoder

digital

analogue
encoder

noisy
channel

analogue
digital

decoder

digital
digital

decoder

that is

a binary message is at first transferred to a binary codeword;
the binary codeword is then transferred to an analogue signal;
the analogue signal is then transmitted through a noisy channel
the received analogous signal is then transferred to a binary form that can be used
for decoding and, finally
decoding takes place.

In case the analogous noisy signal is transferred before decoding to the binary signal we
talk about a hard decoding;
In case the output of analogous-digital decoding is a pair (pb, b) where pb is the
probability that the output is the bit b (or a weight of such a binary output (often given
by a number from an interval (−Vmax ,Vmax)), we talk about a soft decoding.

For many codes and channels the soft decoding can be more efficient.
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HARD versus SOFT DECODING - III.

In order to deal with such a more general model of transmission and soft decoding, it is
common to use, instead of the binary symbols 0 and 1 so-called antipodal binary
symbols +1 and −1 that are represented electronically by voltage +1 and −1.

A transmission channel with analogue antipodal signals can then be depicted as follows.

0−1 +1
+

noise

−1 0 +1

of received values
histogram

A very important case in practise, especially for space communication, is so-called
additive white Gaussian noise (AWN) and the channel with such a noise is called
Gaussian channel.
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HARD versus SOFT DECODING - COMMENTS

When the signal received by the decoder comes from a devise capable of producing
estimations of an analogue nature on the binary transmitted data the error correction
capability of the decoder can greatly be improved.

Since the decoder has in such a case an information about the reliability of data received,
decoding on the basis of finding the codeword with minimal Hamming distance does not
have to be optimal and the optimal decoding may depend on the type of noise involved.

For example, in an important practical case of the Gaussian white noise one search at the
minimal likelihood decoding for a codeword with minimal Euclidean distance.
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BASIC FAMILIES of CODES

Two basic families of codes are

Block codes called also as algebraic codes that are appropriate to encode blocks of
date of the same length and independent one from the other. Their
encoders have often a huge number of internal states and decoding
algorithms are based on techniques specific for each code.

Stream codes called also as convolution codes that are used to protect continuous
flows of data.Their encoders often have only small number of internal
states and then decoders can use a complete representation of states
using so called trellises, iterative approaches via several simple decoders
and an exchange of information of probabilistic nature.

Hard decoding is used mainly for block codes and soft one for stream codes. However,
distinctions between these two families of codes are tending to blur.
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STORY of MORSE TELEGRAPH - I.

In 1825 William Sturgeon discovered electromagnet and showed that using
electricity one can make to ring a ring that was far away.

The first telegraph designed Charles Whether Stone and demonstrated it at the
distance 2.4 km.

Samuel Morse made a significant improvement by designing a telegraph that could
not only send information, but using a magnet at other end it could also write the
transmitted symbol on a paper.

Morse was a portrait painter whose hobby were electrical machines.

Morse and his assistant Alfredvail invented ”Morse alphabet” around 1842.

After US Congress approved 30,000 $ on 3.3.1943 for building a telegraph
connection between Washington and Baltimore, the line was built fast, and already
on 24.5.1943 the first telegraph message was sent: ”What Hath God Wrought” -
”Čo Boh sent”.

The era of Morse telegraph ended on 26.1.2006 when the main telegraph company
in US, Western Union, announced cancelation of all telegraph services.
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STORY of MORSE TELEGRAPH - II.

In his telegraphs Moor se used the following two-character
audio alphabet

TIT or dot — a short tone lasting four hundredths of
second;

TAT or dash — a long tone lasting twelve hundredths
of second.

Morse could called these tones as 0 and 1

The binary elements 0 and 1 were first called bits by J. W.
Tickle in 1943.
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The ISBN-code I

Each book till 1.1.2007 had Iinternational Sstandard BOKO Number which was a
10-digit codeword produced by the publisher with the following structure:

l
language

0

p
publisher

07

m
number
709503

w
weighted check sum

= x1 . . . x10

such that
∑10

i=1(11− i)xi ≡ 0 (mod11)

The publisher has to put x10 = X if x10 is to be 10.
The ISBN code was designed to detect: (a) any single error (b) any double error created
by a transposition Let X = x1 . . . x10 be a correct code and let

Y = x1 . . . xj−1yjxj+1 . . . x10 with yj = xj + a, a 6= 0

In such a case:∑10
i=1(11− i)yi =

∑10
i=1(11− i)xi + (11− j)a 6= 0 (mod11)
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The ISBN-code II

Transposition detection

Let xj and xk be exchanged.∑10
i=1(11− i)yi =

∑10
i=1(11− i)xi + (k − j)xj + (j − k)xk = (k − j)(xj − xk) 6= 0 (mod11)

if k 6= j and xj 6= xk .
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New ISBN code

Starting 1.1.2007 instead of 10-digit ISBN code a 13-digit
ISBN code is being used.

New ISBN number can be obtained from the old one by preceding
the old code with three digits 978.

For details about 13-digit ISBN see

htts://en.wikipedia.org/wiki/International_Standard_Book_Number
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